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1. INTRODUCTION
The soliton propagation in nonlinear optical fiber is a topic of current research because of the
vital applications of short light pulses to telecommunication and ultrafast signal routing

systems Chirped soliton is a type of signal emerges when frequency changes with time.

Chirped pulses are used in solitary wave-based communications, design of fiber optic
amplifier and optical pulse compressors due to their applications in amplification or pulse
compression. It used dual power law in Nano optical fibers to find chirped soliton. Dipole
soliton or dark in the bright soliton were first observed by Choudhuri and Porsezian. Dipole
soliton are composed of product of bright and dark soliton. In this paper, we find the chirped
soliton with sub-ODEs method and dipole soliton under the ansatz method for nonlinear

negative index materials under quadratic-cubic nonlinearity.
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Preliminaries

We usually come across of three types of PDEs,

These are classified as
i. Elliptic

ii. Hyperbolic

iii. Parabolic

Types of boundary condition

There are three types of boundary conditions commonly encountered in the solution of partial

differential equations.

1. Dirichlet boundary conditions specify the value of the function on a surface T=f(r,t)

2. Neumann boundary conditions specify the normal derivative of the function on a
surface,(partial T)/(partial n)=n"del T=f(r,t).

Robin boundary conditions. For an elliptic partial differential equation in a region Omega,
Robin boundary conditions specify the sum of alpha u and the normal derivative of u=f at all

points of the boundary of Omega, with alpha and f being prescribed.

Soliton: A soliton or solitary wave is a self-reinforcing wave packet that maintains its shape
while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear

and dispersive effects in the medium.

Optical Soliton: An optical soliton is a pulse that travels without distortion due to dispersion
or other effects. They are non-linear phenomenon caused by self-phase modulation which
means that electric field of wave changes the index of refraction seen by the wave (Kerr
effect).

In optics term soliton is used to refer to any optical field that does not change during the

propagation because of a delicate balance.

2. Literature Review

In theoretical physics the (one-dimensional) nonlinear Schrédinger equation (NLSE) is a
nonlinear variation of the Schrodinger’s. It is a classical field equation whose principal
applications are to the propagation of light in nonlinear optical fibers and planar

waveguides and to Bose-Einstein condensates confined to highly anisotropic cigar-shaped
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traps, in the mean-field regime. Additionally, the equation appears in the studies of small-
amplitude gravity waves on the surface of deep in viscid (zero-viscosity) water the Langmuir
waves in hot plasmas. the propagation of plane-diffracted wave beams in the focusing regions
of the ionosphere.

The propagation of Davidson’s alpha-helix solation’s, which are responsible for energy

transport along molecular chains and many others.

A localized surface soliton that causes a temporary increase in in an associated wave

amplitude.

The terms light and dark solitons are borrowed from the optics where they manifest as bright
spots and dark shadows in optical fibers. And yet it was in water that solitons were first
observed in the 1830. Dark soliton showing the intensity and phase of black and grey. Dark
soliton emerges into the light. Dark solitons are the solution s of non-linear PDESs in the space
of dimensions with non zero boundary conditions and non zero phase shift. They are
represented by a family of travelling wave solution extending from the limit of zero speed(so-
called black soliton) to the limit of sound speed (so-called grey soliton). These higher order
solitons show frequency chirp defined as the time derivative of the soliton phase . In other
words dark solitons are generally chirped . The soliton propagation in nonlinear optical fiber
is a topic of current research because of the vital applications of short light pulses to
telecommunication and ultrafast signal routing systems . Chirped soliton is a type of signal
emerges when frequency changes with time. Chirped pulses are used in solitary wave-base
communications, design of fiber optic amplifier and optical pulse compressors due to their
applications in amplification or pulse compression . Bouzida et al. used dual power law in
nan optical fibers to find chirped soliton. Dipole soliton or dark in the bright soliton were first
observed by Choudhuri and Porsezian nonlinearity. In mathematics and physics, a soliton or
solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at
a constant velocity.

Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium.

The ansatz involving exact traveling wave solutions to nonlinear partial differential
equations. To obtain wave solutions using direct method, the choice of an appropriate ansatz

is of great importance. We apply this ansatz to examine new and further general traveling
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wave solutions to the (1+1)-dimensional modified Benjamin—-Bona—Mahony equation.
Abundant traveling wave solutions are derived including solitons , singular solitons, periodic

solutions and general solitary wave solutions.

3. METHODOLOGY

The model studies the dynamics of soliton propagation through optical material.

i, +aq,, + (b [q]+b, [q[)a=i{ag, + A1a [ a), +v(d ), F+6(a] 0, +6, 1 a +6,0°0 [0
where wave profile is represented by q(x, t), group velocity dispersion is represented by the

coefficient of a. While quadratic-cubic nonlinearity is shown by bl and b2. On other side of
mathematical model, inter modal dispersion, self-steepening and nonlinear dispersion are
represented by o, B and v respectively. In the following subsection, we find the chirped

soliton for Eq. (1)

Chirped Soliton
q = p(&)e! () =0
aq, = a(&)e X" pix 4 o]
Taking again derivative
_el(x(5) —€a) [i POX" 4 2ip'X + p'' — p3(X')2:|
iq, = ! (X() - QD) [ipxu+Q—ip'u]
lal=l p(&) = p(S)
by 1a(x,t) [=by o by 1a(x, ) [°=b,p?

qXX

aq(x,t), =a(&)e' X =M x4 o]

by 1a(x,t) +b, [a(x, ) P=b, o+ b, 0
[aeBa 2 a(x.t) = 2p2 pe! () 00

=gy +ad, + (b |40, 1) +b, (A%, Y) ]

— ei(X(f)—Qt) [pX'U +Q_ip’u]+a(§)ei(x(§) _Qt) |:| pX”+ 2ip'X'+p”—p3(x')2 +b1p+b2p2:|
_el(X(&) -0 [ox'u+Q—ipu]
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() =0y o]

XX
aq, =a(s)e
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The values are put in equation 2

=ia[pix’ + p']e' W 1 BelII[3p? p' 1 px]+ 2v p? (x)e! W

0, i p°X" +2ip'X' + " = p*(X')? |+ 0,07 (£)e' M i px” + 2ip'X' + p” = p°(X)’]
+0,6' N[ p?x" = 2ip'x —ip’ ™ — p* (X)?]

Now substituting q(x, t) and its derivatives into Eq, we get the following real and imaginary
part.

=p' X pu+pQ+ap”—ap(X)? + (b, +b,p*) +apx + p*X' B+ 6,(=3p"p* —6p(p)? + p°(X)?)
+0,p°(X)? — p'p?) =0

And

=—plu+apx’+ap x"+2ap’' X' —ap —3Pp’p —2vp®p +6,(p*p'x' —20°x")

+6,(P°X" = 2p'p*X") + 0,(2p'p*X + p°X")

okay

=pXu+pQ+ap”—ap(x)’ + (b’ +b,p*) +apx' + p*x' B+ 6,(=3p"p* —6p(p")?) + p(x)? +
;(p(x)’ —pp)=0

Where

X=06p>+n

5= 3ﬂ44;2v

= p(Sp® + )+ pQ+ap”—ap(dp? +1)* +((bp° +b,p%) +ap(p® +n)+ap(Sp® +1) + p°xX' B+
6,(=38p"p* —6p(p)?)+ P (5p* +1)* + P> (Sp* +11)* + 6,(p° (82 p" +11° +25p*)) + O, (p(X)* — p°p") =0
=pP°S+pn+pQ+ap”—ap(sp’ +n°+25p%)" + (bp® +b,p%) +ap(sp® +n) + p°x'B

+6,(=3p"p* —6p(p)?)+ (0°(5%p" +1% +26p?)) + 6,(p° (52 p* + 1% +25p%)) + 0,(0(X)° — p°p") =0
=p°S+pn+pQ+ap’—ap* —ap's® —an® —2adp® +b p’ +b,p* +adp® + p’°s +nPp® —35"5%6,
—6pp' B+ 62 p" + Bi8° +285p P+ 0,p'S + 0,617 +25p°10, —0,p*5" + 35 p*npp® +35°p"n* =0
=Ap" +Bp° +Cp° + (b, + p"D)p* +(E—-68(p)*) p+ap”

Multiplying Equation with o’

= p'[ ApT +Bp® +Cp* + (b + p"D) + pp [ (E-606,(0))" +ap" ||

=Ap P +Bp P +CP°p +bp?p'+ p?p"D+Ep o —66,(p)p+p p
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2
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a, = ——
4 a

So,
ap’+a,p’ +apt +a,p’—(p)?
—5%(6,+ 0, + 6,)

4a
_ —2617(6, + 0, + 0,) —as? + BS
? 3a

—b, + S(u+a)+n(—2as+ L) +n*(6,+ 6, + 6,)

a; = >
a

—Q+n(a—an+ w1

a, =

a
By considering the following cases we get the following solutions,

Case 1
Bell type solitary wave solutions

2

a >0,a,>2a, a, =Z_;1_a1

Equation (3.1.25) gives the positive solution.
From eq (3.1.37) we have

p(&)? —sech(2,/a,&)
q(xt) = p(£)e' -

Put the value of p(&) in equation

p(£)? —sech(2,/a,&)
q (X,t) = SeC(Z\E@;ei(x(a—m)
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Case 2

Kink type solitary wave solutions

a, =0, a; =0, a, = —22 (a,az)
as® — [(BS
= 2
== (a,a3)

5 — ca/(a,a,) + as?

S
10(5):[ le (%—i—%tanh(,/alaz )sz
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q(x,t) = o(&He' =70
Put the value of o(&)

a
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Case 3

Algebraic solitary wave solution:
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a
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By putting the equationa, =1, we have
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Case 4

Sinusoidal wave solutions

a, =—1,a, =2c,a, =1— o7

a, = 2o
asc?® — LS = 6ac
and we get 3

_as? — pBs
= S

1
~(e) = \/o- +sin 2<&
S (&) = (Sp® +177)

S(E) — \/ 1 Qi (x(£H—0t

o +sin2&

4. CONCLUSIONS

In this article, we obtained solitary wave solutions for nonlinear negative-index materials
under quadratic-cubic nonlinearity. We Obtained two types of soliton solutions; one is
chirped soliton and the other is dipole soliton solution. We used sub-ODE method to get
Chirped soliton and studied dipole soliton with the help of ansatz method of Choudhuri. The

obtained results will be used in field of Telecommunication.
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