ON ZEROS OF POLYNOMIALS

M. H. Gulzar*
Department of Mathematics, University of Kashmir, Srinagar, India.

*Corresponding Author
M. H. Gulzar

Department of
Mathematics, University of Kashmir, Srinagar, India.

Abstract

In this paper we find ring-shaped regions containing all or a specific number of zeros of a polynomial. Many important results follow easily from our results.

Mathematics Subject Classification: 30C10, 30C15.

KEYWORDS AND PHRASES: Polynomial, Region, Zeros.

INTRODUCTION

A classical result on the location of zeros of a polynomial is the following known as the Enestrom-Kakeya Theorem: ${ }^{[2,3]}$

Theorem A: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n such that

$$
a_{n} \geq a_{n-1} \geq \ldots \ldots \geq a_{1} \geq a_{0}>0
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1$.
Another classical result giving a region containing all the zeros of a polynomial is the following known as Cauchy's Theorem: ${ }^{[2,3]}$

Theorem B: All the zeros of the polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ of degree n lie in the circle

$$
|z| \leq 1+M \text {, where } M=\max _{0 \leq j \leq n-1}\left|\frac{a_{j}}{a_{n}}\right| .
$$

The above theorems have been generalized in various ways by the researchers.

MAIN RESULTS

In this paper we prove the following:
Theorem 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n and

$$
L=\left|a_{n}-a_{n-1}\right|+\left|a_{n-1}-a_{n-2}\right|+\ldots \ldots .+\left|a_{1}-a_{0}\right|+\left|a_{0}\right| .
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $\frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L-\left|a_{0}\right|\right]} \leq|z| \leq \frac{L}{\left|a_{n}\right|}$ for $R \geq 1$
and in $\frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L-\left|a_{0}\right|\right]} \leq|z| \leq \frac{L}{\left|a_{n}\right|}$ for $R \leq 1$, provided $\left|a_{n}\right| \leq L$.
Further the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L-\left|a_{0}\right|\right]} \leq|z| \leq \frac{R}{c}, c>1$ does not exceed
$\frac{1}{\log c} \log \frac{\left|a_{0}\right|+R^{n+1}\left[\left|a_{n}\right|+L-\left|a_{0}\right|\right]}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L-\left|a_{0}\right|\right]} \leq|z| \leq \frac{R}{c}, c>1$ does not exceed $\frac{1}{\log c} \log \frac{\left|a_{0}\right|+R\left[\left|a_{n}\right|+L-\left|a_{0}\right|\right]}{\left|a_{0}\right|}$ for $R \leq 1$.

Remark 1: If $a_{n} \geq a_{n-1} \geq \ldots . . \geq a_{1} \geq a_{0}>0$, then $L=\left|a_{n}\right|$ and it follows from Theorem 1 that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq 1$, which is Theorem A i.e. the Enestrom-Kakeya Theorem.

If we take $\mathrm{R}=1$ in Theorem 1, we get the following result:
Corollary 1: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree n and

$$
L=\left|a_{n}-a_{n-1}\right|+\left|a_{n-1}-a_{n-2}\right|+\ldots \ldots .+\left|a_{1}-a_{0}\right|+\left|a_{0}\right| .
$$

Then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{\left|a_{n}\right|+L-\left|a_{0}\right|} \leq|z| \leq \frac{R}{c}, c>1$ does not exceed $\frac{1}{\log c} \log \frac{\left(L+\left|a_{n}\right|\right)}{\left|a_{0}\right|}$.

Instead of proving Theorem 1, we prove the following more general result:
Theorem 2: Let $P(z)=\sum_{j=0}^{n} a_{i} z^{j}$ be a polynomial of degree $n \quad$ with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}, j=0,1,2, \ldots \ldots, n$ and

$$
\begin{aligned}
& L=\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right| \\
& M=\left|\beta_{n}-\beta_{n-1}\right|+\left|\beta_{n-1}-\beta_{n-2}\right|+\ldots \ldots .+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right| .
\end{aligned}
$$

Then all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $\frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]} \leq|z| \leq \frac{L+M}{\left|a_{n}\right|}$ for $R \geq 1$ and in $\frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]} \leq|z| \leq \frac{L+M}{\left|a_{n}\right|}$ for $R \leq 1$, provided $\left|a_{n}\right| \leq L+M$.
Further the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]} \leq|z| \leq \frac{R}{c}, c>1$, does not exceed
$\frac{1}{\log c} \log \frac{\left|a_{0}\right|+R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]} \leq|z| \leq \frac{R}{c}, c>1$, does not exceed
$\frac{1}{\log c} \log \frac{\left|a_{0}\right|+R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}{\left|a_{0}\right|}$ for $R \leq 1$.

Remark 2: Taking a_{j} real i.e. $\beta_{j}=0, \forall j=0,1,2, \ldots \ldots, n$, Theorem 2 reduces to Theorem 1.
If we take $\mathrm{R}=1$ in Theorem 2, we get the following result:
Corollary 2: Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree $n \quad$ with $\operatorname{Re}\left(a_{j}\right)=\alpha_{j}, \operatorname{Im}\left(a_{j}\right)=\beta_{j}, j=0,1,2, \ldots \ldots, n$ and

$$
\begin{aligned}
& L=\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right| \\
& M=\left|\beta_{n}-\beta_{n-1}\right|+\left|\beta_{n-1}-\beta_{n-2}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right| .
\end{aligned}
$$

Then the number of zeros of $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|} \leq|z| \leq \frac{1}{c}, c>1$, does not exceed

$$
\frac{1}{\log c} \log \frac{\left|a_{0}\right|+\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|}{\left|a_{0}\right|} .
$$

LEMMAS

For the proof of Theorem 2, we need the following results:
Lemma 1: Let $\mathrm{f}(\mathrm{z})$ (not identically zero) be analytic for $|z| \leq R, f(0) \neq 0$ and $f\left(a_{k}\right)=0$, $k=1,2, \ldots \ldots, n$. Then

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\lvert\, f\left(\operatorname{Re}^{i \theta}|d \theta-\log | f(0) \left\lvert\,=\sum_{j=1}^{n} \log \frac{R}{\left|a_{j}\right|}\right.\right.\right.
$$

Lemma 1 is the famous Jensen's Theorem (see page 208 of [1]).
Lemma 2: Let $\mathrm{f}(\mathrm{z})$ be analytic for $|z| \leq R, f(0) \neq 0$ and $|f(z)| \leq M$ for $|z| \leq R$. Then the number of zeros of $\mathrm{f}(\mathrm{z})$ in $|z| \leq \frac{R}{c}, c>1$ does not exceed $\frac{1}{\log c} \log \frac{M}{|f(0)|}$.

Lemma 2 is a simple deduction from Lemma 2.

PROOFS OF THEOREMS

Proof of Theorem 2: Consider the polynomial

$$
\begin{gathered}
F(z)=(1-z) P(z) \\
=(1-z)\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots . .+a_{1} z+a_{0}\right) \\
=-a_{n} z^{n+1}+\left(a_{n}-a_{n-1}\right) z^{n}+\ldots . .+\left(a_{\lambda+1}-a_{\lambda}\right) z^{\lambda+1}+\left(a_{\lambda}-a_{\lambda-1}\right) z^{\lambda} \\
+\ldots \ldots+\left(a_{1}-a_{0}\right) z+a_{0} \\
=-a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z+\alpha_{0}+i\left\{\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots . .\right. \\
\left.+\left(\beta_{1}-\beta_{0}\right) z+\beta_{0}\right\}
\end{gathered}
$$

For $|z|>1$ so that $\frac{1}{|z|^{j}}<1, \forall j=1,2, \ldots \ldots, n$, we have, by using the hypothesis

$$
\begin{aligned}
& |F(z)| \geq\left|a_{n}\right||z|^{n+1}-\left\{\left|\alpha_{n}-\alpha_{n-1}\right||z|^{n}+\ldots \ldots .+\left|\alpha_{1}-\alpha_{0}\right||z|+\left|\alpha_{0}\right|+\left|\beta_{n}-\beta_{n-1}\right||z|^{n}+\ldots \ldots .\right. \\
& \left.+\left|\beta_{1}-\beta_{0}\right||z|+\left|\beta_{0}\right|\right\} \\
& =|z|^{n}\left[\left|a_{n}\right||z|-\left\{\left|\alpha_{n}-\alpha_{n-1}\right|+\frac{\left|\alpha_{n-1}-\alpha_{n-2}\right|}{|z|} .+\ldots . .+\frac{\left|\alpha_{1}-\alpha_{0}\right|}{|z|^{n-1}}+\frac{\left|\alpha_{0}\right|}{|z|^{n}}+\left|\beta_{n}-\beta_{n-1}\right|\right.\right. \\
& \left.\left.+\frac{\left|\beta_{n}-\beta_{n-1}\right|}{|z|}+\ldots \ldots+\frac{\left|\beta_{1}-\beta_{0}\right|}{|z|^{n-1}}+\frac{\left|\beta_{0}\right|}{|z|^{n}}\right\}\right] \\
& >|z|^{n}\left[\left|a_{n} \| z\right|-\left\{\left|\alpha_{n}-\alpha_{n-1}\right|+\left|\alpha_{n-1}-\alpha_{n-2}\right|+\ldots . .+\left|\alpha_{1}-\alpha_{0}\right|+\left|\alpha_{0}\right|+\left|\beta_{n}-\beta_{n-1}\right|\right.\right. \\
& \left.\left.+\left|\beta_{n}-\beta_{n-1}\right|+\ldots . . .+\left|\beta_{1}-\beta_{0}\right|+\left|\beta_{0}\right|\right\}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =|z|^{n}\left[\left|a_{n}\right||z|-(L+M)\right] \\
& >0
\end{aligned}
$$

if

$$
|z|>\frac{L+M}{\left|a_{n}\right|}
$$

provided $\left|a_{n}\right| \leq L+M$.
This shows that those zeros of $\mathrm{F}(\mathrm{z})$ whos modulus is greater than 1 lie in $|z| \leq \frac{L+M}{\left|a_{n}\right|}$.
Since the zeros of $\mathrm{F}(\mathrm{z})$ whose modulus is less than or equal to 1 already satisfy the above inequality, it follows that all the zeros of $\mathrm{F}(\mathrm{z})$ and hence all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \leq \frac{L+M}{\left|a_{n}\right|}$.

On the other hand, we have

$$
\begin{gathered}
F(z)=-a_{n} z^{n+1}+a_{0}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z+i\left\{\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots \ldots\right. \\
+ \\
\left.+\left(\beta_{1}-\beta_{0}\right) z\right\} \\
=a_{0}+G(z)
\end{gathered}
$$

Where $G(z)=-a_{n} z^{n+1}+\left(\alpha_{n}-\alpha_{n-1}\right) z^{n}+\ldots \ldots+\left(\alpha_{1}-\alpha_{0}\right) z+i\left\{\left(\beta_{n}-\beta_{n-1}\right) z^{n}+\ldots \ldots\right.$

$$
\left.+\left(\beta_{1}-\beta_{0}\right) z\right\}
$$

For $|z|=R$, we have, by using the hypothesis

$$
\begin{aligned}
& |G(z)| \leq\left.\left|a_{n} \||z|^{n+1}+\left|\alpha_{n}-\alpha_{n-1}\right|\right| z\right|^{n}+\ldots . .+\left|\alpha_{1}-\alpha_{0}\right||z|+\left|\beta_{n}-\beta_{n-1}\right||z|^{n}+\ldots \ldots+\left|\beta_{1}-\beta\right|_{0}|z| \\
& \quad=\left|a_{n}\right| R^{n+1}+\left|\alpha_{n}-\alpha_{n-1}\right| R^{n}+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right| R+\left|\beta_{n}-\beta_{n-1}\right| R^{n}+\ldots \ldots+\left|\beta_{1}-\beta\right|_{0} R \\
& \quad \leq R^{n+1}\left[\left|a_{n}\right|+\left|\alpha_{n}-\alpha_{n-1}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\beta_{n}-\beta_{n-1}\right|+\ldots \ldots+\left|\beta_{1}-\beta_{0}\right|\right] \\
& \quad=R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]
\end{aligned}
$$

for $R \geq 1$.
For $R \leq 1$,

$$
|G(z)| \leq R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right] .
$$

Since $\mathrm{G}(\mathrm{z})$ is analytic for $|z| \leq R, G(0)=0$, it follows by Schwarz Lemma that in $|z| \leq R$,

$$
\begin{gathered}
|G(z)| \leq R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]|z| \text { for } R \geq 1 \text { and } \\
|G(z)| \leq R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|| | z \mid \text { for } R \leq 1\right.
\end{gathered}
$$

Hence for $|z| \leq R$,

$$
\begin{aligned}
& \quad|F(z)|=\left|a_{0}+G(z)\right| \\
& \geq\left|a_{0}\right|-|G(z)| \\
& \geq\left|a_{0}\right|-R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]|z|
\end{aligned}
$$

for $R \geq 1$ and

$$
|F(z)| \geq\left|a_{0}\right|-R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|| | z \mid\right.
$$

for $R \leq 1$.
Thus for $R \geq 1,|F(z)|>0$ if $|z|<\frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}$
and for $R \leq 1,|F(z)|>0$ if $|z|<\frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}$.
In other words, all the zeros of $\mathrm{F}(\mathrm{z})$ lie in $|z| \geq \frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}$ for $R \geq 1$ and in $|z| \geq \frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}$ for $R \leq 1$.

Since the zeros of $\mathrm{F}(\mathrm{z})$ are also the zeros of $\mathrm{P}(\mathrm{z})$, it follows that all the zeros of $\mathrm{P}(\mathrm{z})$ lie in $|z| \geq \frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}$ for $R \geq 1$ and in $|z| \geq \frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}$ for $R \leq 1$.

Again, for $|z| \leq R$, we have, by using the hypothesis

$$
\begin{aligned}
|F(z)| \leq & \mid a_{n} \| \\
& \quad|z|^{n+1}+\left|a_{0}\right|+\left|\alpha_{n}-\alpha_{n-1}\right||z|^{n}+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|\left\|\left.z\left|+\left|\beta_{n}-\beta_{n-1} \| z\right|\right| z\right|^{n}+\ldots \ldots\right. \\
& \leq\left|a_{n}\right| R^{n+1}+\left|a_{0}\right|+\left|\alpha_{n}-\alpha_{n-1}\right| R^{n}+\ldots \ldots .+\left|\alpha_{1}-\alpha_{0}\right| R+\left|\beta_{n}-\beta_{n-1}\right| R^{n}+\ldots \ldots \\
& \quad\left|\beta_{1}-\beta_{0}\right| R \\
\leq & \left|a_{0}\right|+R^{n+1}\left[\left|a_{n}\right|+\left|\alpha_{n}-\alpha_{n-1}\right|+\ldots \ldots+\left|\alpha_{1}-\alpha_{0}\right|+\left|\beta_{n}-\beta_{n-1}\right|+\ldots \ldots .\right. \\
& \left.\quad\left|\beta_{1}-\beta_{0}\right|\right] \\
= & \left|a_{0}\right|+R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]
\end{aligned}
$$

for $R \geq 1$ and
for $R \leq 1$,

$$
|F(z)| \leq\left|a_{0}\right|+R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right] .
$$

Hence, by using Lemma 2 and the above observations, it follows that the number of zeros of $\mathrm{F}(\mathrm{z})$ and therefore $\mathrm{P}(\mathrm{z})$ in $\frac{\left|a_{0}\right|}{R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]} \leq|z| \leq \frac{R}{c}, c>1$, does not exceed
$\frac{1}{\log c} \log \frac{\left|a_{0}\right|+R^{n+1}\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}{\left|a_{0}\right|}$ for $R \geq 1$ and the number of zeros of $\mathrm{P}(\mathrm{z})$ in
$\frac{\left|a_{0}\right|}{R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]} \leq|z| \leq \frac{R}{c}, c>1$, does not
$\frac{1}{\log c} \log \frac{\left|a_{0}\right|+R\left[\left|a_{n}\right|+L+M-\left|\alpha_{0}\right|-\left|\beta_{0}\right|\right]}{\left|a_{0}\right|}$ for $R \leq 1$.
That completes the proof of Theorem 2.

REFERENCES

1. Ahlfors L. V. Complex Analysis, $3^{\text {rd }}$ edition, Mc-Grawhill.
2. Marden M, Geometry of Polynomials, Mathematical Surveys Number 3, Amer. Math. Soc. Providence, RI, 1966.
3. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York 2002.
