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ABSTRACT 

The study of dynamic equation on measure chain (time scale) goes 

back to its founder S. Hilger (1988) (Hilger 1988) and is a new area of  

still fairly theoretical exploration in mathematics. Motivating the subject is the ration that 

dynamic equation on measure chains can build bridge between continuous and discrete 

mathematics. It has been created in order to unify the study of differential and difference 

equations. We also present various properties / several example and application. The study of 

dynamic inequalities has received a lot of attention in the literature and has become a major 

field in pure and applied mathematics. In this article we mainly focused on Randons’s 

Inequality, GronWall’s Inequality, AM-GM Inequality, Lyapunov’s Inequality, 

Antiderivative and integral and Nesbitts inequality via time scale respectively. 

 

KEYWORDS: Time scale calculus, Dynamic inequalities, Nabla calculus and derivatives, 

Radon’s Inequality, AM-GM Inequality, Lyapunov’s Inequality, Antiderivatives. 

 

INTRODUCTION 

The time scale calculus has a scope for many applications in the field of dynamic inequalities. 

The time scale calculus was initiated by Stefan Hilger (Hilger 1988) for the sake of creation a 

theory which has the ability to unify continuous and discrete analysis. A time scale is a random 

nonempty closed subset of the real numbers. Thus, ℝ, ℤ, ℕ, ℕ𝕠 real numbers, integers, natural 

numbers and non-negative numbers respectively are the examples of time scales, where 

[0,1] ∪ [2,3], [0,1] ∪ ℕ, are Cantor set, 

While, 

ℚ, ℝ \ ℚ, ℂ, (0,1). 

For applying Stefan Hilger theory in this paper we will introduce the delta derivative f∆ for f 
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function defined on time scale T, that defines that (i) f∆ = f” is the normal general derivative if 

T = ℝ and (ii) f∆ = ∆f is the general forward difference operator if T = ℤ. 

 

The time scale calculus is studied as delta calculus, nabla calculus and diamond-α calculus. 

Basic work on dynamic inequalities is done by Ravi Agar- wal, George Anastassiou, Martin 

Bohner, Allan Peterson, Donal O’Regan, Samir Saker and many other authors. We will prove 

the following results given in theorems. Some classical inequalities such as Rado’s, 

Bergstroms’s, the weighted power mean, Schlorich’s and Nesbitt’s inequality. 

 

Dynamic equations on time scale: In order to hybridize continuous and discrete analysis 

(Hoffacker and Tisdell 2005): Stability or instability of dynamic equation scale. 

 

Inequalities on time scale: Bohner worked on opial inequalities (Bohner and Peterson 

2001). Certain new dynamic inequalities investigated by Li (Li 2006). 

 

Such like Radon’s Inequality (Radon 1913) given below, we will describe and analyze 

different dynamic inequalities based on time scale T. 

If 𝑥𝑘, 𝑎𝑘 > 0 𝑘 ∈ {1,2. . . . 𝑛}𝑃 > 0 then, 

 

For 𝑃 = 1, Inequality becomes that of Bergstrom. 

 

If 𝑎, 𝑏, 𝑐, 𝑑 ∈ (0, ∞) and 𝑎𝑏𝑐𝑑 = 1 

 

If 𝑎1, 𝑎2, . . . . . 𝑎𝑛 are non-negative and real numbers and 𝑏1, 𝑏2, . . . . . 𝑏𝑛 are positive and 

real numbers, then for 𝑟 ≥ 0, 𝑆 ≥ 0 and 𝑟 ≥ 𝑆 + 1 

 

By random inequality we have 
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In this paper, it is supposed that all considerable integrals be present and are finite and T is a 

time scale, a, b ∈ T with a < b and an interval [a, b]T means the intersection of a real interval 

with the given time scale. 

 

RESULT AND DISCUSSION 

Radon’s Inequality via time scales. 

Theorem: 

Let w, f, g ∈ C ([a,b] T,R) be -integrable functions, where w(x), g(x) ≠ 0, ∀x ∈ [a,b] T. If β ≥ 

 

 

Equality present in (1.0) when f(x) ≡ g(x) ≡ c, while c is a nonzero real constant. 

Let w, f, g ∈ C ([a,b] T, R) be 
 

-integrable functions, where w(x), g(x) ≠ 0, ∀x ∈ [a, b]T. If 

β ≥ 0, then 

 

Proof: If we put β = γ in (1.0), then we get (1.2), which is Radon’s Inequality on dynamic 

time scales. Clearly the equality holds in (1.0), if f(x) = cg(x), where c is a real constant. 

Corollary: Let w, f, g ∈ C ( [ a, b ] T, ℝ − {0}) be 
 

-integrable functions. 

If β ≤ −1, then 
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Equality holds in (1.2), when f(x) = cg(x), where c is a nonzero real constant. 

 

Proof: By applying inequality (1.1) for β ≤ −1, we obtain 

 

From above expression the equality holds in (1.2), if f(x) = cg(x), where c is a nonzero real 

constant. 

Here we are presenting a generalized Nesbitt’s Inequality on the base of dynamic scale 

calculus. 

 

Theorem: Suppose w, f ∈ C([a, b]T, R − {0}) be 
 

-integrable functions, c, d ∈ ℝ and 

 
Where x ∈ [ a, b ]T. 

If β ≥ γ ≥ 0, then 

 

 

Remark 1. If we set α = 1, T = ℤ, w(x) = 1, β = γ = 1 and f(k) = xk ∈ (0, ∞) for k ∈ {1, 2, ..., 

n}, n ∈ ℕ − {1}, then discrete version of (1.3) reduces to 

 
 

Inequality (1.4) is called generalized Nesbitt’s Inequality (Batinetu-Giurgiu, Marghidanu et 

al. 2011). Further if we set n = 3 and c = d, where c, d ∈ (0, ∞), then (1.4) takes the form 

 

Expression (1.5) is known as Nesbitt’s Inequality (Sahir 2017). 
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Gronwall’s Inequality  

Grönwall's inequality work on the principle of satisfy a definite differential or integral 

inequality from corresponding differential or integral equation solutions (Ozgün, Zafer et al. 

1995). 

  

Theorem: let y, f ∈ Crd and p ∈ R+. then, 

 

 

 

Proof: By using product rule and theorem we calculate, 

 

Since p ∈ R+ and here we have θp ∈ R+, this is implement by eθp > 0. 

Grönwall's inequality general expression =  

 

Remarks: (i) On the functions α and u there are no continuity assumptions. (ii) The integral in 

Grönwall's inequality is allowed to give the value infinity. (iii) If α is the zero function and u 

is non-negative, then Grönwall's inequality implies that u is the zero function. (iv) The 

integrality of u with respect to μ is essential for the result. For a counterexample, let μ denote 

Lebesgue measure on the unit interval [0, 1], define u(0) = 0 and u(t) = 1/t for t ∈ (0, 1], and 

let α be the zero function (Ethier and Kurtz 2009). 

 

AM-GM Inequality 

If 𝑎1,𝑎2,.....𝑎𝑛 are non-negative and real numbers and 𝜆1,𝜆2.....𝜆𝑛 are non-negative and real 

numbers such that 𝜆1+𝜆2+.....𝜆𝑛=1 

 

 

Weighted AM-GM inequality 
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Similarly 

 

 

Summing up 

 

 

If 𝑎,𝑏,𝑐 are the lengths of sides of a triangle and 

2𝑠=𝑎+𝑏+𝑐 

 

When 𝑛=1, result equal to Nesbitt Inequality for 𝑛≥2 

 

 

Lyapunov’s Inequality  

Lyapunov inequalities have proved to be beneficial tools in oscillation theory, dis-conjugacy, 

eigenvalue problems and many other applications in the theory of differential and difference 

equations. A amusing summary of continuous and discrete Lyapunov inequalities and their 

applications can be found in the survey paper (Cheng 1991) by Chen. In this section we 

present several versions of Lyapunov inequalities on time scales. The results below are 

contained in (Bohner, Clark et al. 2002). 

If 𝑥𝑘>0 

𝑦𝑘>0 

𝑘=1,2.....𝑛 

0<𝛽1<𝛽2<𝛽3<∞ then, 

 

If  𝑛∈𝑁 

𝑥𝑘≥0 

𝑥𝑘≥0 

𝛽≥0 
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and 𝛾≥0 

 

 

 

Thus (P) → real number, (ℤ Integer), (N natural number), (No non-negative integer) are 

example of time scale. 

ℚ rational number, ℝ/ ℚ irrational number, ℂ complex number and the open interval between 

0 and 1 are not time scales. 

 

𝑓𝛥 derivative with 𝑓 defined on T 

i 𝑓𝛥=𝑓′ is the usual derivative if T = ℝ  

ii 𝑓𝛥 = 𝛥𝑓 is the usual forward difference operator if T = ℤ  

 
Definition: Let 𝜋 be a time scale for the  

𝜎, 𝑝: 𝜋 → 𝑇 such that 

 

If T has max t then 

Put: - inf ∅ = Sup T (6(t)) = t 

 

If T has minimum t then 

Sup ∅ = inf T (i.e, ρ(t) = t ∴ ∅ null set 

If 6(t) >t right scattered 

at same tine one scattered 

If ρ(t) < t left scattered 
 

If t < Sup T and 6(t) = t right dense 

at same tine dense 

t > inf T and Ρ(t) = t left dense 

 

let TK = T(m) → if T right scattered with minimum m; otherwise TK = T. if T has a left 

scattered maximum M, then TK = T (M) else TK = T ∴ T = time scale throughout article. 

 

Discussed jump operators help us in classification the points (Bohner and Peterson) of a time-

scale as left-scattered and right-dense depending on different conditions such as σ(t) = (t) > t, 
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ρ(t) and ρ(t) < t, respectively for any of t ∈ 𝕋 as shown in table 1 and figure 1. 

 

Table 1: Points classification according to above scenario. 

t right-scattered T < 6(t) 

t right-dense T = 6(t) 

t left-scattered ρ(t) < t 

t left-dense ρ(t) = t 

t isolated ρ(t) < t < ∞ (t) 

Source: (Bohner and Peterson 2001) 

 

 

Where N is natural numbers (ℕ) 

For n =1 we have, 

 
 

Since, 

 

We determined that every point  is right-scattered and let-scattered, 

i.e, every point  is isolated because, 

 

The point  is right-scattered. 

Example: 
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1.1- Backward and Forward jump-operators, Graininess function,  

 

i.e.,  is left-scattered.   

 where n ≥ 2. Then, 

 

Therefore, all the points  are right-scattered and left-scattered 

i.e., all points  are isolated. 

 

3- when t=0, then, 

 

Example: Let T = and   be arbitrarily chosen. 

 

So,  

1. n ∈ ℕ. Then,  

 

 

Thus all points are right-scattered and left-scattered, i.e., all points  

are isolated. 
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2. When n=0 then,  

 

i.e., t = 0 is right-scattered 

 

While graphical expression of table 1 is given in figure 1. 

 

Figure 1: Points classification according to σ(t) = (t) > t, ρ(t) and ρ(t) < t. 

 

From above predictions, both σ(t) as well as ρ(t) are in T while t ∈ T, because T is a close 

subset of ℝ. The observed points which are: 

⟹ Left-dense and right-scattered is point 3. 

⟹ Left-scattered and right-dense are points 2,4. 

⟹Left-scattered and right-scattered are all those points which has 1/s where S ∈ N. 

 

Table 2: Examples of time Scale based calculus according to T, R and Z. 

T R Z 

Backward jump operator 

ρ(t) 
t t-1 

Forward jump ∞ (t) t t+1 

Graininess μ (t) 0 1 

Derivative fΔ (t) f(t) Δf(t) 

Rd-continuous f Continuous t Any f 
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Assume f: T→ ℝ in delta differential on TK. Then f is nabla differential at t. 

f∇(t) = fΔ (ρ(t) for t ϵ TK such that 6 (Ρ(t)) = t 

fΔ is continues on TK. The f is nabla differentials at t 

f∇ (t) = fΔ (ρ(t) hold for t ∈ TK 

Assume that t, g : T→ ℝ are nabla differentiable where t ∈ TK. 

→ function f: X → ℝ defined on a convex subset of ℝn is said to be convex if, 

f(λx +(1-λ)y) ≤ λ f (x) + (1- λ)f(y) for x,y ∈ X 

λ ∈ [0,1] 

f: X→ℝ strictly convex 

 

Example: 

powers = f(x) = xP ; P≥1 

exponential = f(x) =eax for any a ∈ ℝ 

 

Nabla Derivative 

Nabla derivatives corresponding theory was broadly studied for the delta dynamics equations 

development (Atasever 2011). 

For f: T → ℝ and t ∈ TK define nabla of “f” is t. 

f∇ (t) for any ∈>0, there is a neighborhood 

[ f (ρ(t) – f(S)] - f∇ (t) [ρ(t) – S]] < ∈ | Ρ(t)-S ∴ S ∈ UT 



Assume that t, g : T→ ℝ are nabla differentiable where t ∈ TK.  

O The sum of f + g : T→ ℝ is differentiable at t  

(f+g)∇ (t) = f ∇ (t) + g∇ (t). 

O Product f g : T → ℝ differentiable at T 

(f g)∇ (t) = f∇ (t) g(t) + fP (t) g∇ (t) = f (t)g∇ (t) + f∇ gρ(t) 

O If g(t) g Ρ(t) ≠ then f/g is differentiable  

 

 

Antiderivative and integral 

The delta integral is defined as the antiderivative with respect to the delta derivative. If F(t) 

has a continuous derivative f(t)=FΔ(t) one sets 
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Let f: T! → ℝ be a delta differentiable function 

Function 

 

f: TK → ℝ → delta antiderivative of g on T! and for all t ∈ TK the condition f∇ (t) = g (t) 

is satisfied  

for any rd-continuous mapping g: TK → ℝ exist delta antiderivative  

f: t→ 

 

Theorem: Suppose that the function g:TK → ℝ has a delta antiderivative function 

f on [r,s]∈ T 

then exactly integral from r to s 

For T = ℝ 

T = ℎℵ ℎ >0 

 

Theorem: function F: T → ℝ is called a nabla derivative f : T→ R 

f∇ (t) = f(t) holds for all t ∈ TK 

by defined integral 

 

 

Suppose F and f∇ continuous 

 



Kamran et al.                                 World Journal of Engineering Research and Technology 

 

 

 

www.wjert.org  

 

430 

Let T be a time scale a,b ∈ T with a < b and let fi (x) (I = 1,2 m) 

ℎ (x) : [a, b] T→ [oi+∞] be a â(delta) integral  

 

Then, 

 

Theorem: Let T be a time scale a,b ∈ T with a < b and let, 

fi (x) ( i = 1,2,3, . . , m) 

ℎ (x) : [a,b] r → ℝ be 

â (delta) integral function.  

 

1) If P >1 then,  

 

 

2) If 0 < P < 1 then,  

 

 

CONCLUSION AND FUTURE PERSPECTIVE 

In this article I present dynamics inequalities create bridge between continuous and discrete. 

Basic work on dynamic inequalities is done by Ravi Agarwal, Martin bohar and many others. 

This research presents extensions of Radon’s inequality, Lyapunov’s Inequality with some 

generalization and applications of Randons’s Inequality, GronWall’s Inequality, AM-GM 

Inequality, Lyapunov’s Inequality and Antiderivative and integral and Nesbitts inequality. 

According to outcomes of dynamic inequalities for the diamond integral which is linear 

combinations of delta and nabla integral, if we set, 

∝ = 1 → we get delta version. 

∝ = 0 → we get nabla version of diamond∝-integral 

T = Z → we get discrete version. 

T = ℝ → we get continuous version 
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In future we can consider dynamic inequalities by using n-tuple diamond integral, Quantum 

calculus and Riemann–Liouville integral of order α. Additionally, it is suggested that more 

investigation be done on the implementation of quasi-convex functions on the time scales in 

economics, optimization and mathematical modeling and among others. 

 

Recently it has found that many dynamic inequalities such as Randons’s Inequality, Nesbitts 

inequality, GronWall’s Inequality, AM-GM Inequality, Lyapunov’s Inequality and 

Antiderivative and integral are equivalent on time scales as given in (Sahir 2018), so we can 

find more equivalent dynamic inequalities on time scales. 

T: Time scale ℝ: Real Number Z or ℤ: Integers 

N: Natural numbers 

f∆: Delta derivative P(t) = ρ(t) 
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