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ABSTRACT 

Software defect prediction has been one of the key areas of exploration 

in the domain of software quality. Software bug is a major problem 

arises in the coding implementation .There are no satisfied result found 

by project development team. The software bug problems mentationed  

in problem report and software engineer does not easily detect this software defect but by the 

help of data mining classification software engineers can easily classify software bug. The 

challenges encountered are difficulty in separating correct theories from the incorrect ones 

when the purpose of evaluation is in practice and difficulties in the identification of quality 

literature from quality lacking literature. Using data mining techniques, one can uncover 

hidden patterns from this data, measure the impact of each stage on the other and gather 

useful information to improve the software development process. The insights gained from 

the extracted knowledge patterns can help software engineers to predict, plan and 

comprehend the various intricacies of the project, allowing them to optimize future software 

development activities. It has been also discussed that how data mining improves the 

software development process in terms of time, cost, resources, reliability and 

maintainability. 
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1. INTRODUCTION  

Predicting defective code in the software development process is a key aspect of software 

analytics. A software defect is a bug, fault, or error in a program that causes improper 

outcomes. Software defects are programming errors that may occur because of errors in the 

source code, requirements, or design. Defects negatively affect software quality and software 

reliability.
[1]

 Hence, they increase maintenance costs and efforts to resolve them. Software 

development teams can detect bugs by analyzing software testing results, but it is costly and 

time-consuming by testing entire software modules. As such, identifying defective modules 

in early stages is necessary to aid software testers in detecting modules that required intensive 

testing.
[2,3]

 In the field of software engineering, software defect prediction (SDP) in early 

stages is vital for software reliability and quality.
[1,4]

 The intention of SDP is to predict 

defects before software products are released, as detecting bugs after release is an exhausting 

and time-consuming process. In addition, SDP approaches have been demonstrated to 

improve software quality, as they help developers predict the most likely defective 

modules.
[5,6]

 SDP is considered a significant challenge, so various machine learning 

algorithms have been used to predict and determine defective modules.
[7]

 With the end goal 

of expanding the viability of software testing, SDP is utilized to distinguish defective 

modules in current and subsequent versions of a software product. 

 

Software engineering data, such as defect prediction datasets, are very imbalanced, where the 

number of samples of a specific class is vastly higher than another class. To deal with such 

data, imbalanced learning approaches have been proposed in SDP to mitigate the data 

imbalance problem.
[7]

 Imbalanced learning approaches include re-sampling, cost-sensitive 

learning, ensemble learning, and imbalanced ensemble learning (hybrid approaches).
[7,39]

 Re-

sampling approaches can be either oversampling and under-sampling methods, and these can 

add or remove instances from the training data only. 

 

1.1 Data Mining  

It is processes in computer science by which relationship and pattern from data can be easily 

extracted and information is collected that helps in decision making as required in software 

development field. It easily extracts information from problem reports and take decision by 

the help of information software defect can detect and software quality is improved.  
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1.2 Classification  

Classifications have a training set which provide a facility to have a common level of same 

classes of data. Some different type bugs in software project development: SW-bug, 

document bug, duplicate bug and mistaken bug. These bugs have common level bug classes 

of data object known as software defect in training set. 

 

1.3 Decision Tree  

Decision tree is a classifier of root node which generates other branches as a node. The 

common attributes of data at class level each node have own information. 

 

 

Fig. 1: Represents to check level defect of software. 

 

1. If software > 1 then root node extract another branches or internal node (not leaf node) 

show class (2).  

2. If software < 1 then shows root node on class (1).  

3. If software defect > 1 then found defect classification categories bug at class (3) not 

extract another node otherwise on the class (2). 

 

2. LITERATURE REVIEW 

Primary studies by definition correspond to the literature being mappings. To provide a 

strong mapping it is essential that selection of primary studies for mapping must be done 

carefully. While it is good that an exhaustive search is conducted for the selection of primary 

studies, in some cases it is not possible because of the number of primary studies available. In 

such cases the search criteria become important. For DeP studies, we can conduct an 

exhaustive search because the number of primary studies is not very large and since is 
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concerned with those studies which are empirical in nature, the number shrinks further. We 

have selected the list of following digital libraries to perform the search: 

1. IEEE Xplore 

2. Springer Link 

3. Science Direct 

4. Wiley Online Library 

5. ACM Digital Library 

6. Google Scholar 

 

The Search String: A search string is the combination of characters and words entered by a 

user into a search engine to find desired results. The information provided to the search 

engine of the digital library directly impacts the results provided by it. To ensure that all the 

primary studies that our mapping plans to address are covered we need to be careful in the 

selection and placement of keywords used in the search string. 

 

Search string 

Software.(defect + fault). (software metrics + object oriented metrics + design metrics) 

Here, „.‟ corresponds to the Boolean AND operation, and „+‟ Corresponds to the Boolean OR 

operation. The search string was executed on all six electronic databases mentioned above 

and the publication year was restricted to the range 1995–2018. The literature hence obtained 

was processed further using a carefully designed inclusion-exclusion criteria and quality 

analysis criteria as described in the following sections. 

 

The Inclusion-Exclusion Criteria: The search results obtained by execution of the search 

string may still fetch some primary studies that either do not add value to the mapping or do 

not fall within the purview of what the mapping aims to accomplish. Once all the primary 

studies have been obtained, a carefully designed inclusion-exclusion criteria are applied to 

the resultant set in order to eliminate entities that do not match the objectives of the mapping. 

 

Inclusion Criteria 

 Empirical studies for DeP using software metrics. 

 Studies that provide empirical analysis using statistical, search-based and machine 

learning techniques. 
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Exclusion Criteria 

 Literature Reviews and Systematic Reviews. 

 Studies that do not use DeP as the dependent variable. 

 Studies of non-empirical nature. 

 If two studies by the same author(s) exist, where one is an extension of the previous work 

the former is discarded. But if the results differ, both are retained. 

 

Review Committee: We formed a review committee that comprises of two Assistant 

Professors and two senior researchers to mapping in order to rate all primary studies captured 

from the search. All studies were examined independently on the basis of the criteria defined 

in The Inclusion-Exclusion Criteria. Application of the inclusion-exclusion criteria resulted in 

98 studies out of the total 156 studies being selected for quality analysis. 

 

Quality Analysis: Assessing the quality of a set of primary studies is a challenging task. A 

quality analysis questionnaire is prepared as part of this systematic mapping to assess the 

relevance of studies taking part in this mapping. The questionnaire takes into consideration 

suggestions given in Reference.
[5]

 A total of 18 questions, given in Table 2, together form the 

questionnaire and each question can be answered as “Agree” (1 point), “Neutral” (0.5 points) 

and “Disagree” (0 points). Hence, a study can have a maximum 18 points and minimum 0 

points. 

 

The same review committee enforces the quality analysis questionnaire. 

 

3. METHODOLOGY 

The mapping method in this study is taken from Reference.
[1]

 Figure 2 outlines the process 

diagram. 

 

Fig. 2: The mapping process. 
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Data Synthesis: Data synthesis involves the accumulation of facts from the data collected 

during the data extraction process to build responses to the research questions.
[5]

 In the data 

synthesis allows for reaching conclusive answers to the research questions identified as part 

of the systematic mapping. Details of the techniques used to answer the selected research 

questions are given below: 

1. RQ1: To answer this question we use a bar chart that shows the number of studies using 

machine learning; search-based techniques, and statistical techniques and threshold-based 

techniques. 

2. RQ2: This question has two parts. The first part is concerned with multi-co linearity 

analysis techniques and the second part deals with feature sub-selection techniques used. 

To answer this question, we make use of bar charts and tables. The bar charts show the 

number of studies using a particular technique for multi-co linearity analysis or feature 

sub selection. The tables show what techniques were used in which SE. 

3. RQ3: This research question deals with the data used in SEs. It has three parts, the first 

part deals with the various datasets used for DeP studies, the second part deals with the 

independent variables found significant in the identified SEs, and the third part deals with 

the independent variables found insignificant in the selected SEs. The first part and the 

second part are answered with the help of a bar chart/pie chart combination while the 

third part does not use any diagramming method. 

4. RQ4: The fourth question deals with the performance measures and statistical tests used 

in DeP studies. We use a combination of bar charts/pie charts to address this question. 

5. RQ5: This question makes use of a bar chart. The bars are used to denote the comparative 

performance of a learning technique. 

6. RQ6: This question is addressed using a table. Since the number of studies is limited, 

tables are used to summarize which study uses what search-based technique. 

7. RQ7: This question uses bar charts and tables to show the distribution of studies that 

address security related defects and vulnerabilities. 

8. RQ8: This question does not use any diagramming method. 

9. RQ9: This question does not use any diagramming method. 
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4. RESULTS AND DISCUSSION 

Table 1: Model building techniques used in DeP Studies. 

Sl. No. Class of learners No. of studies 

1 Bayesian Learners 42 

2 Decision Tree 49 

3 Discriminat Analysis 13 

4 Neural Networks 26 

5 Regression 40 

6 SVM 26 

7 Threshold 9 
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Figure 3: Learning methods used for DeP. 

 

The most used learning method is the Decision Tree as shown in figure3, 44 out of 98 studies 

selected for this systematic mapping use some variant of the decision tree method. 

Techniques like C4.5, J48, CART, and Random Forest come under the decision tree class. 

Bayesian learners.
[65]

 i.e., Naïve Bayes, Bayes Net, etc. have been used by 39 studies. 

Regression, Discriminant analysis and Threshold based classification have been performed in 

35, 8 and 4 studies respectively. Both support vector machine and neural network have been 

used in 21 studies. 
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5. CONCLUSIONS 

The research questions in this systematic mapping were constructed by taking into account 

the following definition of an ideal DeP model: “An ideal DeP model should be able to 

classify defects on the basis of severity, should detect security-related defects and system 

vulnerabilities and should have the ability to detect defects on systems on which it was not 

trained”. 

 

Results of this study showed that the existing literature has covered some of the parts of the 

DeP process fairly well, for example, the sizes of datasets used are large, and nearly all 

machine learning methods have been examined. But when taking into account the overall 

approach and effectiveness of DeP studies, there are a lot of shortcomings. Studies have not 

made much use of multi-co-linearity analysis techniques and only half of the studies selected 

for mapping have used feature sub-selection techniques.  

 

6. Scope of future work 

The following future guidelines are provided on the basis of the results of this study: 

1. Datasets used for DeP studies should undergo thorough pre-processing that includes 

multi-co-linearity analysis and feature sub selection. 

2. Most of the researches in defect prediction involve data obtained from open source 

software systems. Few studies use industrial datasets. It is important that industrial data 

be used for building defect prediction models so that the models can be generalized. 

3. Future studies should make extensive comparisons between search-based techniques, 

machine learning techniques and statistical techniques.  
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