## ON SPECIAL DIO-QUADRUPLE WITH PROPERTY $D\left(S^{2}+1\right)$

M. A. Gopalan ${ }^{1}$, S.Vidhyalakshmi ${ }^{1}$ and J. Shanthi ${ }^{2}$ *<br>${ }^{1,2}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tamilnadu, India.<br>${ }^{2}$ Asst. Professor, Department of Mathematics, Shrimati Indira Gandhi College, Tamilnadu, India.

*Corresponding Author
J. Shanthi

Asst. Professor,
Department of
Mathematics, Shrimati Indira Gandhi College, Tamilnadu, India.


#### Abstract

We search for three distinct integers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ such that the product of any two from the set minus s-times their sum and increased by $\left(s^{2}+1\right)$ is a perfect square. Also, we show that the triple can be extended to the quadruple with property $D\left(s^{2}+1\right)$


KEYWORDS: Diophantine Quadruples, Pell equation 2010

Mathematics subject classification: 11D99.

## INTRODUCTION

The problem of constructing the sets with property that the product of any two of its distinct elements is one less than a square has a very long history and such sets were studied by Diophantus. ${ }^{[3]}$ A set of m positive integers $\left\{a_{1}, a_{2} \ldots . . a_{m}\right\}$ is said to have the property $\mathrm{D}(\mathrm{n})$, $n \in z-\{0\}$ if $a_{i} a_{j}+n$, a perfect square for all $1 \leq i \leq j \leq m$ and such a set is called a Diophantine m-tuples with property $\mathrm{D}(\mathrm{n})$. Many mathematicians considered the construction of different formulations of Diophantine quadruples with the property $\mathrm{D}(\mathrm{n})$ for any arbitrary integer n and also for any linear polynomials in n . In this context, one may refer ${ }^{[1,2,4-18]}$ for an extensive review of various problems on Diophantine quadruples. This paper aims at constructing special dio - quadruple where the product of any two members of the quadruple minus s-times the same members and the addition of $\left(s^{2}+1\right)$ satisfies the required property.

## Method of analysis

Let $a(k, s)=2 k^{2}+2 k+s, b(k, s)=2 k^{2}-2 k+s$ be any two distinct integers such that $a(k, s) b(k, s)-s(a(k, s)+b(k, s))+s^{2}+1$ is a perfect square.

Let $c_{N}(k, s)$ be any non-zero integer such that
$(a(k, s)-s) c_{N}(k, s)-s a(k, s)+s^{2}+1=p_{N}^{2}(k, s)$
$(b(k, s)-s) c_{N}(k, s)-s b(k, s)+s^{2}+1=q_{N}^{2}(k, s)$
Eliminating $c_{N}(k, s)$ between (1) and (2), we have

$$
\begin{equation*}
\left(2 k^{2}-2 k\right) p_{N}^{2}(k, s)-\left(2 k^{2}+2 k\right) q_{N}^{2}(k, s)=-4 k \tag{3}
\end{equation*}
$$

Introducing the linear transformations
$\left.\begin{array}{r}p_{N}(k, s)=X_{N}(k, s)+\left(2 k^{2}+2 k\right) T_{N}(k, s) \\ q_{N}(k, s)=X_{N}(k, s)+\left(2 k^{2}-2 k\right) T_{N}(k, s)\end{array}\right\}$
in (3), we get
$X_{N}^{2}(k, s)=\left(4 k^{4}-4 k^{2}\right) T_{N}^{2}(k, s)+1$
This is a well known Pellian equation whose general solution is given by

$$
\left.\begin{array}{c}
X_{N}(k, s)=\frac{1}{2}\left[\left(2 k^{2}-1+\sqrt{4 k^{4}-4 k^{2}}\right)^{N+1}+\left(2 k^{2}-1-\sqrt{4 k^{4}-4 k^{2}}\right)^{N+1}\right]  \tag{6}\\
N(k, s)=\frac{1}{2 \sqrt{4 k^{4}-4 k^{2}}}\left[\left(2 k^{2}-1+\sqrt{4 k^{4}-4 k^{2}}\right)^{N+1}-\left(2 k^{2}-1-\sqrt{4 k^{4}-4 k^{2}}\right)^{N+1}\right]
\end{array}\right\}
$$

Taking $\mathrm{N}=0$ in (6), (4) and using (1), we get
$c_{o}(k, s)=s+8 k^{2}-2$
Note that $\left(a(k, s), b(k, s), c_{o}(k, s)\right)$ is the special dio-triple with property $D\left(s^{2}+1\right)$
Now, substituting $\mathrm{N}=1$ in (6), (4) and using (1), we have
$c_{1}(k, s)=s+\left(8 k^{2}-4 k-2\right)\left(16 k^{4}+8 k^{3}-12 k^{2}-4 k+2\right)$
Thus, we obtain $\left(a(k, s), b(k, s), c_{o}(k, s), c_{1}(k, s)\right)$ as a dio-quadruple with the property $D\left(s^{2}+1\right)$.

## Some numerical examples are presented below.

Dio-quadruple with property $D\left(s^{2}+1\right)$

| S.No | $\mathbf{k}$ | $\mathbf{s}$ | $\left(\boldsymbol{a}(\boldsymbol{k}, \boldsymbol{s}), \boldsymbol{b}(\boldsymbol{k}, \boldsymbol{s}), \boldsymbol{c}_{\boldsymbol{o}}(\boldsymbol{k}, \boldsymbol{s}), \boldsymbol{c}_{\mathbf{1}}(\boldsymbol{k}, \boldsymbol{s})\right)$ |
| :---: | :---: | :---: | :---: |
| 1 | 1 | 1 | $(5,1,7,21)$ |
| 2 | 1 | 2 | $(6,2,8,22)$ |
| 3 | 2 | 4 | $(16,8,34,5856)$ |
| 4 | 2 | 3 | $(15,7,33,5855)$ |

It is worth to note that, considering the pairs $\left(a(k, s), c_{o}(k, s)\right),\left(a(k, s), c_{1}(k, s)\right)$, $\left(c_{o}(k, s), c_{1}(k, s)\right),\left(b(k, s), c_{o}(k, s)\right)$ and $\left(b(k, s), c_{1}(k, s)\right)$ in turn and repeating the above process, one obtains many special dio-quadruples with property $D\left(s^{2}+1\right)$.

## CONCLUSION

This paper concerns with the construction of special dio - quadruples with property $D\left(s^{2}+1\right)$ One may search for special dio-quadruples consisting of special numbers with suitable property.

## REFERENCES

1. Abu Muriefah F. S and Al-Rashed. A, some Diophantine quadruples in the ring $\mathrm{Z}[\sqrt{-2}]$ Math. Commun, 2004; 9: 1-8.
2. Assaf. E and Gueron. S, Characterization of regular Diophantine quadruples, Elem. Math., 2001; 56: 71-81.
3. Bashmakova. I. G(ed.) Diophantus of Alexandria, Arithmetic's and the book of polynomial numbers, Nauka Moscow., 1974.
4. Dujella. A, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber, 1996; 328: 25-30.
5. Dujella. A, Some estimates of the number of Diophantine quadruples, Publ. Math. Debrecen, 1998; 53: 177-189.
6. Filipin.A and Fujita. Y, Any polynomial D(4)-quadruple is regular, Math. Commun, 2008; 13: 45-55.
7. Filipin. A, An irregular D(4)-quadruple cannot be extended to a quintuple, Acta Arith., 2009; 136: 167-176.
8. Gopalan. M. A, Srividhya. G, Diophantine quadruples for Fibonacci and Lucas Numbers with property $\mathrm{D}(4)$, diophantus J. Math., 2012; 1: 15-18.
9. Gopalan. M. A, Sumathi. G and Vidhyalakshmi. S, Special $D\left(\mathrm{k}^{2}+1\right)$ dio-quadruple involving Jacobsthal Lucas and Thabit-ibn-kurrah numbers, International journal of mathematics trends and Technology, 2014; 11:2.
10. Gopalan. M. A, Sumathi.G and Vidhyalakshmi. S, Special dio quadruple involving Jacobsthal and Jacobstha Lucas number with property $D\left(\mathrm{k}^{2}+1\right)$, International journal of Math. Sci \& Engg. Appls, 2014; 8(11): 221-225.
11. Gibbs. P, Adjugates of Diophantine Quadruples Integers., 2010; 10: 201-209.
12. Srividhya. G, Diophantine quadruples for Fibonacci numbers with property D(1),Indian journal of mathematics and Mathematical Sciences., 2009; 5: 57-59.
13. Vidhyalakshmi. S, Kavitha. A and Gopalan. M. A, Construction of strong rational Diophantine triples with property $D\left(k^{2}\right)$ using the solutions of special three dimensional surfaces, Global Journal of Engineering Science and Research, 2015; 2(9): 28-31.
14. Vidhyalakshmi. S, Kavitha. A and Gopalan. M. A, On a family of D(1) strong rational Diophantine quadruples, International Journal of Innovative Research and review, 2014; 2(30): 18-22.
15. Vidhyalakshmi. S, Kavitha. A and Gopalan. M. A, On Diophantine quadruples with property $D(54 p)^{2}$, International Journal for Mathematics, 2015; 1(8): 1-4.
16. Vidhyalakshmi. S, Kavitha. A and Gopalan. M. A, Special dio-quadruples with property D(2), The International Journal of Science \& Technoledge, 2014; 2(5): 51-52.
17. Vidhyalakshmi. S, Kavitha. A and Gopalan. M. A, construction of D(5)- dio quadruples, International research Journal of Mathematics, Engineering \& It, 2014; 1(4): 16-20.
18. Vidhyalakshmi. S, Kavitha. A and Gopalan. M. A, An application of second order Ramanujan numbers, Journal of computing Technologies, 2015; 4(8): 40-44.
