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ABSTRACT 

In the n
+(p

+) − p(n) 𝐆𝐚𝐏𝟏−𝐱𝐀𝐬𝐱 - crystalline alloy, 0 ≤ 𝑥 ≤ 1, the 

electrical-and-thermoelectric laws, relations, and various coefficients, 

enhanced by our static dielectric constant law given in Equations (1a, 

1b) and new electrical conductivity in Eq. (14), and by our accurate 

Fermi energy given in Eq. (11), are now investigated, by basing on the 

same physical model and mathematical treatment method, as those 

used in our recent works (Van Cong, 2024, 2025). It should be noted 

here that, for x=0, these obtained numerical results may be reduced to 

those given in n (p)-type degenerate GaP-crystal. Then, some 

remarkable results could be cited in the following. In Tables 5n (5p) 

given Appendix 1, for a given impurity density N and with increasing 

temperature T, and then in Tables 6n (6p) given Appendix 1, for a 

given T and with decreasing N, the reduced Fermi-energy ξn(p) decreases, and other 

thermoelectric coefficients are in variations, as indicated by the arrows by: (increase: ↗, 

decrease: ↘). Further, one notes in these Tables that with increasing T (or with decreasing N) 

one obtains: (i) for ξn(p) ≃ 1.8138, while the numerical results of the Seebeck coefficient S 

present a same minimum  those of the figure of merit ZT show a 

same maximum  (ii) for  the numerical results of S, ZT, the Mott 

figure of merit (ZT)Mott, the first Van-Cong coefficient VC1, and the Thomson coefficient 
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Ts, present the same results , 0.715, 3.290,  and   

respectively, and finally (iii) for , (ZT)Mott = 1. It seems that these same results 

could represent a new law in the thermoelectric properties, obtained in the degenerate case. 

 

KEYWORDS: Electrical conductivity, Seebeck coefficient (S), Figure of merit (ZT), First 

Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson coefficient 

(Ts), Peltier coefficient (Pt) 

 

INTRODUCTION 

In the 𝐧+(𝐩+) − 𝐩(𝐧) 𝐗(𝐱) ≡ 𝐆𝐚𝐏𝟏−𝐱𝐀𝐬𝐱- crystalline alloy, 0 ≤ 𝑥 ≤ 1, the electrical-and-

thermoelectric laws, relations, and various coefficients, enhanced by our static 

dielectric constant law, ε(rd(a),x), rd(a) being the donor (acceptor) d(a) - radius, given in 

Equations (1a, 1b) and new electrical conductivity, in Eq. (14), and also by our accurate 

Fermi energy, EFn(Fp), given in Eq. (11), are now investigated, by basing on the same physical 

model and mathematical treatment method, as those used in our recent works (Van Cong, 

2024, 2025). It should be noted here that for x=0, these obtained numerical results may be 

reduced to those given in the n (p)-type degenerate GaP-crystal (Van Cong, and Van Cong et 

al., 1980-2023; Hyun et al. 1998; Kim et al., 2015). Then, some remarkable results could be 

noted in the following. 

 

(1). The generalized Mott criterium in the metal-insulator transition (MIT) is expressed in 

Equations (3,5,6), stating that the critical impurity density NCDn(CDp) is just the density of 

electrons (holes), localized in the exponential conduction (valence)-band tail (EBT), 

 obtained with a precision of the order of 𝟐.𝟗𝟐×𝟏𝟎−𝟕, as given in our recent 

work (Van Cong, 2024), and the effective electron (hole)-density can be defined by: 

 N being the total impurity density, as that observed 

in the compensated crystals. 

 

(2). The ratio of the inverse effective screening length ksn(sp) to Fermi wave number 

kFn(kp) at 0 K,  Rsn(sp)(N∗), defined in Eq. (7), is valid at any N∗. 

 

(3). The Fermi energy for any N and T, EFn(Fp), determined in Eq. (11) with a precision of the 

order of 2.11 × 10
−4

 (Van Cong and Debiais, 1993), and it is present in all the expressions of 

electrical-and-thermoelectric coefficients. 
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(4). our expressions for the electrical conductivity, ζ, and for the Seebeck coefficient, S, 

determined respectively in Equations (14,19) are the basic expressions, used to determine all 

the following electrical- and-thermoelectric coefficients. 

 

(5). In Tables 5n(5p) given Appendix 1, for a given impurity density N and with increasing 

temperature T, and further in Tables 6n(6p) given Appendix 1, for a given T and with 

decreasing N, the reduced Fermi- energy ξn(p) decreases, and other thermoelectric coefficients 

are in variations, as indicated by the arrows by: (increase: ↗, decrease: ↘). Furtherore, one 

notes in these Tables that with increasing T (or with decreasing N) one obtains: (i) for ξn(p) 

≃ 1.8138, while the numerical results of the Seebeck coefficient S present a same 

minimum , those of the figure of merit ZT show a same 

maximum (ZT)max. = 1, (ii) for ξn(p) = 1, the numerical results of S, ZT, the Mott figure of 

merit (ZT)Mott, the first Van-Cong coefficient VC1, and the Thomson coefficient Ts, 

present the same results:  0.715, 3.290,  

and , respectively, and finally (iii) for ξ ≃ 1.8138, (ZT)Mott = 1. It seems 

that these same results could represent a new law in the thermoelectric properties, obtained 

in the degenerate case. 

 

Our static dielectric constant law and generalized mott criterium in the metal-

insulator transition 

First of all, in the 𝐧+(𝐩+) − 𝐩(𝐧) 𝐗(𝐱)- crystalline alloy at T=0 K, we denote the donor 

(acceptor) d(a)- radius by rd(a), the corresponding intrinsic one by: rdo(ao) = rSb(Ga), the 

unperturbed relative effective electron (hole) mass in conduction (valence) bands by: 

mc(v)(x)⁄mo, the unperturbed relative static dielectric constant by: εo(x), and the intrinsic band 

gap by: Ego(x). Then, their values are reported in Table 1 in Appendix 1. Therefore, we can 

define the effective donor (acceptor)-ionization energy in absolute values as: 

,  and then, the isothermal bulk modulus, by: 

 

 
Our Static Dielectric Constant Law 

Here, the changes in all the energy-band-structure parameters, expressed in terms of the 

effective relative dielectric constant ε(rd(a), x), developed as follows. Atrd(a) = rdo(ao), the 

needed boundary conditions are found to be, for the impurity-atom volume 
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d(a) 

o 

V= , for the pressure p, po = 0, and for 

the deformation potential energy (or the strain energy) 𝛼, 𝛼o = 0. Further, the two 

important equations, used to determine the 𝛼 -variation, ∆ 𝛼 ≡ 𝛼 −𝛼o = 𝛼, are defined 

by:  giving rise to:  Then, by an integration, one gets: 

 

 

Furthermore, we also showed that, as rd(a)>rdo(ao) (rd(a)<rdo(ao)), the compression (dilatation) 

gives rise to the increase (the decrease) in the energy gap Egn(gp)(rd(a), x), and the effective 

donor (acceptor)-ionization energy Ed(a)(rd(a), x) in absolute values, obtained in the effective 

Bohr model, which is represented respectively by:  

 

Therefore, one obtains the expressions for relative dielectric constant ε (rd(a), x) and 

energy band gap Egn(gp)(rd(a) , x), as: 

 

According to the increase in both Egn(gp) (rd(a), x) and Ed(a)(rd(a), x), with increasing rd(a) 

and for a given x, and corresponding to the decrease in both Egno(gpo) (rd(a), x) and 

Ed(a)(rd(a), x), with decreasing rd(a) and for a given x. 

 

 

It should be noted that, in the following, all the electrical-and-thermoelectric properties 

strongly depend on this new 𝛆(𝐫𝐝(𝐚), 𝐱)-law. Furthermore, the effective Bohr radius 

aBn(Bp)(rd(a), x) is defined by:  (2) 
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Generalized Mott Criterium in the MIT 

Now, it is interesting to remark that the critical total donor (acceptor)-density in the 

MIT at T=0 K, NCDn(NDp)(rd(a), x), was given by the Mott’s criterium, with an empirical 

parameter, Mn(p), as:    (3) 

 

Depending thus on our new 𝛆(𝐫𝐝(𝐚), 𝐱)-law. 

This excellent one can be explained from the definition of the reduced effective Wigner-

Seitz (WS) radius rsn(sp), characteristic of interactions, by. 

           (4) 

 

being equal to, in particular, at N=NCDn(CDp)(rd(a), x): rsn(sp)(NCDn(CDp)(rd(a), x), rd(a), x)= 

2.4813963, for any (rd(a), x)-values. Then, from Eq. (4), one also has: 

    (5) 

 

Explaining thus the existence of the Mott’s criterium 

Furthermore, by using Mn(p) = 0.25, according to the empirical Heisenberg parameter 𝓗𝐧(𝐩) 

= 𝟎.𝟒𝟕𝟏𝟑𝟕, as those given in our previous work (Van Cong, 2024), we have also showed 

that NCDn(CDp) is just the density of electrons (holes) localized in the exponential 

conduction (valence)-band tail, , with a precision of the order of 𝟐.𝟗𝟐×𝟏𝟎−𝟕. It 

shoud be noted that the values of Mn(p) and ℋn(p) could be chosen so that those of 

NCDn(CDp) and  are found to be in good agreement with their experimental results. 

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can 

be defined, as that given in compensated materials: 

N∗(N, rd(a), x) ≡ N − NCDn(NDp)(rd(a), x)= N∗, for a presentation simplicity. (6) 

 

In summary, as observed in Table 4 of our previous paper (Van Cong, 2024), one remarks 

that, for a given x and an increasing rd(a), ε(rd(a), x) decreases, while Egno(gpo)(rd(a), 𝑥), 

NCDn(NDp)(rd(a), x) and  increase, affecting strongly all electrical-and-

thermoelectric properties, as those observed in following Sections. 

 

PHYSICAL MODEL 

In the n
+(p

+) − p(n) 𝐗(𝐱) - crystalline alloy, if denoting the Fermi wave number 
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by:   the reduced effective Wigner-Seitz (WS) radius , 

characteristic of interactions, being given in Eq. (4), in which N is replaced by N∗, is now 

defined by:  

 

being proportional to N∗−1/3
. Here, , means the averaged distance 

between ionized donors (acceptors), and aBn(Bp)(rd(a), 𝑥) is determined in Eq. (2). 

 

Then, the ratio of the inverse effective screening length ksn(sp) to Fermi wave number 

kFn(kp) at 0 K is defined by: 

              (7) 

 

Being valid at any 𝐍∗ 

Here, these ratios, RsnTF(spTF) and RsnWS(spWS), can be determined as follows. 

First, for N ≫ NCDn(NDp)(rd(a),x), according to the Thomas-Fermi (TF) 

approximation, the ratio RsnTF(spTF)(N∗) is reduced to 

                         (8) 

 

Being proportional to N∗−1/6
 

Secondly, for N ≪ NCDn(NDp)(rd(a)), according to the Wigner-Seitz (WS)-

approximation, the ratio RsnWS(snWS) is respectively reduced to 

                                               (9) 

 

where ECE(N∗) is the majority-carrier correlation energy (CE), being determined by: 

 

Furthermore, in the highly degenerate case, the physical conditions are found to be given by: 

             (10) 
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FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION 

Fermi Energy and generalized Einstein relation 

Here, for a presentation simplicity, we change all the sign of various parameters, given in 

the p
+
 − X(x)- crystalline alloy in order to obtain the same one, as given in the n

+
 − X(x)- 

crystalline alloy, according to the reduced Fermi energy, 

,  obtained respectively in the degenerate (non-

degenerate) case. 

 

For any (N, rd(a), x, T), the reduced Fermi energy ξn(p)(N, rd(a), x, T) or the Fermi energy 

EFn(Fp)(N, rd(a), x, T), obtained in our previous paper (Van Cong, Debiais, and Doan Khanh, 

1991- 1993), obtained with a precision of the order of 2.11 × 10
−4

, is found to be given by: 

           (11) 

 

Where u is the reduced  electron density, 

 

 

So, in the non-degenerate case (u ≪ 1), one has: EFn(Fp)(u) = kBT × G(u) ≃ kBT × Ln(u) as 

𝐮 ⟶ 𝟎, the limiting non-degenerate condition, and in the very degenerate case (u ≫ 1), 

one gets:    as 𝐮 ⟶ 

∞, the limiting degenerate condition. In other words,
 
is accurate, and it also 

verifies the correct limiting conditions. In particular, at T=0K, since u
−1

 = 0, Eq. (11) is 

reduced to:  being proportional to (N∗)
2/3

, and also equal to 0 at 

N∗ = 0, according to the MIT. In the following, it should be noted that all the electrical-and-

thermoelectric properties strongly depend on such the accurate expression of ξn(p)(N, rd(a), 

x, T). 

 

Fermi-Dirac Distribution Function (FDDF): The Fermi-Dirac distribution function 

(FDDF) is given by: f(E) ≡ (1 + e
γ)

−1
, γ ≡ (E − EFn(Fp))/(kBT). So, the average of E

p
, 

calculated using the FDDF-method, as developed in our previous work (Van Cong, 2018, 
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0 

2025) is found to be given by: 

 

Further, one notes that, at 0 K, ,   being the Dirac 

delta (δ) - function. Therefore, Gp (EFno(Fpo)) = 1.  

 

Then, at low T, by a variable change γ ≡ (E − EFn(Fp))/(kBT), one has: 

 

Where  and the integral  is given by: 

 Vanishing for old values of β. Then, for even values 

of β = 2n, with n=1, 2, one obtains:  

 

Now, using an identity , a variable change: sγ = −t, 

the Gamma function , and also the definition of the 

Riemann’s zeta function:   being the Bernoulli numbers, 

one finally gets:  So, from above Eq. of 〈Ep〉FDDF, we get in 

the degenerate case the following ratio: 

                  (12) 

Where  

 

Then, some usual results of Gp≥1(y) are given in Table 2 in Appendix 1, being needed to 

determine all the following electrical-and-thermoelectric properties. 

 

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES 

Here, if denoting, for majority electrons (holes), the electrical conductivity by ζ(N, rd(a), x, 

T) expressed in ohm
−1

 × cm
−1

, the thermal conductivity by  in  , and the 

Lorenz number L defined by: 

 

Then the well-known Wiedemann-Frank law states that the ratio, , is proportional to the 

temperature T(K), as:                                                              (13) 
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We now determine the general form of ζ in the following. 

First of all, it is expressed in terms of the kinetic energy of the electron 

(hole),  or the wave number k, as: 

 

which is thus proportional to Ek
2
. 

Then, for  we obtain:  and 

 

With  for a presentation simplicity. Therefore, one obtains 

(Van Cong, 2025): 

 

 

which can be used to define the resistivity as:  noting 

again that  This  result is an essential one in this 

paper, being used to determine other electrical-and-thermoelectric properties. 

 

In Eq. (14), one notes that at T= 0 K,  is proportional to or to 

   at N∗ = 0, at which the metal-insulator 

transition (MIT) occurs. 

 

Electrical Coefficients 

The relaxation time 𝜏 is related to ζ by (Van Cong, 2025) 

 Therefore, the mobility μ is given by: 

                                         (15) 

 

Here, at T= 0K, μ(N∗,rd(a),T) is thus proportional to (N∗)
1/3

, since ζ(N∗, rd(a), T = 0K) is 

proportional to (N∗)
4/3

. Thus, μ(N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0, at which the metal-

insulator transition (MIT) occurs. 
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Then, since η and ζ are both proportional to EFn(Fp)(N
∗, T)

2
, as given above, the Hall factor is 

defined by: ,  and therefore, 

the Hall mobility yields:                  (16) 

noting that, at T=0K, since rH(N, rd(a), x, T) = 1, one then gets: μH(N, rd(a), x, T) ≡ μ(N, 

rd(a), x, T). 

 

Finally, our generalized Einstein relation is found to be defined as: 

,               (17) 

where D(N, rd(a), x, T) is the diffusion coefficient, ξn(p)(u) is defined in Eq. (11), 

and the mobility μ(N, rd(a), x, T) is determined in Eq. (15). Then, by differentiating this 

function ξn(p)(u) with respect to u, one thus obtains  Therefore, Eq. (17) can also be 

rewritten as:    

where W
′(u) = ABu

B−1  

One remarks that: (i) as u→0, one has: W
2≃1 and u[V

′
×W−V×W

′
] ≃ 1, and 

therefore:  and (ii) as u → ∞, one has:  and 

 and therefore, in this highly degenerate case and at 

T=0K, the above generalized Einstein relation is reduced to the usual Einstein one
 

 In other words, Eq. (17) verifies the correct limiting 

conditions. 

 

Furthermore, in the present degenerate case (u ≫ 1), Eq. (17) gives: 

                                             (18) 
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where , , and  

 

In Tables 3n(3p) given in Appendix 1, for given x, N > NCDn and T(=4.2 K and 77 K), and 

from Equations (14, 15, 16, 17), the numerical results of the coefficients: ζ, μ, μH and D are 

found to be decreased with increasing rd(a), respectively. 

 

 

Thermoelectric Coefficients 

First of all, from Eq. (14), obtained for ζ(N, rd(a), x, T), the well-known Mott definition for 

the thermoelectric power or for the Seebeck coefficient, S, is found to be given by: 

 

 

Then, using Eq. (11), for the degenerate case, ξn(p) ≥ 0 , one gets, by putting 

 

 

 

According to: ,  

 

Here, one notes that: (i) as ξn(p) → +∞ or ξn(p) → +0, one has a same limiting value of S: S 

→ −0, (ii) at ,  since   one therefore gets: a minimum 

 and (iii) at ξn(p)= 1 one obtains: . 

 

Further, the figure of merit, ZT, is found to be defined by: 

                                                                  (20) 

Here, one notes that: (i)   (ii) at , since  

one gets: a  maximum (ZT)max. = 1, and (ZT) Mott = 1, and (iii) at ξn(p) = 1, one obtains: 

ZT ≃ 0.715 and . 
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Finally, the first Van-Cong coefficient, VC1, can be defined by: 

 

 

and the second Van-Cong coefficient, VC2, as:                    (22) 

 

the Thomson coefficient, Ts, by:  being equal to 

0 for                                                                                                     (23) 

and the Peltier coefficient, Pt, as: Pt(N, rd(a), x, T) ≡ T × S (V).            (24) 

 

One notes here that in next Tables 5n(p) and 6n(p) given in Appendix 1, obtained with such 

given physical conditions N(or T) for the decreasing ξn(p), since VC1(N, rd(a), x, T) and 

Ts(N, rd(a), x, T) are expressed in terms of   and  one has: [ VC1, Ts] < 0 for 

 [ VC1, Ts] = 0 for  and  stating also that 

for . 

 

(i) S, determined in Eq. (19), thus presents a same minimum  

(ii) ZT, determined in Eq. (20), therefore presents a same maximum: (ZT)max. = 1, 

since the variations of ZT are expressed in terms of [VC1, Ts] × S, S < 0. Furthermore, it 

is interesting to remark that the (VC2) - coefficient is related to our generalized 

Einstein relation (17) by: 

                                                           (25) 

 

according, in this work, with the use of our Eq. (21), to: 

 

 

Of course, our relation (25) is reduced to:  VC1 and VC2, being determined respectively 

by Equations (17, 21, 22). 

 

Now, in the degenerate n(p)-type X(x) − alloy, and for N> NCDn(CDp), and for T=3K (80K), 
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the numerical results of various thermoelectric coefficients are reported in Tables 4n(4p) in 

Appendix 1, noting that their variations with increasing rd(a) are represented by the arrows: ↗ 

(increase), and ↘ (decrease), respectively. 

 

Then, in Tables 5n(5p) given Appendix 1 for a given N and with increasing T, and in Tables 

6n(6p) given Appendix 1 for a given T and with decreasing N, the reduced Fermi-energy ξn(p) 

decreases, and various thermoelectric coefficients are in variations, as indicated by the arrows 

as: (increase: ↗, decrease: ↘). 

 

CONCLUDING REMARKS 

Here, some concluding remarks can be given as follows. 

1. In the 𝐧+(𝐩+) − 𝐩(𝐧) 𝐗(𝐱) ≡ 𝐆𝐚𝐏𝟏−𝐱𝐀𝐬𝐱 - crystalline alloy, 0 ≤ x ≤ 1 , the electrical-

and- thermoelectric laws, relations, and various coefficients are found to be enhanced by 

our static dielectric constant law, ε(rd(a), x), being decreased with increasing rd(a), as given 

in Equations (1a, 1b) and also in Table 2 of our recent work (2024), by our new electrical 

conductivity, as given in Eq. (14), and in particular by our accurate Fermi energy, EFn(Fp), 

as given in Eq. (11), which exists in all the electrical-and- thermoelectric formula. 

2. The generalized Mott criterium in the MIT is expressed in Equations (3, 5, 6), stating that 

the critical impurity density NCDn(CDp) is just the density of electrons (holes), localized in 

the exponential conduction (valence)-band tail, , obtained with a precision of 

the order of 𝟐.𝟗𝟐×𝟏𝟎−𝟕, as given in our previous work (2024), and the effective 

electron (hole)-density can be defined by:  as that 

observed in the compensated crystals. 

3. The ratio of the inverse effective screening length ksn(sp) to Fermi wave number 

kFn(kp) at 0 K, Rsn(sp)(N∗), defined in Eq. (7), is valid for any density N∗. 

4. In Tables 5n(5p) given Appendix 1, for a given impurity density N and with increasing 

temperature T, and then in Tables 6n(6p) given Appendix 1, for a given T and with 

decreasing N, the reduced Fermi-energy ξn(p) decreases, and other thermoelectric 

coefficients are in variations, as indicated by the arrows by: (increase: ↗, decrease: ↘). 

One remarks in these Tables that with increasing T (or with decreasing N) one obtains: (i) 

for ξn(p) ≃ 1.8138, while the numerical results of the Seebeck coefficient S present a 

same minimum (𝐒)  those of the figure of merit ZT 

show a same maximum (𝐙𝐓)𝐦𝐚𝐱. = 𝟏, (ii) for ξn(p) = 1, the numerical results of S, ZT, 
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the Mott figure of merit (ZT)Mott, the Van-Cong coefficient VC1, and the Thomson 

coefficient Ts, present the same results:  0.715, 3.290,  

and 𝟏.  respectively, and finally (iii) for ξ n ≃ 1.8138,  It 

seems that these same results could represent a new law given for the 

thermoelectric properties, obtained in the degenerate case. 

5. Finally, our electrical-and-thermoelectric relation is given in Eq. (25) by: 

 According, in this 

work, to:  being reduced to: 

 VC1 and VC2, determined respectively in Equations (17, 21, 22). This should be a 

new result. 
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Table 4n: In the lightly degenerate n-type X(x) − alloy, and for T=3K and 80K, the 

numerical results of various thermoelectric coefficients are reported. Further, their 

variations with increasing rd(a) are represented by the arrows: ↗ (increase), and ↘ 

(decrease). 
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Table 4p: In the lightly degenerate p-type  alloy, in which N= , and for 

T=3K and 80K, the numerical results of various thermoelectric coefficients are 

reported. Further, their variations with increasing  are represented by the arrows:  

(increase), and  (decrease). 
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Table 5n: Here, for a given  and with increasing T, the reduced Fermi-energy  

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: , decrease: ). One notes here that with increasing T: (i) for 

, while the numerical results of S present a same minimum 

, those of ZT show a same maximum , (ii) for , those 

of  S,  ZT, , VC1, and  present the same results:  , 0.715, 3.290, 

, and , respectively, and (iii) for , . 
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Table 5p: Here, for a given  and with increasing T, the reduced Fermi-energy  

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: , decrease: ). One notes here that with increasing T: (i) for 

, while the numerical results of S present a same minimum 

, those of ZT show a same maximum , (ii) for , those 

of  S,  ZT, , VC1, and  present the same results:  , 0.715, 3.290, 

, and , respectively, and (iii) for , . 
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Table 6n: Here, for a given  and with decreasing N, the reduced Fermi-energy  

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: , decrease: ). One notes here that with increasing T: (i) for 

, while the numerical results of S present a same minimum 

, those of ZT show a same maximum , (ii) for , those 

of  S,  ZT, , VC1, and  present the same results:  , 0.715, 3.290, 

, and , respectively, and (iii) for , . 
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Table 6p: Here, for a given  and with decreasing N, the reduced Fermi-energy  

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: , decrease: ). One notes here that with increasing T: (i) for 

, while the numerical results of S present a same minimum 

, those of ZT show a same maximum , (ii) for , those 

of  S,  ZT, , VC1, and  present the same results:  , 0.715, 3.290, 

, and , respectively, and (iii) for , . 
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