
Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

88

LICENSING AND ECONOMICS OF SOFTWARE REUSE

Navninderjit Singh*

Punjabi University Patiala.

Article Received on 29/10/2019 Article Revised on 19/11/2019 Article Accepted on 09/12/2019

ABSTRACT

Cracking some Adobe products is as simple as replacing a .dll file in

the respective app’s folder. These software range from hundreds of

dollars in price to thousands of dollars in price. Thus, making sure

users have a legitimate copy and are not using pirated software is of utmost importance to

many distributed software companies. There is a lot of information concerning this topic on

the Internet, since it is related to piracy, most of the technical information is kept behind

closed doors. This is where much of our research will have to take place. We plan to solve

this problem by inspecting the dll (dynamic link library) files that regulate the product’s

license. After analyzing the files, we will try and find a way to see if a product’s legitimacy

can be verified by testing scenarios such as if the dll has been modified in any way.

KEYWORDS: DLL, Reverse Engineering, Software Cracking, Adobe Photoshop,

Licensing.

[I] INTRODUCTION

The pricing of software can fall into the following broad categories: shareware, liteware,

freeware, public domain software, and open source (Rouse, Software, n.d.) When using

software from major companies, such as Microsoft, Adobe, Autodesk, or Corel, the software

ranges from hundreds of dollars to thousands of dollars in price. We will use Adobe’s

software products and digital forensics to analyze the file used for licensing: the amtlib.dll

file, and provide a range of proposed solutions to allow software companies to ensure users

are using a legitimate copy.

wjert, 2020, Vol. 6, Issue 1, 88-107.

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

ISSN 2454-695X Review Article

SJIF Impact Factor: 5.924

*Corresponding Author

Navninderjit Singh

Punjabi University Patiala.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

89

[II] LITERATURE REVIEW

Business Software Alliance conducted a survey for users who confessed to pirating software

around the world. The results stated that 57 percent admitted to pirating.
[5]

 While researching

Adobe, we discovered that with a simple modification to the .dll file, one could take the free

trial software, extend the expiration date, and have unlimited use of the current premium

software. An article written by a lawyer stated that a company will most likely not take action

against an end user of pirated software. Typically, the companies go after the supplier of the

pirated software or if the software is being used at a large scale within a specific institution.

This raises the question of how much money Adobe might lose from pirated software.

Further research found that an article written on gadgetsnow.com stated Microsoft and Adobe

lost around $14 billion in 2011. Given that was 8 years ago, the number should be

exponentially larger given today’s current state of software technology explosion. To better

understand how .dlls work, we found a mutiple Microsoft developer documents that provided

a comprehensive understanding of what exactly the files do. Once we had a better

understanding of the dll file, we came across a website on DLL file protection. The company

was Palo Alto Networks and provided an understanding on how to protect DLL files and how

to block malicious DLL files.

[III] Software License

Most software used today is licensed in some form or another. A software license is an

agreement between the user and the owner that provides rules like where and how often to

install/update, what permissions are available to copy, modify, or redistribute, and whether

the user can view the source code for the software. Most software also includes a license key.

A license key is a long string of letters and numbers that are configured/saved during

installation. This method provides a means for software companies to confirm the user is

compliant with the software license.

[IV] Software Price

The price of the software depends on three main characteristics: the company, function, and

availability. Because some software can be quite expensive, the companies offer evaluation

or trial copies. The evaluation copies could be limited to time constraint, features, or could

run just like the full version, albeit a watermark is embedded into the product. Evaluation or

trial copies help users decide if a software is really worth the cost.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

90

[V] Software Authentication

Authentication is comparing credentials with the required information stored in a file or

database. This information is usually stored on the local operating system or with an

authentication server. (Rouse, Authentication, n.d.) It is up to the software company to

provide the means to verify that the software users are authenticated correctly. Some products

include a file that hosts the key that the software checks every time the program is opened to

do so.

[VI] Adobe

Adobe is and American multinational computer software company. The software company

focuses on the release of creativity and multimedia products. Well known Adobe software

used today are Adobe Acrobat Reader and creative tools such as Adobe Photoshop.

Professionals typically use a suite called Adobe Creative Cloud giving them all the tools

needed to produce multimedia content. For our research on the Adobe products we will focus

on Photoshop, however most Adobe products work the same way in regulating their

licensing. (Adobe, n.d.).

[VII] Adobe Photoshop

Adobe Photoshop stores the activation licensing code in the amtlib.dll file. When you

purchase the software, during the installation process, the activation license key you entered

is regulated through the amtlib.dll file. Every time the program is opened, it checks this file

for the license and communicates with Adobe servers when connected to the internet. The

cost of Photoshop is expensive. In the past, the software could cost you around $600 for the

current version. While there was no timeline for when this product expired, it would cost you

around the same every time you upgraded. With the creation of Adobe Creative Cloud, the

software is now purchased on a monthly plan that includes upgrades to the newest version

(Adobe, n.d.)

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

91

[VIII] Dynamic Link Library (.dll)

Figure 1: DLL use-case (Stack Overflow answer: relation diagram).

The dynamic link library (dll) is a file that contains compiled code used in all programs. With

DLLs, programs can be separated into different modules. This makes updates and revisions

easier as the updates or revisions can be applied to the appropriate file without the need to

rebuild or reinstall an entire program. DLLs cannot run on their own; an executable is needed

to run a program, then DLLs can be called as needed. DLLs are helpful as multiple programs

can share the abilities of the host program in a single file and can be called on by the program

only as needed, then released allowing memory to be free for other uses. (What Is a DLL file,

n.d.)

[IX] Digital Certificates

Digital certificates are basically an electronic record that a person or organization needs to

exchange data securely over the Internet. Digital certificates use a public key infrastructure.

(Digital Certificate, n.d.) As the Internet became popular many people and companies were

creating their own webpages, thus opening the world up to criminal minds as they found

ways to exploit vulnerabilities and gain access to sensitive information. A security solution

was needed, thus the introduction of digital certificates. Digital certificates provide security

features such as authentication /identification, confidentiality, integrity, and access control.

Digital certificates provide businesses a secure way to communicate with others over the

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

92

Internet. For the purpose of this report, digital certificates were used to ensure a file has not

been modified.

[X] Software Cracking

Software cracking, as it suggest is the process of changing the software that eradicates the

distinctive attributes those are not required, such as copy protection attribute. (Quora, 2017)

[XI] Reverse Engineering Binary Assembly

Figure 2: Reverse engineering hierarchy.

There are three kinds of reverse engineering analysis. Static analysis, which involves

analyzing the structure for hints on how the software is assembled, dynamic analysis which

involves determining its purpose by launching it, and hybrid analysis which combines the

two. (Getting Started with Reverse Engineering, 2015). Executable software is written in

assembly language. DLLs are in the same format as executables. For the amtlib.dll file, it is

important to reverse engineer the file, determine the location and format of the components of

the license agreement, and determine how a hacker can revise the information to gain full

rights to the software.

[XII] dnSpy

There are many tools available for reverse engineering. dnSpy is an open source assembly

editor that can be used for reverse engineering. This product includes a decompiler, debugger,

and an assembly editor. With this tool, assemblies can be read and written, including

obfuscated assemblies using a utility called dnlib.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

93

[XIII] Interactive Disassembler (IDA)

Another program known as Interactive Disassembler (IDA). IDA takes a program, analyzes

it, and provides the instructions in assembly language. IDA Pro make the code readable in a

very user-friendly manner with multiple views available. IDA also serves as a debugger. The

program can also be used to analyze viruses, worms, or other malware. (IDA: About, n.d.)

[XIV] OllyDbg

OllyDbg is a 32-bit assembly level debugger, specifically for Microsoft Windows. OllyDbg is

a shareware that is available for free. OllyDbg has several features include direct loads and

debugging of DLLs. (OllyDbg, n.d.)

[XV] Methodology

Software cracks are a very serious problem. A very popular trend in acquiring customers

nowadays is the free trial strategy, in which the base trial holds all the features of the

premium version, though it only lasts for a limited amount of time (usually one week to a

month) as to convince the user to eventually purchase the paid product after exploring its

features. Since you do not need to be very technologically savvy in order to abuse a pre-

existing software crack, a decent number of abusers could run an app dependent on

converting trial users to paid users for revenue out of business. Imagine if common criminals

could just use a teleporter to jump in and out of brick-and-mortar stores to steal inventory, it

would be total anarchy for the retail businesses. In essence, the exact same thing is happening

to apps with fraudulent licenses, making protecting their digital goods a top priority.

To the general public, software cracks often release sporadically via various file-sharing

services, which allow their abusers to acquire any number of paid softwares for free.

Essentially all you have to do in order to exploit this massive financial threat to a company is

search up a tutorial on the web, follow the step by step instructions, and viola: you can

instantly steal expensive products from any of the many vulnerable applications within a

matter of minutes, with no technical knowledge required. The abusers of software cracks

often refer to themselves as hackers, when in reality all they did was employ the work of the

real hacker. As computer scientists, we want to be more than just a user in order to

understand the ins and outs of how these hacks are carried out, so that we may protect our

own apps from similar security breaches in the future.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

94

For example, to crack Photoshop, all a user would need to do is download the trial version

from the official Adobe website. Once the trial is downloaded, prior to actually opening up

the application, all that a user needs to do is disconnect from the internet (so as to stop any

communication with Adobe servers that is happening) and replace the old amtlib.dll file with

a cracked amtlib.dll, which can be found in under a minute from a quick Google search. The

key step lies within the amtlib.dll as this file regulates licensing across all Adobe products. In

the following section we will discuss our findings on the matter.

Figure 3: Supposed structure of the validation check (AMT Emulator).

Above is a figure laying out the supposed structure of the underlying application interface put

into place by Adobe. It was showcased in a blog post concerning AMT Emulator, a universal

solution to cracking Adobe products. AMT Emulator is one of those one-click solutions for

nontechnical users as explained before: you simply download it, click run, and now you have

the paid software for free. In fact, all that AMT Emulator does is replace the original

amtlib.dll with a patched amtlib.dll, just as explained before. More so, any type of validation

checking distributed software can be bypassed in the same way: by simply disregarding the

checks whether or not they are client-sided or server-sided, it does not matter. Now armed

with a general understanding on the subject, the software cracking began.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

95

Opening up the amtlib.dll file in any common text editor such as Notepad would result in

some readable text due to scattered hex values being translated to ASCII for corresponding

bytes of data, but more often than not, the file is just a bunch jumbled garbage as displayed

below.

Figure 4: amtlib. dll opened up in a text editor.

From the values that were humanly readable, occurrences of important keywords such as

license or valid could be discovered, though any attempt to understand the implementation of

the license validation process would be unavailing as its true functionality is hidden beneath

the hieroglyphic symbols present. Thus, in order to truly understand the inner workings of the

amtlib.dll, a more powerful tool was needed.

Initially a decompiler was used in an attempt to view the original source code of the file,

though after many attempts the file was either incompatible or revealed very little

information. Below is the result of decompiling the file in dnSpy (usually doing so would

result in a hierarchy of valuable functions giving an analyst a well-rounded idea of how the

dll was constructed, though here all that was exposed was file metadata).

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

96

Figure 5: amtlib.dll opened in a decompiler.

As a result of this failure to reveal the inner workings of the amtlib.dll through source code,

we must attempt to reveal information at an even lower level: assembly language. This

process can be carried out through a disassembler. Below is a screenshot of the text view we

saw earlier in Figure 4, from the IDA display.

Figure 6: amtlib.dll opened up in a disassembler.

Now this is where things start to get interesting for a digital forensics analyst. Using IDA, we

are able to jump to the exact spot in the assembly code that the text comments are referring

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

97

to; something that was not possible with a regular text editor. Below is an example of a

section of these reference strings, which we can double-click to jump straight to their

corresponding methods.

Figure 7: Commented headers referencing licensing code.

Now we began perusing for keywords of interest, in particular: license. After determining the

headers most likely to be related to validation checking, one only needs to double-click the

subroutine reference to jump straight into the assembly implementation. Below is a

subroutine related to the initialization of the Adobe License Manager for serialized activation.

Figure 8: Actual assembly code referenced by the headers.

This however, is a very narrow viewpoint, and not enough reconnaissance has been

conducted in order to fully understand the implementation of the validation check. To

successfully reverse engineer the amtlib.dll file we must first take a step back to understand

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

98

how this specific function relates to other functions in order to see the big picture. Below is a

display of the graph view of IDA, showcasing how different subroutines relate to one

another.

Figure 9: A graph view showcasing subroutine relations.

After performing substantial review on the implementation of the amtlib.dll file the true

software cracking began. In order to test the workarounds, the debugger OllyDbg was utilized

in order to set breakpoints in the assembly code and step through instructions one by one,

even able to view the values loaded in and out of specific registers. It was here we were able

to determine which functions to avoid in order to bypass the validation checks. Below is a

view of the OllyDbg interface.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

99

Figure 10: amtlib. dll opened up in a debugger.

The true implementation of the validation check bypass is actually quite simple: a few well-

placed jump instructions as shown below (you can see all the jumps exemplified by the

arrows on the left-hand side of the image).

Figure 11: Assembly code handling the license validation.

Now instead of first checking whether a license is valid or not, the jump instruction simply

tells the program to continue on as if the license was valid in the first place. We had to jump

through a few hoops as to follow the underlying protocol, though in effect, it works as an

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

100

instant bypass. However, changing this file does not come without its side-effects. As you

can see below, the amtlib. dll comes with a digital certificate.

Figure 12: Digital certificate accompanying the amtlib.dll.

Thus any changes to the amtlib.dll file will make the certificate invalid, though this does not

really affect the cracking process; it simply states the file has been modified. The main

takeaway however is, if you can understand code at a very low level such as in assembly or

even binary, you can reverse engineer anything.

The main issue with this process however is not necessarily the amtlib.dll, but the fact that

the only difference between the trial version of the software and the paid version of the

software is that the trail version has a 30 day counter before it expires, meaning it already

includes all the premium features. Thus, how can you expect users to pay for what they

already have if removing a counter is the only thing they really have to worry about?.

This is because the problem with security in the client/server architecture is that security

measures implemented on the client side can almost always be cracked much easier than

security measures implemented on the server side. In fact, the assumption that you can never

trust the client (guilty until proven innocent) is quite prevalent among developers who

understand the value of security. As such, it is important to understand the nature of your

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

101

security measures and where they take place, which is precisely why Adobe started pushing

their subscription-based model through the Creative Cloud Suite.

Creative Cloud was more of a business-minded fix than a coding-minded fix as hackers will

always find a way to break security measures; it will forever be an unwinnable war.

However, Adobe could have still make the job of the hacker much harder by removing

blatant reference comments to important pieces of code, as well as implementing validation

checks across multiple dll files. Regardless, Creative Cloud seems to be doing a decent job at

converting more trial users to paid users.

This was done so by switching to a subscription-based model rather than requiring a lump-

sum payment. Instead of paying around $1,000 for a copy of Photoshop like before, you can

now recieve a suite of Adobe’s image-editing software for around $10 a month through

Creative Cloud. From this simple change in pace alone, many past abusers have decided to

simply switch over to being legitimate paying users rather than pirates, also being able to

receive the latest software updates which they could not do before in risk of invalidating their

activation patch. On top of this, part of the solution came from the new protocols that

implement Creative Cloud. Creative Cloud comes with a lot of extra logging subscripts that

constantly monitor and send information about your system to Adobe and its applications.

Due to these extra redundancies in place, disabling them may prove to be difficult for

nontechnical users as Creative Cloud is still a relatively new aspect of Adobe, and not much

information regarding patching its underlying methods are released yet. After all, as stated

before, the vast majority of pirates do not truly understand how to crack software, they

simply download and run pre-existing patches, so implementing this form of multi-layered

security will definitely help.

[XVI] Additional Findings

It should also be noted, one such finding was the application.xml file which contains

important initial configuration information relevant to the startup of the program. As it turns

out, this file can be modified to use Adobe trials indefinitely by simply changing the serial

number assigned to the product. There are 10
24

possible serial numbers, with not even 10
10

humans on this planet, leaving plenty of free trials for malicious users to use up.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

102

Figure 13: application.xml file.

[XVII] Solutions

The solution for the Photoshop DLL file hacking is three-fold, where applying one or two of

the solutions would get some added security, but implementing all three should dramatically

cut down on the hacking and pirating of Adobe Photoshop software and in turn other

software on the market today. The three tiers in this solution combine standard common

sense, standard cryptography, and the use of some new age technology.

[XVIII] Analysis Step 1

Remove the “License check shows product is still in trial…” that links to the specific location

of code to be changed. Adobe will also need to adjust the code to place the reference and

license checks in multiple locations.

The Adobe comment section is riddled with issues stemming from telling the user exactly

where the reference for trials is located and displaying too much information to allow

amateur level hackers to easily navigate and adjust the code inside the DLL file itself. These

issues not only allow inexperienced hackers users to find and navigate specific code, but it

also allows them to easily search and modify for the specific code that needs to be adjusted in

the file. There are usually standards for code comments but unfortunately Adobe comments

are too detailed and allow non-technical users to easily adjust code and implement hacks on

the DLL files themselves. With this being said, the comment section should include the basic

understanding of code but not detailed key words that could be used to search and adjust by

any non-technical customer. This problem might also be affected by the linking of read-only

data while the program is being compiled, thus making unlinking it in some way even harder.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

103

In combination with this simple step Adobe should also place nonces and license checks in

multiple locations throughout different files without comments that tell hackers where to

adjust or even place skip functions to circumvent the checks altogether.

[XIX] Analysis Step 2

Include the user’s ID or personal information, or possibly using the public key of the user to

encrypt the files and including multiple nonces and multiple license regulations across many

files.

The second step in securing the Adobe DLL files would need to include the users public key

in the encryption of these files. It would also benefit Adobe to include multiple nonces inside

multiple files. The benefits of these added security parameters would mitigate non-technical

customers from easily modifying the DLL files or distributing pirated information. Adobe

will have to carefully secure this information and include it in the files sent to the client

through a secure API similar to that suggested by Microsoft on their “Securing your DLL

files” website. Thus, if the customer purchases the software all of the files and the nonces are

encrypted with that “customers device public key” restricting them to use the software by

unlocking with their private key. No customer will want to hand out their private key to

unlock the files and distribute the pirated software, thus exponentially reducing the spread of

the amtlib.dll files. Adobe would also need to secure the license regulations verification steps

and validate the license regulations across multiple locations and files. These regulations will

also help deter hackers by making them manipulate multiple locations without code that will

help them easily navigate and modify the files, as compared to right now where only one

simple file is doing all the work.

Another idea to preventing software piracy is to make the software free for only specific base

features where Adobe doesn’t give all of the files for the fully licensed version to the user,

presented as a “true trial version”. This minor step would have prevented millions from

circumventing the system and cracking the software without any money being spent. This

would have allowed Adobe to monitor the extra subscriptions and individually give access to

different features and new updates to only the paying customers, as a connection to the server

is required to deliver additional premium features to the base version. There is hope though,

with the next step Adobe could implement these updates and future modifications using a

BlockChain subscription.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

104

[XX] Analysis Step 3

The use of a BlockChain solution where you only get 3 to 5 keys, and each time you use a

key the total is reduced.

Figure 14: How blockchain works (BlockGeeks).

BlockChain is the latest craze, but it is also a great way to implement a public record or

“ledger” on license and subscriptions. Take for example the purchase of Photoshop from

Adobe: first you get a product key and then you can use that key on up to 5 devices.

Similarly, we can show the example of Adobe having 5 coins representing the 5 devices of

the Adobe license given to the customer at time of purchase. The ledger is kept by Adobe and

every time the customer downloads the software and runs the subscription the key is checked

and that will use one of the coins. When you get to 5 coins being used by 5 devices you have

no coins left so you can’t give out another key or in this case another coin. Another benefit to

using the BlockChain solution to monitor and regulate the product keys so that when you

want to cancel your subscription all you need to do is withdraw your digital signature which

would void the ledger and cancel the contract. This would automatically cancel the

subscription on all 5 accounts and make the ledger null and void.

In conclusion these steps will not fully secure and protect against hacked DLL files and

pirated software, but it will dramatically cut down on the problems due to customers not

wanting to give out their private key to other users to unlock the software. It will also reduce

the ease of knowing where and how to change and adjust the code in the trial version, and

with the new blockchain technology all parties included in one license will have a ledger to

see all users of that particular software.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

105

[XXI] CONCLUSIONS

In this paper we discussed the basic understanding of software, licensing, DLL files, and why

Adobe Photoshop is a prime target for DLL cracking, and thus at the forefront of hacked

software distribution. We also would like to point out that there is no “golden bullet” or

“perfect solution” to counteracting software piracy or DLL hacking for that matter, but we do

suggest 3 interesting solutions to building a better barrier to the ever expanding problem.

Again, this doesn’t mean these steps will solve the issue, but they will start to prevent the

widespread public knowledge of easy hacking implementations on Adobe software as a

whole.

Note: Please note this paper and the authors in no way condone the piracy of software or

hacking of DLL files and distributed software in general, but we do want to make aware the

issues with software piracy, the understanding on file architectures, and some possible

solutions to fight the never-ending battle of software hacking and piracy.

REFERENCES

1. Adobe. (n.d.). Retrieved from Adobe: https://www.adobe.com/.

2. AMT Emulator: Universal Adobe Patcher, SAYS. (12/22/2017).

3. BlockGeeks, Ameer Rosic, Oct 1, 2016.

4. Fitzgerald, B. (2017, 12 06). Software Piracy: Study Claims 57 Percent of The World

Pirates Software. Last retrieved from Huffington Post, May 2018.

5. Getting Started with Reverse Engineering, 2015.

6. Gibert-Knight, A. techsoup. “Making Sense of Software Licensing”, 2012.

7. Microsoft, adobe lose $13.5bn to piracy, 2011.

8. Nagpal, S. What will happen if Adobe found that I have used piracy software before,

2017.

9. OllyDbg. (n.d.). Retrieved from OllyDbg: http://www.ollydbg.de/.

10. Quora, How do People Crack Computer Programs and Games, 2017.

11. Rouse, M. (n.d.). Authentication -Search Security, 2017.

12. Stack Overflow: .dll to .exe relation, Jon Cage, May 10, 2011.

13. Ali Rantakar Validating In-App Purchases in your iOS App, February 10, 2015.

14. K. Kaur and X. Xiaojiang Du and K. Nygard, “Enhanced routing in Heterogeneous

Sensor Networks”, IEEE Computation World’09, pp. 569-574, Athens, Greece, Nov. 15-

20, 2009.

https://www.adobe.com/
http://www.ollydbg.de/

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

106

15. Lauren Evanoff, Nicole Hatch, Gagneja K.K., “Home Network Security: Beginner vs

Advanced”, ICWN, Las Vegas, USA, 2015; July 27-30.

16. Gagneja K.K. and Nygard K., "Heuristic Clustering with Secured Routing in

Heterogeneous Sensor Networks", IEEE SECON, New Orleans, USA, 2013; 51-58.

17. Gagneja K.K., “Knowing the Ransomware and Building Defense Against it - Specific to

HealthCare Institutes”, IEEE MobiSecServ, Miami, USA, 2017; 1-5: 11-12.

18. Gagneja K.K., “Secure Communication Scheme for Wireless Sensor Networks to

maintain Anonymity”, IEEE ICNC, Anaheim, California, USA, 2015; 1142-1147.

19. Gagneja K.K., "Pairwise Post Deployment Key Management Scheme for Heterogeneous

Sensor Networks", 13th IEEE WoWMoM, San Francisco, California, USA, 2012; 1-2.

20. Gagneja K.K., “Global Perspective of Security Breaches in Facebook”, FECS, Las Vegas,

USA, 2014; 21-24.

21. Gagneja K.K., "Pairwise Key Distribution Scheme for Two-Tier Sensor Networks", IEEE

ICNC, Honolulu, Hawaii, USA, 2014; 1081-1086.

22. Gagneja K., Nygard K., "Energy Efficient Approach with Integrated Key Management

Scheme for Wireless Sensor Networks", ACM MOBIHOC, Bangalore, India, 2013;

13-18.

23. Gagneja K.K., Nygard K., "A QoS based Heuristics for Clustering in Two-Tier Sensor

Networks", IEEE FedCSIS, Wroclaw, Poland, 2012; 779-784.

24. K. K. Gagneja, K. E. Nygard and N. Singh, "Tabu-Voronoi Clustering Heuristics with

Key Management Scheme for Heterogeneous Sensor Networks", IEEE ICUFN, Phuket,

Thailand, 2012; 46-51.

25. Gagneja K.K., Nygard K., "Key Management Scheme for Routing in Clustered

Heterogeneous Sensor Networks", IEEE NTMS, Security Track, Istanbul, Turkey, 2012;

1-5.

26. Runia Max, Gagneja K.K., “Raspberry Pi Webserver”, ESA, Las Vegas, USA, 2015;

27-30.

27. S. Gagneja and K. K. Gagneja, "Incident Response through Behavioral Science: An

Industrial Approach," International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, NV, 2015; 36-41.

28. Tirado E., Turpin B., Beltz C., Roshon P., Judge R., Gagneja K., “A New Distributed

Brute-Force Password Cracking Technique”, Future Network Systems and Security,

FNSS Communications in Computer and Information Science, 2018; 878: 117-127.

Navninderjit. World Journal of Engineering Research and Technology

www.wjert.org

107

29. Caleb Riggs, Tanner Douglas and Kanwal Gagneja, "Image Mapping through Metadata,"

Third International Conference on Security of Smart Cities, Industrial Control System and

Communications (SSIC), Shanghai, China, 2018; 1-8.

30. Keely Hill, Gagneja K.K., “Concept network design for a young Mars science station and

Trans-planetary communication", IEEE MobiSecServ, Miami, FL, USA, 2018; 24-25.

31. Javier Campos, Slater Colteryahn, Gagneja Kanwal, “IPv6 transmission over BLE Using

Raspberry PI 3", International Conference on Computing, Networking and

Communications, Wireless Networks (ICNC'18 WN), March, 2018; 200-204.

32. Gagneja K., Jaimes L.G., “Computational Security and the Economics of Password

Hacking”, Future Network Systems and Security. FNSS. Communications in Computer

and Information Science, 2017; 759: 30-40.

33. Gagneja K.K. Ranganathan P., Boughosn S., Loree P. and Nygard K., "Limiting Transmit

Power of Antennas in Heterogeneous Sensor Networks", IEEE EIT, IUPUI Indianapolis,

IN, USA, 2012; 1-4.

34. Keely Hill, Kanwalinderjit Kaur Gagneja, Navninderjit Singh, “LoRa PHY Range Tests

and Software Decoding - Physical Layer Security”, 6th IEEE International Conference on

Signal Processing and Integrated Networks (SPIN 2019), 2019; 7 - 8.

35. Alexandro Riuz, Carloas Machdo, Kanwal Gagneja, Navninderjit Singh, “Messaging App

uses IRC Servers and any Available Channel”, 6th IEEE International Conference on

Signal Processing and Integrated Networks (SPIN 2019), 2019; 7 - 8.

36. C. Riggs, J. Patel and K. Gagneja, "IoT Device Discovery for Incidence Response," Fifth

Conference on Mobile and Secure Services (MobiSecServ), Miami Beach, FL, USA,

2019; 1-8.

37. S. Godwin, B. Glendenning and K. Gagneja, "Future Security of Smart Speaker and IoT

Smart Home Devices," Fifth Conference on Mobile and Secure Services (MobiSecServ),

Miami Beach, FL, USA, 2019; 1-6.

38. Sasko A., Hillsgrove T., Gagneja K., Katugampola U. System Usage Profiling Metrics

for Notifications on Abnormal User Behavior. In: Doss R., Piramuthu S., Zhou W.

(eds) Future Network Systems and Security. FNSS. Communications in Computer and

Information Science, 2019; 1113.

