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ABSTRACT 

In this study, we investigate the behavior of the pullout resistance of a 

helical pile using machine learning techniques. Specifically, we apply 

three different techniques - adaptive neuro-fuzzy inference system, 

random forest regression, and support vector regression - to the 

experimental results of a helical pile. We evaluate the performance of  

these techniques on both the training and test sets and compare their results. Our findings 

indicate that while the adaptive neuro-fuzzy inference system showed good performance on 

the training set, it had deficiencies when tested. The support vector technique showed better 

performance than the adaptive neuro-fuzzy inference system, but not as well as the random 

forest algorithm. Ultimately, the random forest machine learning regression outperformed 

other methods, delivering good predictions with acceptable error values. These results suggest 

that machine learning can be an effective tool for predicting the pullout resistance behavior of 

a helical pile embedded in the soil, which may have practical implications for the design and 

optimization of helical pile foundations. 
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1. INTRODUCTION 

Significant improvements have been observed in engineering due to the recent progress in 

measuring technologies and computational methods.
[1]

 Various domains, including civil 

engineering and geotechnical engineering, have experienced these improvements.
[2]

 Helical 

piles (HPs) are deep foundation elements consisting of a central steel shaft with one or more 

helix- shaped plates (also called helixes or flights).
[3]

 HPs provide a foundation system for 

various types of structures. They offer stability and load-bearing capacity to support structures 

such as buildings, bridges, and other types of infrastructure.
[4]

 Helical piles can be used in a 

variety of soil conditions and are often used in situations where traditional deep foundation 

systems, such as driven piles or drilled shafts, may not be practical or feasible.
[5]

 They can 

also be used in areas with limited access, such as residential or commercial properties where 

space is restricted.
[6]

 HPs are recognized as a viable alternative foundation solution that offers 

adequate stability against tension, compression,  and  horizontal stresses.
[7]

  Several 

researchers have  concentrated  on studying the behavior of helical piles, as they offer 

suitable stability against tension, compression, and horizontal stresses. To analyze the 

installation torque and bearing capacity of HPs, Spagnoli, G., in 2017, developed a theoretical 

model based on the cone penetration test to determine the axial resistance of helical piles and 

anticipate the necessary installation torque for sand installation, various methods have been 

explored.
[8] [9]

 The use of finite element models is prevalent in this field.
[10][11][12]

 Pullout 

resistance (Pul) is considered a crucial parameter for HPs, and various approaches have been 

proposed by scholars to investigate this factor for both anchors and piles.
[13][14][15]

 Soft 

computing refers to a set of computational techniques that are designed to handle uncertain, 

imprecise, or incomplete data. Soft computing techniques are widely used in various 

engineering domains as they can tackle complex problems that are difficult to solve using 

traditional methods.
[16][17][18]

 Some common soft computing techniques used in engineering 

domains include; Neural networks
[19]

, Fuzzy logic
[20]

, Genetic algorithms
[21]

, and Particle 

swarm optimization.
[22]

 Metaheuristic techniques
[23]

 have been extensively demonstrated for 

different geotechnical applications such as modeling bearing capacity
[24]

, predicting soil 

compression coefficient
[25]

, designing stabilized earth walls
[26]

, and assessing landslide and 

slope stability
[27]

, among others. These techniques can optimize the relationship between 

multiple parameters within a mathematical framework
[28]

, tailored to a specific problem. By 

taking a cost function, these algorithms perform intricate computations to maximize/minimize 

this function. Na et al in 2016, utilized the harmony search algorithm (HSA) to optimally 

design the material cost of HPs. The HSA was discovered to be an effective approach for this 
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objective, as it resulted in a cost reduction of 27%.
[29]

 The Adaptive Neuro-Fuzzy Inference 

System (ANFIS) is a kind of artificial neural network (ANN) that combines the reasoning 

capabilities of fuzzy logic and the learning abilities of neural networks to create a hybrid 

intelligent system.ANFIS is used for modeling complex systems where the relationships 

between inputs and outputs are not well understood. It works by using a set of input variables 

and a set of output variables to create a fuzzy inference system. This system is then trained 

using a combination of supervised and unsupervised learning algorithms to adjust the 

parameters of the fuzzy logic rules to better match the desired outputs.
[30]

 Helical piles are 

widely used in civil engineering for foundation construction due to their unique properties, 

including ease of installation and excellent load-bearing capacity. However, predicting the 

pullout resistance behavior of helical piles is a complex and challenging problem, as it 

depends on a variety of factors such as soil properties, installation method, and pile geometry. 

In recent years, machine learning techniques have emerged as a promising tool for analyzing 

and predicting the behavior of complex systems like helical piles. In this study, we apply three 

machine learning methods - adaptive neuro fuzzy inference system, random forest regression, 

and support vector regression - to experimental results of a helical pile, with the aim of 

evaluating their performance and identifying the most effective approach for predicting the 

pullout resistance behavior of helical piles. In this paper, we present a comparative analysis of 

three machine learning methods - adaptive neuro fuzzy inference system, random forest 

regression, and support vector regression - for predicting the pullout resistance behavior of a 

helical pile. We utilized experimental data on a helical pile and evaluated the performance of 

each method on training and test sets. Our results show that random forest regression 

outperformed the other two methods in terms of accuracy and error values. This study 

provides valuable insights into the potential of machine learning techniques for evaluating the 

actions of helical piles in soil, and offers practical guidance for engineers and researchers in 

this field. 

 

2. MATERIALS AND METHODS 

The pullout resistance of a helical pile, which is a type of deep foundation, can be affected by 

various factors. These include the type and characteristics of the soil, the geometry and size of 

the helix plates, the spacing and orientation of the plates
[31]

, the geometry and size of the pile 

shaft, the installation torque and method.
[32]

, the groundwater level
[33]

 and soil moisture 

content, the loading conditions and magnitude, the depth of embedment, and environmental 

factors such as temperature and corrosion.
[34]

 All of these factors can impact the performance 
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of the helical pile in terms of its ability to withstand axial or uplift loads and therefore need to be 

carefully considered during the design and installation process. In intelligent simulations, the 

effective factors act as inputs for a target parameter, and the network aims to capture their 

relationship and identify any patterns. The current study utilizes the dataset provided by Nazir 

et al. for this purpose.
[35]

 The embedment ratio 𝑅em of a helical pile is the depth-to-diameter 

ratio and is an important design parameter that can affect the performance of the helical pile. 

The embedment ratio can vary depending on factors such as the soil type, the loading 

conditions, and the required capacity of the pile. A higher embedment ratio generally results in 

a higher capacity of the pile to resist axial or uplift loads, but may also increase the 

installation difficulty and cost. The dataset analyzed in this study includes 36 samples that 

record the 𝑃ul of helical piles , as an independent variable, along with the embedment ratio 

𝑅em, soil density class 𝐶SD, and shaft diameter ratio (𝑅SD = 𝐷b/𝐷s) as input parameters 

affecting 𝑃ul as shown in Figure 1. 

 

 
Figure 1: Shaft diameter ratio in Helical pile (HP). 

 

Figure 2 to Figure 5 display the changes in 𝑅em, 𝐶SD, 𝑅SD, and 𝑃ul respectively. The 

embedment ratio ranges from 0 to 5 with a mean value of 2.5. The soil density class has two 

recorded values of 85 and 35 that correspond to dense and loose soils, respectively. The dataset 

consists of an equal number of samples for both dense and loose soil types. The shaft diameter 

ratio, follows a repeated pattern with the values 0.3, 0.4, and 0.5, resulting in a total of 36 

samples in the dataset (6 × 2 × 3). The corresponding 𝑃ul values range from 0 to 1622.47 with 

an average of 376.8. It is observed that the 𝑃ul values for dense soils are higher compared to 

loose soils. 
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Figure 2: The embedment ratio. 

 

 

Figure 3: The soil density class. 

 

3. METHODOLOGY 

Three models were formulated to analyze the performance of the pullout resistance in this 

work including an adaptive neuro-fuzzy inference system, random forest regression, and 

support vector machine. 

 

 

Figure 4: The shaft diameter ratio. 
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Figure 5: Pullout resistance. 

 

3.1 Adaptive neuro-fuzzy inference system 

White
[36]

 introduced the concepts of GRNN and MLPNN as two popular types of ANNs. 

ANNs are computational models that mimic the functioning of biological neural systems, as 

described by McCulloch and Pitts
[37]

 and Anderson and McNeill[38]. The key elements of 

these networks are the neurons, which are interconnected through synapses to process signals, 

as explained by Hu and Hwang.
[39]

 To establish a non-linear correlation between the inputs and 

targets, the data undergo a series of operations across multiple layers. A GRNN comprises four 

layers, specifically, the input layer, pattern layer, summation layer, and output layer, as 

described by Xie et al.
[40]

 Conversely, an MLPNN has a minimum of three layers, including 

the input layer, one or more hidden layer(s), and the output layer, as stated by Hornik et al.
[41]

 

In both the GRNN and MLPNN, the number of neurons in the first and last layers 

corresponds to the dimensions of the inputs and targets, respectively. The number of 

neurons in the hidden layer of the MLPNN is flexible and usually determined by the user, 

whereas in the GRNN, the number of neurons in the pattern layer matches the number of 

instances. In both models, the primary computations are performed in the middle layers, and 

the output neurons conduct a linear calculation to produce responses. Further details on these 

models can be found in various literature sources, such as Seyedashraf et al.
[42]

 and Ge et 

al.
[43]

 The ANFIS model, introduced by Jang
[44]

, combines the benefits of neural networks and 

fuzzy logic, as noted by Moayedi et al.
[45]

 Fuzzy systems involve operations like 

fuzzification, a fuzzy inference engine, and defuzzification, which are used to transform crisp 

values into linguistic fuzzy variables for entry into an inference engine. The fuzzy rules are 

applied to these variables, and the resulting value is subjected to a defuzzification process to 

convert the response back into crisp values. The adaptive neuro-fuzzy inference system 
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(ANFIS) is similar to ANNs in that it consists of five layers, each of which performs a specific 

operation, including The ANFIS comprises five layers, with the first layer, called the 

fuzzification layer, transforming crisp inputs into fuzzy ones. In the implication layer, the 

ANN's weight functions are calculated, and the obtained weights are normalized in the 

normalization layer. The fourth layer carries out defuzzification, and the output is produced 

by the neurons in the output layer, as explained by Alajmi and Almeshal.
[46]

 

 

3.2 Random Forest Regression 

Random Forest Regression is widely utilized in machine learning for regression tasks and can 

be seen as an advancement of the Random Forest algorithm, which is primarily used for 

classification tasks. In Random Forest Regression, numerous decision trees are generated, with 

each tree trained on a randomly chosen subset of the data and features. Afterwards, the 

algorithm consolidates the predictions from all the trees to produce the final prediction. By 

decreasing the model's variance, utilizing Random Forest Regression instead of a single 

decision tree can enhance the prediction's accuracy. This is achieved by reducing the 

overfitting of the model, which can be a common issue with decision trees. Random Forest 

Regression also has the ability to handle high-dimensional data and non-linear relationships 

between the features and the output. Random Forest Regression is implemented in Python 

using the scikit-learn library. To achieve the intended level of accuracy, the model's 

hyperparameters, including the number of trees and the number of features in each tree, can 

be adjusted. Once the model has undergone training, it is capable of making predictions on 

new data. 

 

3.3 Support Vector Regression 

Support Vector Regression (SVR) is a machine learning algorithm used for regression tasks. 

It is based on the Support Vector Machine (SVM) algorithm, which is primarily used for 

classification tasks. SVR functions by identifying a hyperplane that best suits the data and 

maximizes the distance between the hyperplane and the nearest data points. This hyperplane is 

then used to make predictions on new data. One of the advantages of using SVR is that it can 

handle non-linear relationships between the features and the output by using a kernel 

function. The kernel function maps the data to a higher-dimensional feature space where it is 

easier to find a hyperplane that separates the data points. SVR can also handle outliers in the 

data by controlling the width of the margin around the hyperplane. SVR is implemented in 

Python using the scikit-learn library. The hyperparameters of the model, such as the type of 
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kernel function and the regularization parameter, can be tuned to achieve the desired level of 

accuracy. Once the model is trained, it can be used to make predictions on new data. Overall, 

Support Vector Regression is a powerful machine learning algorithm that is well-suited for 

regression tasks, particularly when the data has non-linear relationships between the features 

and the output. It can also handle outliers in the data and can tune the level of complexity of 

the model by controlling the width of the margin around the hyperplane. 

 

4. RESULTS AND DISCUSSION 

The proposed models were implemented and evaluated using two types of data: training data 

and testing data. The training data comprised 25 samples, while the testing data contained 11 

samples. The data were randomly permuted to enable a random selection, and a 70:30 

selection ratio was applied, as stated in the text. 

 

4.1 Indices used to evaluate accuracy. 

To evaluate the accuracy of both data groups, three widely accepted criteria are employed. 

The first criterion used to measure the prediction error for J samples is the RMSE, as 

expressed in the following equation. 

 

 

The values of 𝑃ul are estimated and expected using 𝑃𝑢𝑙𝑖 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 and 𝑃𝑢𝑙𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛, 

respectively. The second measure used for accuracy assessment is the mean absolute error 

(MAE) which is calculated based on Equation 2. 

 

 

Another approach to evaluating the goodness of fit is to examine the correlation 

between 𝑃𝑢𝑙𝑖 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 and 𝑃𝑢𝑙𝑖 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛. The Pearson correlation coefficient (PCC) 

is used as the criterion for this analysis, as expressed in Equation 3. 

 

 

4.2 Training and development 

The ANFIS with adjustable parameters of its membership functions (MFs) is fed by training 

data and during the training procedure, the system attempts to optimize the tuning of the MFs to 
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capture the relationship between 𝑃ul and the independent variables, 𝑅em, 𝐶SD, and 𝑅SD. The 

ANFIS is optimized over a total of 1000 iterations. The pullout resistance patterns obtained in 

the laboratory and by predictive models are displayed in Figure 4. It can be observed from the 

figure that all models could accurately capture most of the 𝑃ul behavior. Nevertheless, the 

random forest model outperformed the others in predicting the maximum and minimum 𝑃ul. 

 

 

Figure 6: Predictive models of the pullout resistance behavior. 

 

4.3 Results of Testing and Comparison. 

During the second phase, the pullout was predicted for new pile conditions, and as with the 

training phase, the performance of each network was evaluated using RMSE, MAE, and PCC by 

comparing the predicted values to the expected values. Figure 7 displays the difference 

between the expected and predicted pullout resistance, which is referred to as "Error". The 

regression chart shows a high aggregation of data points around the ideal line (i.e., x = 0), and 

the graph exhibits a higher frequency of small errors. These results demonstrate the 

satisfactory performance of the models used. 

 

Based on Figure 7, it can be concluded that all predicted outputs have a high level of 

agreement with the laboratory results over a specific domain of the dataset. However, ANFIS 

has the worst performance while random regression performed better than others. 
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Figure 7: Performance of the predictive models. 

 

5. CONCLUSIONS 

Three machine learning were utilized to study the behavior of the pullout resistance of a 

helical pile. Adaptive neuro-fuzzy inference systems, random forest regression, and support 

vector regression were employed to study and analyze the experimental results of a helical 

pile. While the adaptive neuro-fuzzy inference system performed well on the training set, it 

had a deficiency on the test set. The support vector technique has better performance than the 

adaptive neuro-fuzzy inference system and worse than the random forest algorithm. Overall, 

random forest machine learning regression outperformed other methods in this study and 

returns a good prediction state with acceptable error values. 
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