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ABSTRACT 

In this paper we find ring-shaped regions containing all or a specific 

number of zeros of a polynomial. Many important results follow easily 

from our results. 
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INTRODUCTION  

A classical result on the location of zeros of a polynomial is the following known as the 

Enestrom-Kakeya Theorem:
[2,3]

 

Theorem A: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  such that 

0...... 011   aaaa nn . 

Then all the zeros of P(z) lie in 1z . 

Another classical result giving a region containing all the zeros of a polynomial is the 

following known as Cauchy’s Theorem:
[2,3] 

 

Theorem B: All the zeros of the polynomial 



n

j

j

j zazP
0

)( of degree n lie in the circle  

Mz 1 , where 
n

j

nj
a

a
M 10max  . 

The above theorems have been generalized in various ways by the researchers. 
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MAIN RESULTS 

In this paper we prove the following: 

Theorem 1: Let 
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0

)( be a polynomial of degree n  and 

001211 ...... aaaaaaaL nnnn   . 

Then all the zeros of P(z) lie in 
nn
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Further the number of zeros of P(z) in 1,
][ 0

1
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n

n
does not exceed  

0

0

1

0 ][
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log
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c

n
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for 1R  and the number of zeros of P(z) in 

1,
][ 0

0



c

c

R
z
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 does not exceed
0

00 ][
log

log

1

a

aLaRa

c

n 
for 1R . 

 

Remark 1: If 0...... 011   aaaa nn , then naL   and it follows from Theorem 1 that 

all the zeros of P(z) lie in 1z , which is Theorem A i.e. the Enestrom-Kakeya Theorem. 

If we take R=1 in Theorem 1, we get the following result: 

Corollary 1:  Let 



n

j

j

j zazP
0

)( be a polynomial of degree n  and 

                         001211 ...... aaaaaaaL nnnn   . 

Then  the number of zeros of P(z) in 1,
0

0



c

c
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n

 does not exceed  

0

)(
log

log

1

a
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c

n
. 

Instead of proving Theorem 1, we prove the following more general result: 

Theorem 2: Let 



n

j

j

j zazP
0

)( be a polynomial of degree n   with 

njaa jjjj ,......,2,1,0,)Im(,)Re(   and 
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Then all the zeros of P(z) lie in 
nn

n a

ML
z

MLaR

a 


 ][ 00

1

0


  for 1R  

and in 
nn a

ML
z

MLaR

a 


 ][ 00

0


 for 1R , provided MLan  . 

Further the number of zeros of P(z) in ,1,
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Remark 2: Taking ja  real i.e. njj ,.....,2,1,0,0  ,  Theorem 2 reduces to Theorem 1. 

If we take R=1 in Theorem 2, we get the following result: 

Corollary 2: Let 
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)( be a polynomial of degree n  with 

njaa jjjj ,......,2,1,0,)Im(,)Re(   and 
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LEMMAS 

For the proof of Theorem 2, we need the following results: 

Lemma 1: Let f(z) (not identically zero)  be analytic for 0)0(,  fRz  and ,0)( kaf   

nk ,......,2,1 . Then 
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. 

Lemma 1 is the famous Jensen’s Theorem (see page 208 of [1]). 

Lemma 2: Let f (z) be analytic for 0)0(,  fRz  and Mzf )( for Rz  . Then the 

number of zeros of f(z) in  1,  c
c

R
z  does not exceed  

)0(
log

log

1

f

M

c
. 

Lemma 2 is a simple deduction from Lemma 2. 

 

PROOFS OF THEOREMS 

Proof of Theorem 2: Consider the polynomial  
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provided  MLan  . 

This shows that those zeros of F(z) whos modulus is greater than 1 lie in 
na

ML
z


 . 

Since the zeros of F(z) whose modulus is less than or equal to 1 already satisfy the above 

inequality, it follows that all the zeros of F(z) and hence all the zeros of P(z) lie in 

na

ML
z


 . 

On the other hand, we have  
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For Rz  , we have, by using the hypothesis 
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For 1R , 

][)( 00   MLaRzG n . 

Since G(z) is analytic for 0)0(,  GRz , it follows by Schwarz Lemma that in Rz  , 

zMLaRzG n

n ][)( 00

1   
  for 1R  and 

zMLaRzG n ][)( 00     for 1R  
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Hence  for Rz  , 
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   for 1R  and 

       zMLaRazF n ][)( 000    

     for 1R .  

Thus for 1R , 0)( zF if 
][ 00

1

0

 


 MLaR

a
z

n

n
  

and for 1R , 0)( zF if 
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. 

In other words, all the zeros of F(z) lie in 
][ 00

1
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n
 for 1R  and in 
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a
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 for 1R . 

Since the zeros of F(z) are also the zeros of P(z), it follows that all the zeros of P(z) lie in 
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Again , for Rz  , we have, by using the hypothesis 
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for 1R  , 

                 ][)( 000   MLaRazF n . 

Hence, by using Lemma 2 and the above observations, it follows that the number of zeros of 

F(z) and therefore P(z) in ,1,
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That completes the proof of Theorem 2. 
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