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ABSTRACT 

Due to the vital applications of short light pulses to telecommunication 

and ultrafast research, the soliton propagation in nonlinear optical fiber 

has become a vast research topic now a days. It is a type of signal 

emerged when frequency changes with time. Chirped pulses have vast  

application in the field of communication and pulse compression. Bouzida et al. used dual 

power law in non optical fiber to find chirped soliton. 

 

KEYWORDS: Chirped And Dipole. 

 

1. INTRODUCTION 

The soliton propagation in nonlinear optical fiber is a topic of current research because of the 

vital applications of short light pulses to telecommunication and ultrafast signal routing 

systems Chirped soliton is a type of signal emerges when frequency changes with time. 

 

Chirped pulses are used in solitary wave-based communications, design of fiber optic 

amplifier and optical pulse compressors due to their applications in amplification or pulse 

compression. It used dual power law in Nano optical fibers to find chirped soliton. Dipole 

soliton or dark in the bright soliton were first observed by Choudhuri and Porsezian. Dipole 

soliton are composed of product of bright and dark soliton. In this paper, we find the chirped 

soliton with sub-ODEs method and dipole soliton under the ansatz method for nonlinear 

negative index materials under quadratic-cubic nonlinearity. 
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Preliminaries 

We usually come across of three types of PDEs, 

 

These are classified as 

i. Elliptic 

ii. Hyperbolic 

iii. Parabolic 

 

Types of boundary condition 

There are three types of boundary conditions commonly encountered in the solution of partial 

differential equations. 

1. Dirichlet boundary conditions specify the value of the function on a surface T=f(r,t) 

2. Neumann boundary conditions specify the normal derivative of the function on a 

surface,(partial T)/(partial n)=n^del T=f(r,t). 

 

Robin boundary conditions. For an elliptic partial differential equation in a region Omega, 

Robin boundary conditions specify the sum of alpha u and the normal derivative of u=f at all 

points of the boundary of Omega, with alpha and f being prescribed. 

 

Soliton: A soliton or solitary wave is a self-reinforcing wave packet that maintains its shape 

while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear 

and dispersive effects in the medium. 

 

Optical Soliton: An optical soliton is a pulse that travels without distortion due to dispersion 

or other effects. They are non-linear phenomenon caused by self-phase modulation which 

means that electric field of wave changes the index of refraction seen by the wave (Kerr 

effect). 

 

In optics term soliton is used to refer to any optical field that does not change during the 

propagation because of a delicate balance. 

 

2. Literature Review 

In theoretical physics the (one-dimensional) nonlinear Schrödinger equation (NLSE) is a 

nonlinear variation of the Schrodinger’s. It is a classical field equation whose principal 

applications are to the propagation of light in nonlinear optical fibers and planar 

waveguides and to Bose-Einstein condensates confined to highly anisotropic cigar-shaped 
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traps, in the mean-field regime.
 
Additionally, the equation appears in the studies of small-

amplitude gravity waves on the surface of deep in viscid (zero-viscosity) water the Langmuir 

waves in hot plasmas. the propagation of plane-diffracted wave beams in the focusing regions 

of the ionosphere. 

 

The propagation of Davidson’s alpha-helix solation’s, which are responsible for energy 

transport along molecular chains and many others.
 

 

A localized surface soliton that causes a temporary increase in in an associated wave 

amplitude. 

 

The terms light and dark solitons are borrowed from the optics where they manifest as bright 

spots and dark shadows in optical fibers. And yet it was in water that solitons were first 

observed in the 1830. Dark soliton showing the intensity and phase of black and grey. Dark 

soliton emerges into the light. Dark solitons are the solution s of non-linear PDEs in the space 

of dimensions with non zero boundary conditions and non zero phase shift. They are 

represented by a family of travelling wave solution extending from the limit of zero speed(so-

called black soliton) to the limit of sound speed (so-called grey soliton). These higher order 

solitons show frequency chirp defined as the time derivative of the soliton phase . In other 

words dark solitons are generally chirped . The soliton propagation in nonlinear optical fiber 

is a topic of current research because of the vital applications of short light pulses to 

telecommunication and ultrafast signal routing systems . Chirped soliton is a type of signal 

emerges when frequency changes with time. Chirped pulses are used in solitary wave-base 

communications, design of fiber optic amplifier and optical pulse compressors due to their 

applications in amplification or pulse compression . Bouzida et al. used dual power law in 

nan optical fibers to find chirped soliton. Dipole soliton or dark in the bright soliton were first 

observed by Choudhuri and Porsezian nonlinearity. In mathematics and physics, a soliton or 

solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at 

a constant velocity. 

 

Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. 

 

The ansatz involving exact traveling wave solutions to nonlinear partial differential 

equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz 

is of great importance. We apply this ansatz to examine new and further general traveling 
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wave solutions to the (1+1)-dimensional modified Benjamin–Bona–Mahony equation. 

Abundant traveling wave solutions are derived including solitons , singular solitons, periodic 

solutions and general solitary wave solutions. 

 

3. METHODOLOGY 

The model studies the dynamics of soliton propagation through optical material. 

2 2 2 2 2 2 *

1 2 1 2 3( | | | | ) { (| | ) (| | ) } (| | ) | | [1]t xx x x x xx xx xxiq aq b q b q q i aq q q v q q q q q q q q           

where wave profile is represented by q(x, t), group velocity dispersion is represented by the 

coefficient of a. While quadratic-cubic nonlinearity is shown by b1 and b2. On other side of 

mathematical model, inter modal dispersion, self-steepening and nonlinear dispersion are 

represented by α, β and ν respectively. In the following subsection, we find the chirped 

soliton for Eq. (1) 
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The values are put in equation 2 

  ( ( ) ) ( ( ) ) 2 3 2 ( ( ) )

( ( ) ) 3 3 2 2 ( ( ) ) 3 2

1 2

( ( ) ) 2 3 11 3 2

3

[3 ] 2 (x)

2 ( ) ( ) [ 2 ( ) ]

[ 2 ( ) ]

i x t i x t i x t

i x t i x t

i x t

ia ix e e i x v e

e i x i x x e i x i x x

e i x i x i x

  

 



      

           

     

  

 



      

                 

      

 

 

Now substituting q(x, t) and its derivatives into Eq, we get the following real and imaginary 

part. 
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By considering the following cases we get the following solutions, 

 

Case 1 

Bell type solitary wave solutions 
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From eq (3.1.37) we have 
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Case 2 

Kink type solitary wave solutions 
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Case 3 

Algebraic solitary wave solution: 
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Case 4 

Sinusoidal wave solutions 
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4. CONCLUSIONS 

In this article, we obtained solitary wave solutions for nonlinear negative-index materials 

under quadratic-cubic nonlinearity. We Obtained two types of soliton solutions; one is 

chirped soliton and the other is dipole soliton solution. We used sub-ODE method to get 

Chirped soliton and studied dipole soliton with the help of ansatz method of Choudhuri. The 

obtained results will be used in field of Telecommunication. 
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