
Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

301

PERFORMANCE ENHANCEMENT IN IMAGE USING NOVEL EDGE

DETECTION ALGORITHM

Gurpreet Kaur* and Er. Manreet Kaur

1
M.Tech Scholar Department of Computer Sc. & Engg., St. Soldier Institute of Engg. &

Technology, Near NIT, Jalandhar (Punjab)-144011.

2
Assistant Professor, Department of Computer Sc. & Engg., St. Soldier Institute of Engg. &

Technology, Near NIT, Jalandhar (Punjab)-144011.

Article Received on 08/10/2018 Article Revised on 29/10/2018 Article Accepted on 19/11/2018

ABSTRACT

Edge detection is one of the most important tasks in digital image

processing. Edges characterize the boundaries i.e. an edge is a

boundary between an object and background. Edges in the images are

the area with strong intensity contrasts- a jump in intensity from one

pixel to the next. Edge detection significantly reduces the amount of

data and filters out useful information, while preserves the important

structural properties in an image. Therefore edge Detection refers to the process of

identifying and locating sharp discontinuities in an image. The discontinuities are abrupt

changes in pixel intensity which characterize boundaries of objects in a scene. The shape of

the edges in images depends on many parameters: the geometrical and optical properties of

the object, the illumination conditions and the noise level in the images. The goal of edge

detection in a digital image is to determine the frontiers of all represented objects, based on

automatic processing of the gray level information in each present pixel. Classical methods of

edge detection involve convolving the image with an operator (a 2-D filter), which is

constructed to be sensitive to large gradients in the image while returning values of zero in

uniform regions. There is an extremely large number of edge detection operators available,

each designed to be sensitive to certain types of edges. The goal of our research work is to

study various edge detection techniques, compare those techniques and find the efficient

method which has better results in the output image.

wjert, 2018, Vol. 4, Issue 6, 301-312.

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

ISSN 2454-695X Original Article

SJIF Impact Factor: 5.218

*Corresponding Author

Gurpreet Kaur

M.Tech Scholar Department

of Computer Sc. & Engg.,

St. Soldier Institute of Engg.

& Technology, Near NIT,

Jalandhar (Punjab)-144011.

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

302

KEYWORDS: RGB, CCD, LoG.

INTRODUCTION

A digital image is a representation of a two-dimensional image as a finite set of digital

values. In image processing, the digitization process includes sampling and quantization of

continuous data. The sampling process samples the intensity of the continuous-tone image,

such as a monochrome, color or multi-spectrum image, at specific locations on a discrete

grid. The grid defines the sampling resolution. The quantization process converts the

continuous or analog values of intensity brightness into discrete data, which corresponds to

the digital brightness value of each sample, ranging from black, through the grays, to white.

A digitized sample is referred to as a picture element, or pixel.

Brief review of Edge Detection

Unlike the real world, images do not have edges. An edge is sharp change in intensity of an

image But, since the overall goal is to locate edges in the real world via an image, the term

edge detection is commonly used. An edge is not a physical entity, just like a shadow. It is

where the picture ends and the wall starts, where the vertical and the horizontal surfaces of an

object meet. If there were sensor with infinitely small footprints and zero-width point spread

functions, an edge would be recorded between pixels within in an image. In reality, what

appears to be an edge from the distance may even contain other edges when looked close-up.

The edge between a forest and a road in an aerial photo may not look like an edge any more

in a image taken on the ground. In the ground image, edges may be found around each

individual tree. If looked a few inches away from a tree, edges may be found within the

texture on the bark of the tree. Edges are scale-dependent and an edge may contain other

edges, but at a certain scale, an edge still has no width. If the edges in an image are identified

accurately, all the objects are located and their basic properties such as area, perimeter and

shape can be measured. Therefore edges are used for boundary estimation and segmentation

in the scene. Since computer vision involves the identification and classification of objects in

an image, edge detection is an essential tool.

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

303

Types of Edges

Figure 1: Types of Edges (a) Sharp step (b) Gradual step (c) Roof (d) Trough.

A Sharp Step, as shown in Figure 1.2(a), is an idealization of an edge. Since an image is

always band limited, this type of graph cannot ever occur. A Gradual Step, as shown in

Figure 1.2(b), is very similar to a Sharp Step, but it has been smoothed out. The change in

intensity is not as quick or sharp. A Roof, as show in Figure 1.2(c), is different than the first

two edges. The derivative of this edge is discontinuous. A Roof can have a variety of

sharpness, widths, and spatial extents. The Trough, also shown in Figure 1.2(d), is the inverse

of a Roof. Edge detection is very useful in a number of contexts. Edges characterize object

boundaries and are, therefore, useful for segmentation, registration, and identification of

objects in scenes.

Sobel Operator

The operator consists of a pair of 3×3 convolution kernels as shown in Figure 1.6(a). One

kernel is simply the other rotated by 90°.

These kernels are designed to respond maximally to edges running vertically and horizontally

relative to the pixel grid, one kernel for each of the two perpendicular orientations. The

kernels can be applied separately to the input image, to produce separate measurements of the

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

304

gradient component in each orientation (call these Gx and Gy). These can then be combined

together to find the absolute magnitude of the gradient at each point and the orientation of

that gradient. The gradient magnitude is given by:

Typically, an approximate magnitude is computed using:

which is much faster to compute.

The angle of orientation of the edge (relative to the pixel grid) giving rise to the spatial

gradient is given by:

Objectives of the Work

 Our first major objective is to understand types of edges, its features and how we to detect

them. Thus we study the various existing edge detecting methods in detail. An exhaustive

literature survey is carried out to meet the objective.

 Our next objective is to select the theoretical best and feasible method and try to

implement it under the VC++ environment for tiff file format.

 The performance of the method implemented is measured and analyzed.

 Our final goal is to modify the existing method to improve the results.

METHODOLOGY

The step-by-step methodology to be followed for detecting edges.

a) First of all a collection of gray scale images is collected.

b) The various edge detection filters are implemented in VC++.

c) Advantages and disadvantages of the methods will be analyzed.

d) Results achieved after the execution of program will be compared with the other methods.

e) We have several parameters to compare the edge detection methods.

f) We can try other parameters also to verify the method.

g) For example the processing speed of the method can be compared with other methods.

The methodology of the proposed algorithm is explained with the help of a example.

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

305

Suppose we have an image of size 10x10, we will show how our algorithm works. In this

example we will show the processing of a single pixel, because same process will be

applicable for the whole image. Suppose we have small portion of a image of size 3x3 as:

34 43 100

100 26 98

102 65 50

After applying Gx operator on the image portion, value of G1 is calculated as:

34*(-1) 43*(0) 100(+1)

100*(2) 26*(0) 98*(+2)

102*(-1) 65*(0) 50*(+1)

G1=34*(-1)+43*0+100*1+100*2+26*0+98*2+102*(-1)+65*0+50*1

G1=-34+0+100+200+0+196-102+0+50

G1=410

Similarly after applying Gy operator on the image portion, value of G2 is calculated as:

34*(+1) 43*(+1) 100(+1)

100*(0) 26*(0) 98*(0)

102*(-1) 65*(-2) 50*(-1)

G2=34*(+1)+43*1+100*1+100*0+26*0+98*0+102*(-1)+65*(-1)+50*(-1)

G2=34+43+100+0+0+0-102-130-50

G2=105(+ve value)

As G1 is greater than G2, so the new calculated value of G1 will be

G1=G1*G1

G1=410*410

G1=168100

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

306

Now G is calculated as

G=sgrt(28257610000+11025)

G=168100.032

As the value of G is greater than 45(Threshold value)

So outputImge[i][j]=0;

The central pixel 26 is replaced by 0.

34 43 100

100 0 98

102 65 50

Tools to be used: - The program has been implemented in Microsoft's Visual C++6.0 and a

PSP 5.0 software is used for image editing. The image data has been taken in the Tiff format.

The program read the TIFF file, interprets, processes and writes the processed image again to

an output tiff file format.

Source of data:- The image used in the implementation are taken from the research papers

we have read. Another source of image database is taken from the website address.

Proposed Algorithm

According to our proposed technique, the sobel operator is modified according to following

formula:

The following are steps of the algorithm

1. Input the gray scale image of size mxn.

2. Repeat step 3 to 8 for the entire image

3. Apply 3x3 Gx operator on the image portion of 3x3 and result is stored in a variable

named G1.

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

307

4. Apply 3x3 Gy operator on the image portion of 3x3 and result is stored in a variable

named G2.

5. If (G1>G2) then

G1=(G1 * G1)/m

Else

G2=(G2 * G2)/n

Where m is length of image and n is the width of the image.

6. Then we calculate the magnitude as given

7. At this step we compare the value of G with tolerance value lies between 45 and 60

8. if(G<45)

{

outputImge[i][j]=255;

}

else

{

outputImge[i][j]=0;

}

Explanation of the algorithm:- In our proposed algorithm we have taken an image and then

we have apply our proposed algorithm. In the first step the image is taken of size say mxn ,

and then we apply Gx operator on it and save the result in the G1 variable, again we apply Gy

operator on it and save the result in the G2 variable. We compare the value of G1 and G2 , if

the value of G1 is larger than G2, that means the image has more horizontal edges and if the

value of the G2 is larger than G1 , then the image has more vertical edges. In the sobel

operator the problem is that, we calculate the magnitude without caring of horizontal and

vertical edges because of that the sobel operator gives us poor results. In our proposed

algorithm if G1 is greater than G2 , then we take square of G1 and divide the result with

m(length of image), to make the sharp horizontal edges. Similarly if G2 is greater than G1,

then we take square of G2 and divide the result with n(breath of image), to make the sharp

vertical edges. The purpose of doing this is to make both the horizontal and vertical sharp so

that when we calculate the magnitude G, we will obtain better results than existing

algorithms(sobel, prewitt etc.).

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

308

In our proposed algorithm, we have followed the same methodology as used in the sobel

operator. In other words we can say we have modified the performance of the sobel operator.

In the sobel operator, the first of all we take an image, then apply the G operator on this

image, similarly we apply Gy operator on the image, and then we calculate the value of G by

following formula:

Here we are comparing the value of G with threshold value which lies between 40 to 60. Here

we are taking threshold value (say 45).

if(G<45)

{

outputImge[i][j]=255;

}

else

{

outputImge[i][j]=0;

}

But results obtained in case of sobel operator are not good. So we have made some following

modifications after applying the Gx and Gy operator on the image, and results stored in G1

and G2 respectively.

If (G1>G2) then

G1=(G1 * G1)/m

Else

G2=(G2 * G2)/n

Where m is length of image and n is the width of the image.

In our proposed algorithm we calculate the magnitude as given

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

309

Then we compare the value of G with tolerance value lies between 45 and 60

if(G<45)

{

outputImge[i][j]=255;

}

else

{

outputImge[i][j]=0;

}

OUTPUT RESULT

 Original Image Sobel operator result Proposed algorithm result

Fig. 2: Lena image.

Original Image Sobel operator result Proposed algorithm result

Fig 3: Vegetable image.

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

310

Table 5.1: PSNR values of Proposed Algorithm and Existing Algorithm

Proposed Algorithm Existing Algorithm

PSNR 12.28 11.95

Fig. 5.2: PSNR values of Proposed Algorithm and Existing Algorithm.

Table 5.2: MSE values of Proposed Algorithm and Existing Algorithm

Proposed Algorithm Existing Algorithm

MSE 3843.14 4149.83

Fig. 5.3: MSE values of Proposed Algorithm and Existing Algorithm.

Table 5.3: MAE values of Proposed Algorithm and Existing Algorithm.

Proposed Algorithm Existing Algorithm

MAE 35.37 37.67

Fig. 5.4: MAE values of Proposed Algorithm and Existing Algorithm

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

311

CONCLUSION AND FUTURE SCOPE

Conclusion

It is clear from the obtained results that the existing technique gives noisy output. But the

purposed modified sobel operator edge detection gives better results as shown in fig 5.1(a).

The results can further be improved by changing threshold value. By increasing threshold

value noise is reduced but some thin edges are also lost as shown in fig 5.1 (b). Thus by using

an appropriate threshold value, edge detail as per a given requirement can be obtained.

Future Scope

The purposed algorithm can produce better results by further modification in the algorithm.

The proposed technique is restricted only to gray scale images, this can be extended to color

images in that case, and the detection would become significantly more complex.

REFERENCES

1. Feng-ying Cui and Li-jun Zou, Bei Song, “Edge Feature Extraction Based on Digital

Image Processing Techniques”, Proceedings of the IEEE International Conference on

Automation and Logistics Qingdao, China, September 2008.

2. Sivakamasundari. J, Kavitha. G, Natarajan. V and Ramakrishnan. S, “Proposal of a

Content Based Retinal Image Retrieval System Using Kirsch Template Based Edge

Detection”, 3rd International conference on informatics, electronics & vision, 2014.

3. Sheng Yi, Demetrio Labate, Glenn R. Easley∗, and Hamid Krim, “Edge detection and

processing using shearlets”, IEEE, 2008; 1148-1151.

4. Mrityunjay Kumar Ray, Deboleena Mitra, “Simplified Novel Method for Edge Detection

in Digital Images”, Proceedings of 2011 International Conference on Signal Processing,

Communication, Computing and Networking Technologies (ICSCCN 2011).

5. Bin Pan Junfeng Wu Zhiguo Jiang Xiaoyan Luo, “Shadow detection in remote sensing

images based on weighted edge gradient ratio”, IEEE, 2014; 505-508.

6. Wei Wang, Huaping Xu, “Edge Detection of SAR Images Based on Edge Localization

with Optical Images”, IEEE Trans. On Pattern Analysis and Machine Intelligence, pami,

Nov. 2014; 8(6): 679-698.

7. Anitha, S.Malarkkan, J.Premalatha, V.Manonmani, “Comparison of Standard Edge

Detection Techniques Along with Morphological Processing and Pseudo Coloring in

Sonar Image”, 2016 IEEE.

Gurpreet et al. World Journal of Engineering Research and Technology

www.wjert.org

312

8. Girish Chap Ie, R. D. Daruwala, Member, IEEE, “Design of Sobel Operator based Image

Edge Detection Algorithm on FPGA”, International Conference on Communication and

Signal Processing, April 3-5, 2014, India.

9. Anna Fabijańska, Dominik Sankowski, “Edge Detection in Brain Images”, MEMSTECH,

2008, May 21-24, 2008, Polyana, Ukraine.

