
www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

256

STUDY ON SOFTWARE DEFECT PREDICTION USING DATA

MINING TECHNIQUES

*
1
Rakesh Kumar,

2
Dr. Dharmendra Chourishi,

3
Prof. Anurag Srivastava

1
M. Tech. Scholar, CSE, NRI College Bhopal.

2
A.P., NRI College Bhopal.

3
Asso. Prof. CSE, NIIST Bhopal.

Article Received on 08/12/2019 Article Revised on 29/12/2019 Article Accepted on 19/01/2020

ABSTRACT

Software defect prediction has been one of the key areas of exploration

in the domain of software quality. Software bug is a major problem

arises in the coding implementation .There are no satisfied result found

by project development team. The software bug problems mentationed

in problem report and software engineer does not easily detect this software defect but by the

help of data mining classification software engineers can easily classify software bug. The

challenges encountered are difficulty in separating correct theories from the incorrect ones

when the purpose of evaluation is in practice and difficulties in the identification of quality

literature from quality lacking literature. Using data mining techniques, one can uncover

hidden patterns from this data, measure the impact of each stage on the other and gather

useful information to improve the software development process. The insights gained from

the extracted knowledge patterns can help software engineers to predict, plan and

comprehend the various intricacies of the project, allowing them to optimize future software

development activities. It has been also discussed that how data mining improves the

software development process in terms of time, cost, resources, reliability and

maintainability.

KEYWORDS: Defect, Software, Bug, Data Mining, Classification, Intricacies.

wjert, 2020, Vol. 6, Issue 1, 256-265.

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

ISSN 2454-695X Original Article

SJIF Impact Factor: 5.924

*Corresponding Author

Rakesh Kumar

M. Tech. Scholar, CSE,

NRI College Bhopal A.P.,

NRI College Bhopal.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

257

1. INTRODUCTION

Predicting defective code in the software development process is a key aspect of software

analytics. A software defect is a bug, fault, or error in a program that causes improper

outcomes. Software defects are programming errors that may occur because of errors in the

source code, requirements, or design. Defects negatively affect software quality and software

reliability.
[1]

 Hence, they increase maintenance costs and efforts to resolve them. Software

development teams can detect bugs by analyzing software testing results, but it is costly and

time-consuming by testing entire software modules. As such, identifying defective modules

in early stages is necessary to aid software testers in detecting modules that required intensive

testing.
[2,3]

 In the field of software engineering, software defect prediction (SDP) in early

stages is vital for software reliability and quality.
[1,4]

 The intention of SDP is to predict

defects before software products are released, as detecting bugs after release is an exhausting

and time-consuming process. In addition, SDP approaches have been demonstrated to

improve software quality, as they help developers predict the most likely defective

modules.
[5,6]

 SDP is considered a significant challenge, so various machine learning

algorithms have been used to predict and determine defective modules.
[7]

 With the end goal

of expanding the viability of software testing, SDP is utilized to distinguish defective

modules in current and subsequent versions of a software product.

Software engineering data, such as defect prediction datasets, are very imbalanced, where the

number of samples of a specific class is vastly higher than another class. To deal with such

data, imbalanced learning approaches have been proposed in SDP to mitigate the data

imbalance problem.
[7]

 Imbalanced learning approaches include re-sampling, cost-sensitive

learning, ensemble learning, and imbalanced ensemble learning (hybrid approaches).
[7,39]

 Re-

sampling approaches can be either oversampling and under-sampling methods, and these can

add or remove instances from the training data only.

1.1 Data Mining

It is processes in computer science by which relationship and pattern from data can be easily

extracted and information is collected that helps in decision making as required in software

development field. It easily extracts information from problem reports and take decision by

the help of information software defect can detect and software quality is improved.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

258

1.2 Classification

Classifications have a training set which provide a facility to have a common level of same

classes of data. Some different type bugs in software project development: SW-bug,

document bug, duplicate bug and mistaken bug. These bugs have common level bug classes

of data object known as software defect in training set.

1.3 Decision Tree

Decision tree is a classifier of root node which generates other branches as a node. The

common attributes of data at class level each node have own information.

Fig. 1: Represents to check level defect of software.

1. If software > 1 then root node extract another branches or internal node (not leaf node)

show class (2).

2. If software < 1 then shows root node on class (1).

3. If software defect > 1 then found defect classification categories bug at class (3) not

extract another node otherwise on the class (2).

2. LITERATURE REVIEW

Primary studies by definition correspond to the literature being mappings. To provide a

strong mapping it is essential that selection of primary studies for mapping must be done

carefully. While it is good that an exhaustive search is conducted for the selection of primary

studies, in some cases it is not possible because of the number of primary studies available. In

such cases the search criteria become important. For DeP studies, we can conduct an

exhaustive search because the number of primary studies is not very large and since is

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

259

concerned with those studies which are empirical in nature, the number shrinks further. We

have selected the list of following digital libraries to perform the search:

1. IEEE Xplore

2. Springer Link

3. Science Direct

4. Wiley Online Library

5. ACM Digital Library

6. Google Scholar

The Search String: A search string is the combination of characters and words entered by a

user into a search engine to find desired results. The information provided to the search

engine of the digital library directly impacts the results provided by it. To ensure that all the

primary studies that our mapping plans to address are covered we need to be careful in the

selection and placement of keywords used in the search string.

Search string

Software.(defect + fault). (software metrics + object oriented metrics + design metrics)

Here, „.‟ corresponds to the Boolean AND operation, and „+‟ Corresponds to the Boolean OR

operation. The search string was executed on all six electronic databases mentioned above

and the publication year was restricted to the range 1995–2018. The literature hence obtained

was processed further using a carefully designed inclusion-exclusion criteria and quality

analysis criteria as described in the following sections.

The Inclusion-Exclusion Criteria: The search results obtained by execution of the search

string may still fetch some primary studies that either do not add value to the mapping or do

not fall within the purview of what the mapping aims to accomplish. Once all the primary

studies have been obtained, a carefully designed inclusion-exclusion criteria are applied to

the resultant set in order to eliminate entities that do not match the objectives of the mapping.

Inclusion Criteria

 Empirical studies for DeP using software metrics.

 Studies that provide empirical analysis using statistical, search-based and machine

learning techniques.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

260

Exclusion Criteria

 Literature Reviews and Systematic Reviews.

 Studies that do not use DeP as the dependent variable.

 Studies of non-empirical nature.

 If two studies by the same author(s) exist, where one is an extension of the previous work

the former is discarded. But if the results differ, both are retained.

Review Committee: We formed a review committee that comprises of two Assistant

Professors and two senior researchers to mapping in order to rate all primary studies captured

from the search. All studies were examined independently on the basis of the criteria defined

in The Inclusion-Exclusion Criteria. Application of the inclusion-exclusion criteria resulted in

98 studies out of the total 156 studies being selected for quality analysis.

Quality Analysis: Assessing the quality of a set of primary studies is a challenging task. A

quality analysis questionnaire is prepared as part of this systematic mapping to assess the

relevance of studies taking part in this mapping. The questionnaire takes into consideration

suggestions given in Reference.
[5]

 A total of 18 questions, given in Table 2, together form the

questionnaire and each question can be answered as “Agree” (1 point), “Neutral” (0.5 points)

and “Disagree” (0 points). Hence, a study can have a maximum 18 points and minimum 0

points.

The same review committee enforces the quality analysis questionnaire.

3. METHODOLOGY

The mapping method in this study is taken from Reference.
[1]

 Figure 2 outlines the process

diagram.

Fig. 2: The mapping process.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

261

Data Synthesis: Data synthesis involves the accumulation of facts from the data collected

during the data extraction process to build responses to the research questions.
[5]

 In the data

synthesis allows for reaching conclusive answers to the research questions identified as part

of the systematic mapping. Details of the techniques used to answer the selected research

questions are given below:

1. RQ1: To answer this question we use a bar chart that shows the number of studies using

machine learning; search-based techniques, and statistical techniques and threshold-based

techniques.

2. RQ2: This question has two parts. The first part is concerned with multi-co linearity

analysis techniques and the second part deals with feature sub-selection techniques used.

To answer this question, we make use of bar charts and tables. The bar charts show the

number of studies using a particular technique for multi-co linearity analysis or feature

sub selection. The tables show what techniques were used in which SE.

3. RQ3: This research question deals with the data used in SEs. It has three parts, the first

part deals with the various datasets used for DeP studies, the second part deals with the

independent variables found significant in the identified SEs, and the third part deals with

the independent variables found insignificant in the selected SEs. The first part and the

second part are answered with the help of a bar chart/pie chart combination while the

third part does not use any diagramming method.

4. RQ4: The fourth question deals with the performance measures and statistical tests used

in DeP studies. We use a combination of bar charts/pie charts to address this question.

5. RQ5: This question makes use of a bar chart. The bars are used to denote the comparative

performance of a learning technique.

6. RQ6: This question is addressed using a table. Since the number of studies is limited,

tables are used to summarize which study uses what search-based technique.

7. RQ7: This question uses bar charts and tables to show the distribution of studies that

address security related defects and vulnerabilities.

8. RQ8: This question does not use any diagramming method.

9. RQ9: This question does not use any diagramming method.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

262

4. RESULTS AND DISCUSSION

Table 1: Model building techniques used in DeP Studies.

Sl. No. Class of learners No. of studies

1 Bayesian Learners 42

2 Decision Tree 49

3 Discriminat Analysis 13

4 Neural Networks 26

5 Regression 40

6 SVM 26

7 Threshold 9

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

40

45

50

Models

In
s
ta

n
c
e
s

Software Deffects Analysis

Figure 3: Learning methods used for DeP.

The most used learning method is the Decision Tree as shown in figure3, 44 out of 98 studies

selected for this systematic mapping use some variant of the decision tree method.

Techniques like C4.5, J48, CART, and Random Forest come under the decision tree class.

Bayesian learners.
[65]

 i.e., Naïve Bayes, Bayes Net, etc. have been used by 39 studies.

Regression, Discriminant analysis and Threshold based classification have been performed in

35, 8 and 4 studies respectively. Both support vector machine and neural network have been

used in 21 studies.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

263

5. CONCLUSIONS

The research questions in this systematic mapping were constructed by taking into account

the following definition of an ideal DeP model: “An ideal DeP model should be able to

classify defects on the basis of severity, should detect security-related defects and system

vulnerabilities and should have the ability to detect defects on systems on which it was not

trained”.

Results of this study showed that the existing literature has covered some of the parts of the

DeP process fairly well, for example, the sizes of datasets used are large, and nearly all

machine learning methods have been examined. But when taking into account the overall

approach and effectiveness of DeP studies, there are a lot of shortcomings. Studies have not

made much use of multi-co-linearity analysis techniques and only half of the studies selected

for mapping have used feature sub-selection techniques.

6. Scope of future work

The following future guidelines are provided on the basis of the results of this study:

1. Datasets used for DeP studies should undergo thorough pre-processing that includes

multi-co-linearity analysis and feature sub selection.

2. Most of the researches in defect prediction involve data obtained from open source

software systems. Few studies use industrial datasets. It is important that industrial data

be used for building defect prediction models so that the models can be generalized.

3. Future studies should make extensive comparisons between search-based techniques,

machine learning techniques and statistical techniques.

REFERENCES

1. Sunita Tiwari and Neha Chaudhary, “Data mining and Warehousing” Dhanpati Rai and

Co.(P) Ltd. First Edition, 2010.

2. J.R.Quinlan, “C4.5: programs for machine learning”, Morgan Kaufmann, San Francisco,

1993.

3. M. Shepperd, C. Schofield, and B. Kitchenham, ”Effort estimation using analogy,” in of

the 18th International Conference On Software Engineering, Berlin, Germany, 1996;

170- 178.

4. Alsmadi and Magel, “Open source evolution Analysis,” in proceeding of the 22
nd

 IEEE

International Conference on Software Maintenance (ICMS‟06), phladelphia, pa. USA,

2006.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

264

5. Boehm, Clark, Horowitz, Madachy, Shelby and Westland, ”Cost models for future

software life cycle Process: COCOMO2.0.” in Annals of software Engineering special

volume on software process and prodocuct measurement, J.D. Arther and S.M. Henry,

Eds, j.c. Baltzer AG, science publishers, Amsterdam The Netherlands, 1995; 1: 45-60.

6. Pal A. K., and Pal S., “Analysis and Mining of Educational Data for Predicting the

Performance of Students”, (IJECCE) International Journal of Electronics Communication

and Computer Engineering, 2013; 4(5): 1560-1565. ISSN: 2278-4209.

7. Ribu, Estimating, “Object oriented software projects With use cases”, M. S. thesis,

University of Oslo Department of informatics, 2001.

8. Nagwani N. and Verma S., “Prediction data mining Model for software bug estimation

using average Weighted similiarity,” In proceeding of advance Computing conference

(IACC), 2010.

9. Hampherey Watts S., “A discipline for software Engineering reading”, Ma, Addison

Wesley, 1995.

10. Zhou, Y.; Hareton, L. Empirical analysis of object-oriented design metrics for predicting

high and low severity faults Software Engineering. IEEE Trans, 2006; 32: 771–789.

11. Hassan, A.E.; Holt, R.C. The top ten List: Dynamic Fault Prediction. In Proceedings of

the 21st IEEE.

12. Le Hoang Son 1,2, Nakul Pritam 3, Manju Khari 4, Raghvendra Kumar 5, Pham Thi

Minh Phuong 6 and Pham Huy Thong 7,8,* Empirical Study of Software Defect

Prediction: A Systematic Mapping.

13. Beecham, S.; Hall, T.; Bowes, D.; Gray, D.; Counsell, S.; Black, S. A Systematic Review

of Fault Prediction Approaches used in Software Engineering; The Irish Software

Engineering Research Centre: Limerick, Ireland, 2010.

14. Catal, C.; Diri, B. A Systematic Review of Software Fault Prediction studies. Expert Syst.

Appl., 2009; 36: 7346–7354.

15. Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit Lett., 2006; 27: 861–874.

16. Hall, T.; Beecham, S.; Bowes, D.; Gray, D.; Counsell, S. Asystematic Literature Review

on Fault Prediction Performance in Software Engineering. IEEE Trans. Softw. Eng.,

2012; 38: 1276–1304. [International Conference on Software Maintenance, Budapest,

Hungary, 26–29 September 2005 Report EBSE-2007-001; Keele University and Durham

University: Staffordshire, UK, 2007].

17. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Transactions on Knowledge

and Data Engineering. IEEE Trans. Knowl. Data Eng., 2009; 21.

www.wjert.org

Rakesh et al. World Journal of Engineering Research and Technology

265

18. Kitchenham, B.A. Guidelines for Performing Systematic Literature Review in Software

Engineering; Technical.

19. Naeem Seliya, T.M.; Khoshgoftaar, J.; VanHulse, J. Predicting Faults in High Assurance

Software. In Proceedings of the IEEE 12th International Symposium on High Assurance

Systems Engineering, San Jose, CA, USA, November 2010; 3–4: 26–34.

20. Radjenovic, D.; Hericko, M.; Torkar, R.; Zivkovic, A. Software fault prediction metrics:

A Systematic literature review. Inf. Softw. Technol, 2013; 55: 1397–1418.

21. Wen, S.; Li, Z.; Lin, Y.; Hu, C.; Huang, C. Systematic literature review of machine

learning based software development effort estimation models. Inf. Softw. Technol, 2012;

54: 41–59.

