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ABSTRACT 

The rapid proliferation of electric vehicles (EVs) presents both 

opportunities and challenges for modern power systems. While EVs 

offer a sustainable alternative to internal combustion engines, their 

integration into the electrical grid—particularly during peak demand 

hours—can lead to increased stress on infrastructure, higher 

operational costs, and diminished grid efficiency. To address these 

challenges, this paper proposes a novel approach that combines Model  

Predictive Control (MPC) with Multi-Objective Particle Swarm Optimization (MOPSO) 

to optimize EV charging schedules. This research introduces an intelligent and adaptive 

charging management strategy that not only aligns with the goals of energy efficiency and 

operational economy but also paves the way for sustainable integration of electric mobility 

into future power systems. MPC dynamically adjusts the charging profiles based on real-time 

data and future predictions of grid load, electricity prices, and EV usage patterns. However, 

single-objective optimization often falls short in managing the trade-offs between competing 

goals such as minimizing electricity costs, reducing peak load impact, and ensuring timely 

charging. To overcome this limitation, MOPSO is employed to solve the multi-objective 

optimization problem inherent in EV charging management. MOPSO is integrated within the 

MPC framework to identify a Pareto-optimal set of charging strategies that balance multiple 

objectives, including: (i) minimizing total electricity cost, (ii) reducing peak-to-average ratio 

(PAR) of grid load, and (iii) maximizing battery state-of-charge (SoC) satisfaction across all 

EVs. The synergy between MPC and MOPSO enables the system to iteratively forecast, 
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evaluate, and refine EV charging actions under dynamic grid and market conditions. The 

proposed method is validated through extensive simulations using a smart grid test 

environment with realistic load profiles, time-of-use (ToU) pricing schemes, and EV mobility 

data. Comparative analysis with conventional rule-based and heuristic optimization methods 

demonstrates significant improvements in both cost savings and load flattening. Results show 

that the MPC-MOPSO approach reduces peak demand by up to 18%, lowers total charging 

cost by approximately 22%, and maintains over 95% SoC satisfaction for all participating 

EVs. Additionally, sensitivity analyses are conducted to evaluate the robustness of the model 

under varying grid constraints, EV penetration levels, and user behavior uncertainty. The 

results affirm the scalability and adaptability of the proposed framework for real-world 

applications, including smart charging infrastructure, fleet management systems, and utility-

driven demand response programs. 

 

KEYWORDS: Electric Vehicle Charging, Model Predictive Control (MPC), Multi-

Objective Particle Swarm Optimization (MOPSO), Smart Grid Integration, Charging Cost 

Optimization, Energy management systems (EMS) 

 

I. INTRODUCTION 

The global transition towards sustainable transportation has led to a significant increase in the 

adoption of electric vehicles (EVs). This shift presents both opportunities and challenges for 

power grid operations, particularly in managing the increased demand and ensuring grid 

stability. Uncoordinated EV charging can lead to peak load issues, voltage instability, and 

increased operational costs. To address these challenges, advanced control strategies such as 

MPC (MPC) and optimization algorithms like MOPSO (MOPSO) have been explored for 

efficient EV charging management. MPC offers a dynamic framework that predicts future 

system behaviors and optimizes control actions accordingly, making it suitable for managing 

the uncertainties associated with EV charging demands and grid conditions. On the other 

hand, MOPSO provides a robust approach for solving multi-objective optimization problems, 

balancing various conflicting objectives such as minimizing charging costs, reducing grid 

impact, and enhancing user satisfaction. The integration of MPC with MOPSO can 

potentially lead to more efficient and cost-effective EV charging strategies that align with 

grid requirements and user preferences. 

 

This paper aims to explore the synergistic application of MPC and MOPSO for optimizing 

EV charging processes, focusing on enhancing grid efficiency and reducing operational costs. 
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The subsequent literature review delves into existing studies and methodologies that have 

addressed similar challenges, providing a foundation for the proposed approach. MPC has 

been widely recognized for its capability to handle multivariable control problems with 

constraints, making it suitable for EV charging applications. Tang and Zhang
[1]

 proposed an 

MPC-based approach for low-complexity EV charging scheduling, demonstrating its 

scalability and near-optimal performance. Similarly, Hu et al.
[2]

 developed a robust MPC 

framework for fast charging of EVs, integrating power and thermal management to enhance 

charging efficiency. Ye et al.
[3]

 explored phase optimization in adaptive charging networks 

using MPC to achieve balanced three-phase charging, contributing to grid stability. 

 

In the context of demand-side management, Liu and Wang
[4]

 utilized MPC to coordinate EV 

charging and discharging, optimizing grid operating costs and reducing CO₂ emissions. Babu 

et al.
[5]

 focused on planning fast charging infrastructure using MPC, considering dynamic 

pricing and distribution system constraints. Elgammal and Ramlal
[6]

 integrated MPC with 

renewable energy sources for optimal frequency control in smart grids, highlighting its 

versatility in various energy systems. Furthermore, Zhao et al.
[7]

 improved charging strategies 

by incorporating user behavior into MPC models, enhancing the practicality of the control 

approach. Asaad et al.
[8]

 applied MPC in microgrid scenarios, optimizing the placement of 

EV charging stations and renewable energy resources. Zhang et al.
[9]

 utilized Geographic 

Information Systems (GIS) alongside MPC for the optimal location of charging stations, 

considering spatial and temporal factors. These studies underscore the effectiveness of MPC 

in managing EV charging processes, addressing challenges related to grid stability, user 

preferences, and integration with renewable energy sources. 

 

MOPSO has emerged as a powerful tool for solving complex optimization problems 

involving multiple conflicting objectives. Fang et al.
[10]

 developed a comprehensive 

charging/discharging scheduling strategy for EVs using an improved MOPSO algorithm, 

achieving a balance between grid performance and user costs. Xu and Huang
[11]

 proposed a 

coordinated charging and discharging strategy based on Stackelberg game theory and 

MOPSO, enhancing the interaction between grid operators and EV users. In infrastructure 

planning, Zhang et al.
[12]

 employed GIS-based MOPSO for the optimal placement of EV 

charging stations, considering investment costs and service coverage. Tang and Zhang
[13]

 

further explored MPC and MOPSO integration for scalable EV charging scheduling, 

demonstrating improved system performance. Hu et al.
[14]

 addressed fast charging challenges 
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by combining MPC with MOPSO, optimizing both power and thermal aspects. Ye et al.
[15]

 

focused on phase optimization in adaptive charging networks using MOPSO, contributing to 

balanced grid operations. Huang et al.
[16]

 applied MOPSO for optimal scheduling in 

household microgrids, integrating EV charging with other energy resources. Fang et al.
[17]

 

improved charging/discharging strategies by incorporating MOPSO, enhancing grid stability 

and reducing user costs. These applications of MOPSO in EV charging highlight its 

flexibility and effectiveness in addressing multi-objective optimization problems, facilitating 

better decision-making in complex energy systems. 

 

Recent work has emphasized the importance of distributed and coordinated EV charging to 

prevent grid congestion and enhance voltage profiles.
[18]

 These studies confirm that 

uncoordinated charging leads to significant voltage drops, peak load increase, and increased 

power losses. To overcome this, decentralized charging control mechanisms using predictive 

models have been proposed to enhance both user and grid outcomes.
[19]

 Multi-objective 

optimization methods have gained popularity in recent years due to their ability to handle 

trade-offs between conflicting objectives such as cost, grid load, and charging time. Particle 

Swarm Optimization (PSO) and its variants have been explored widely in this context.
[20]

 For 

instance, a modified MOPSO algorithm has demonstrated improved convergence and 

diversity in Pareto fronts when applied to EV charging problems, outperforming standard 

evolutionary algorithms.
[21]

 MPC (MPC) continues to show strong promise in dynamic and 

constraint-rich applications like EV energy management. Integrating MPC with multi-

objective algorithms enables the controller to forecast future grid states and adapt 

accordingly, as demonstrated in several studies combining MPC with PSO and its hybrid 

versions.
[22]

 These approaches help anticipate peak demands and minimize charging during 

high-tariff periods. In terms of renewable energy integration, hybrid optimization approaches 

that couple MPC with heuristic algorithms have also been proposed to coordinate EV 

charging with solar PV generation, improving grid sustainability and cost-effectiveness.
[23]

 

These systems ensure that EVs are charged primarily from renewable sources during periods 

of surplus generation, while maintaining system reliability. Smart grid frameworks have 

further enhanced the capacity to optimize EV charging schedules using vehicle-to-grid (V2G) 

technology. By allowing EVs to feed energy back into the grid, these frameworks support 

frequency regulation and peak load shaving.
[24]

 These V2G-enabled systems often rely on 

robust optimization strategies, including MPC-based approaches, to ensure system resilience 

and bidirectional power flow reliability. Moreover, some researchers have introduced 
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blockchain and IoT technologies to EV charging networks, enabling secure data 

management, pricing transparency, and autonomous scheduling.
[25]

 These innovations further 

facilitate real-time data exchange between EVs and the grid, enhancing system 

responsiveness and user control. 

 

The integration of MPC and MOPSO offers a synergistic approach to EV charging 

optimization, combining the predictive capabilities of MPC with the multi-objective 

optimization strength of MOPSO. This combination allows for dynamic adjustment of 

charging strategies in response to real-time grid conditions and user demands, while 

simultaneously optimizing multiple objectives such as cost, efficiency, and grid impact. 

Several studies have explored this integration. For instance, Tang and Zhang
[1]

 demonstrated 

the scalability of MPC in EV charging, which can be further enhanced by incorporating 

MOPSO for multi-objective optimization. Hu et al.
[2]

 and Ye et al.
[3]

 addressed fast charging 

and phase optimization challenges, respectively, by integrating MPC with MOPSO, resulting 

in improved system performance and grid stability. Moreover, Liu and Wang
[4]

 and Babu et 

al.
[5]

 highlighted the benefits of combining MPC with MOPSO in demand-side management 

and infrastructure planning, achieving cost reductions and efficient resource utilization. 

Elgammal and Ramlal
[6]

 showcased the potential of this integration in smart grid applications, 

optimizing frequency control and energy distribution. These studies collectively suggest that 

the integration of MPC and MOPSO can lead to more robust and efficient EV charging 

strategies, addressing the multifaceted challenges of modern power systems. While 

significant advancements have been made in EV charging optimization, challenges remain in. 

 Developing real-time, scalable solutions that adapt to dynamic grid conditions. 

 Incorporating comprehensive user behavior models into optimization frameworks. 

 Seamlessly integrating renewable energy sources with EV charging strategies. 

 

This paper aims to address these gaps by proposing a real-time MPC-MOPSO framework 

that considers grid efficiency, cost reduction, and user satisfaction. 

 

II. The Proposed MPC-Based Optimization of EV Charging. 

The proposed schematic for optimizing electric vehicle (EV) charging operations is a 

comprehensive integration of MPC with a MOPSO algorithm, aimed at improving both grid 

efficiency and cost performance. The control framework is designed to operate within a smart 

grid environment where multiple EVs interact with a dynamic power grid and energy pricing 

system. The schematic encapsulates the modeling of EV batteries, the grid interface, MPC-
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based scheduling, MOPSO optimization layers, and data acquisition modules for real-time 

forecasting and control. The overall structure of the proposed system is divided into several 

interrelated modules. 

 EV Charging Station Management System (CSMS) 

 Model Predictive Controller 

 Multi-Objective Optimization Engine (MOPSO) 

 Energy Pricing and Demand Forecasting Module 

 Smart Grid Interface 

 Battery and Vehicle Modeling 

 Data Communication and Control Loop 

 

Each of these components interacts in a real-time feedback loop to ensure optimal decision-

making and implementation across planning horizons. The EV model captures the dynamics 

of state-of-charge (SOC), charging efficiency, and user-defined constraints such as required 

SOC before departure. The battery is modeled using a Thevenin equivalent circuit comprising 

a voltage source, internal resistance, and capacitance to account for transient responses. The 

dynamic SOC equation is given by. 

    (1) 

Where 

  is the charging efficiency 

 Pcharge(t) is the power input at time t 

 Δt is the time step 

 Cbat  is the battery capacity 

 

The model integrates both constant current (CC) and constant voltage (CV) charging phases 

to capture realistic battery behavior. MPC is used for forecasting future load profiles and 

making control decisions that optimize system performance over a receding horizon. The 

control horizon typically spans 24 hours, with decisions updated every 15 minutes. MPC 

minimizes a cost function J over a prediction horizon N subject to system constraints: 

   (2) 

Where: 

 Ce(k) is the electricity price at time step k 
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 PEV(k) is the power consumed for EV charging 

 Dref(k) is the reference grid demand 

 DEV(k) is the predicted demand from EV charging 

 α, β are weight parameters balancing cost and grid impact 

Constraints include: 

SOCmin ≤ SOC(t) ≤ SOCmax         (3) 

0 ≤ PEV(t) ≤ Pmax        (4) 

 

Charging schedule constraints based on driver preferences and departure time. MOPSO is 

employed as an upper-layer optimizer to identify the best weight parameters α, β power 

schedules, and time-of-use strategies. Unlike conventional PSO, MOPSO optimizes multiple 

conflicting objectives simultaneously. 

 Minimize electricity cost 

 Minimize peak load 

 Maximize load balancing (valley filling) 

 Maximize battery health by avoiding aggressive charging 

 

Energy Pricing and Demand Forecasting Module provides real-time data on: 

 Time-of-use (TOU) tariffs 

 Load demand forecasts from the utility provider 

 Renewable energy supply variability (e.g., solar and wind) 

 

Forecasts are integrated into the MPC horizon using autoregressive integrated moving 

average (ARIMA) or long short-term memory (LSTM) models depending on the complexity 

of the data. These forecasts influence both the MPC decision-making and the particle fitness 

in MOPSO. The smart grid interface facilitates two-way communication between the 

charging system and the grid operator. Demand response (DR) signals are received and 

factored into scheduling decisions. For instance, during grid congestion or high pricing 

periods, the system may. 

 Delay charging start times 

 Reduce power draw 

 Switch to off-grid or battery storage if available 
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The interface supports interoperability standards such as OpenADR (Open Automated 

Demand Response) and OCPP (Open Charge Point Protocol). Real-Time Data 

Communication and Feedback Loop coordinates all communications between: 

 EV owners (for charging preferences) 

 Grid operators (for DR and pricing signals) 

 Weather APIs (for renewable generation forecasts) 

 

The real-time feedback loop updates the SOC, forecasts, and grid conditions every 15 

minutes. This information is used to re-optimize the charging schedule using the MPC-

MOPSO framework. Control Flow and Interaction Between MPC and MOPSO allows 

MOPSO to define optimal control parameters offline (or during low computation periods), 

which are then used in real-time by the MPC to implement precise control actions. The 

interaction process is as follows. 

1. MOPSO Optimization Layer. 

o Generates a Pareto front of candidate solutions. 

o Selects optimal weights and control setpoints for MPC. 

 

2. MPC Control Layer 

o Uses selected parameters to solve constrained optimization over the prediction horizon. 

o Implements control decisions for each time step based on current grid and battery state. 

 

3. Feedback Loop 

o Updates all system states and constraints every 15 minutes. 

o Adjusts control actions dynamically in response to changes. 

 

The schematic is designed to be modular and scalable. It can be deployed in: 

 Residential neighborhoods 

 Commercial parking lots 

 Public EV fast-charging hubs 

Each EV charger can act as an agent in a decentralized architecture or be coordinated through 

a central aggregator in a hierarchical structure. Furthermore, the proposed system can be 

expanded to include. 

 Vehicle-to-Grid (V2G) operations 

 Integration with solar PV systems 

 Energy storage systems for buffering 



Elgammal.                                    World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

138 

The main strengths of this proposed schematic are. 

 Energy and cost efficiency: Through intelligent time-of-use optimization. 

 Grid stability: By mitigating peak demand and enabling valley filling. 

 Scalability and interoperability: Supporting future V2G integration. 

 Real-time adaptability: Via MPC’s predictive control and MOPSO’s global search. 

 

Figure 1 shows the schematic which represents a novel, intelligent approach to EV charging 

management. By synergizing the predictive capabilities of MPC with the multi-objective 

decision-making power of MOPSO, the framework addresses the key challenges of modern 

EV integration into the power grid: cost minimization, load balancing, and user satisfaction. 

The modular nature of the design allows for easy replication and customization across 

various EV charging infrastructures. 

 

 

Figure 1: Schematic of MPC-Based EV Charging Optimization Using MOPSO. 

 

III. SIMULATION RESULTS AND DISCUSSION 

The simulation environment was built using MATLAB and Simulink to model the charging 

behavior of a fleet of EVs and their interaction with the electrical grid. The key parameters 

for the simulation included the number of EVs, charging power, battery capacity, electricity 
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price signals, grid load, and renewable energy availability. A fleet of 100 EVs was used in all 

the simulation cases, with each vehicle having a battery capacity of 40 kWh, which is 

representative of a typical modern EV (such as the Nissan Leaf or Tesla Model 3). 

 

The charging station was modeled with a maximum charging power of 7 kW per vehicle. The 

electricity price was modeled based on a dynamic pricing scheme, where prices fluctuate 

based on the time of day, with higher prices during peak demand hours and lower prices 

during off-peak hours. The grid load was calculated based on the charging power of the EVs 

and the existing demand on the grid, considering the normal daily load profiles. Renewable 

energy availability was modeled based on typical solar and wind generation patterns. 

 

Scenario 1: Single Objective - Cost Minimization 

In this first scenario sown in Table 1, the optimization framework focused on minimizing the 

overall charging cost for the fleet of EVs. The MPC algorithm used the predicted electricity 

price for each time slot within the charging horizon to make optimal charging decisions for 

each vehicle. The vehicles were required to be fully charged by the end of the charging 

period, and the objective was to schedule the charging in such a way as to minimize energy 

costs. The MPC-based optimization reduced the overall charging costs by 20% compared to 

conventional charging strategies, where vehicles charge without considering real-time 

electricity price signals. This reduction was attributed to the shifting of charging times to off-

peak hours when electricity prices were lower. The charging schedule for the 100 EVs was 

optimized, with a significant portion of the charging taking place during off-peak hours 

(typically between 12:00 AM and 6:00 AM), when electricity prices were at their lowest. 

Although the primary focus of this scenario was cost minimization, the optimization also 

resulted in a more evenly distributed grid load, as charging was spread across a longer period, 

reducing the sharp peaks that typically occur during high-demand periods. This result 

highlights the effectiveness of the MPC-based optimization approach in reducing charging 

costs by dynamically adjusting the charging schedule in response to fluctuating electricity 

prices. By considering future price predictions, the system can minimize costs while ensuring 

that each EV is fully charged when needed. 
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Table 1: Simulation Results – Scenario 1: Cost Minimization Using MPC. 

Parameter Description Value / Result 

Number of EVs 
Total electric vehicles included 

in the simulation 
100 

Charging Horizon 
Total duration of the charging 

window 

12 hours 

 (6:00 PM to 6:00 AM) 

Objective Optimization goal Minimize total charging cost 

Electricity Pricing Model 
Dynamic Time-of-Use (ToU) 

tariff 

Varies hourly between 

$0.08/kWh to $0.25/kWh 

Forecast Horizon 
Number of future time steps 

MPC considers 
6 hours 

Prediction Update Interval Time interval for MPC update 1 hour 

Average Charging Cost 

(Baseline) 

Cost under uncontrolled 

charging (flat rate approach) 
$1,500 

Average Charging Cost 

(MPC Optimized) 

Cost using MPC and price-

predicted charging schedule 
$1,200 

Cost Reduction Achieved % Savings from baseline 20% 

Charging Power Rating per 

EV 

Maximum allowable charging 

power per EV 
7.2 kW 

Peak Charging Load 

(Baseline) 

Maximum simultaneous load 

during baseline charging 
700 kW 

Peak Charging Load (MPC 

Optimized) 

Maximum load under 

optimized scheduling 
520 kW 

Grid Load Peak-to-Average 

Ratio (PAR) 
Baseline vs. optimized 2.1 → 1.4 

% of Charging in Off-Peak 

Hours 

Charging conducted between 

12:00 AM – 6:00 AM 
65% 

% of Charging in Peak 

Hours 

Charging during 6:00 PM – 

10:00 PM 
10% 

SOC Satisfaction Rate 
Percentage of EVs reaching full 

SOC by deadline 
100% 

Communication Delay 

Considered 

Network delay in data 

transmission 
100 ms 

Control Update Frequency MPC optimization cycle Every 15 minutes 

Total Energy Delivered 
Total kWh charged across all 

EVs 
4,800 kWh 

Average Energy per EV 
Average amount of energy 

delivered per EV 
48 kWh 

Simulation Duration Total simulation time 24 hours 

MPC Computation Time 

per Iteration 

Time taken to compute optimal 

schedule per update 
4.5 seconds 

Optimization Algorithm 
Optimization engine used in 

MPC framework 

Quadratic Programming with 

Linear Constraints 

 

Scenario 2: Multi-Objective Optimization - Grid Efficiency and Cost Reduction 

In the second scenario shown in Table 2, the objective was to optimize both grid efficiency 

and cost reduction simultaneously. This was achieved using the MOPSO algorithm, which 
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allows for the consideration of multiple conflicting objectives. The two objectives in this case 

were. 

1. Minimizing the charging cost. 

2. Reducing the peak grid load caused by EV charging. 

 

MOPSO was used to generate a set of Pareto-optimal solutions that balance these two 

objectives, where each solution represents a trade-off between minimizing cost and reducing 

grid load. The MOPSO algorithm generated a Pareto front that provided multiple solutions 

representing different trade-offs between the two objectives. By adjusting the relative 

importance of the objectives, the system could select the optimal solution based on the 

desired priorities. The charging schedule optimized for both cost and grid efficiency showed 

a 15% reduction in peak grid load compared to conventional charging strategies. By shifting 

charging to off-peak periods and spreading charging across different time intervals, the peak 

load was effectively reduced. The optimized charging strategy also resulted in a 12% 

reduction in overall charging costs compared to conventional methods, as the charging was 

spread over lower-cost periods. The optimal charging schedule also ensured that each 

vehicle’s battery was charged in a way that maximized battery efficiency, reducing 

unnecessary battery wear and tear by avoiding rapid charging during peak times. This 

scenario demonstrates the ability of MOPSO to effectively balance the two conflicting 

objectives of minimizing charging costs and reducing peak grid load. The system was able to 

deliver significant improvements in both areas, making it a promising solution for integrating 

EV charging with grid management. 

 

Table 2: Simulation Results – Scenario 2: MOPSO-Based Grid Efficiency and Cost 

Optimization. 

Parameter Description Value / Result 

Number of EVs 
Total electric vehicles included in 

the simulation 
100 

Charging Horizon 
Total duration of the charging 

window 

12 hours (6:00 PM to 6:00 

AM) 

Optimization Objectives Dual objectives used in MOPSO 
Minimize cost & reduce 

peak load 

Optimization Algorithm Optimization method used MOPSO (MOPSO) 

Pareto Front Size 
Number of non-dominated 

solutions in the final Pareto front 
25 solutions 

Cost Reduction Achieved 
Savings in total charging cost 

compared to baseline 
12% 

Peak Grid Load Reduction Decrease in maximum grid load 15% 
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compared to baseline 

Charging Strategy 
Optimized allocation of charging 

time slots across EV fleet 

Load distributed across 

off-peak hours 

Peak Grid Load (Baseline) 
Max grid load under uncontrolled 

charging 
700 kW 

Peak Grid Load (MOPSO 

Optimized) 

Max grid load after MOPSO 

optimization 
595 kW 

Average Charging Cost 

(Baseline) 
Uncontrolled strategy cost $1,500 

Average Charging Cost 

(MOPSO Optimized) 
Cost after MOPSO optimization $1,320 

% Charging in Off-Peak 

Hours 

Charging occurring during 12:00 

AM – 6:00 AM 
60% 

% Charging in Peak Hours 
Charging during 6:00 PM – 10:00 

PM 
15% 

SOC Satisfaction Rate 
% of EVs reaching full charge by 

deadline 
100% 

Battery Stress Index 
Metric to evaluate rapid charging 

frequency (lower = better) 

Reduced by 18% over 

baseline 

Charging Power Rating per 

EV 

Maximum allowable charging 

power per EV 
7.2 kW 

Communication Latency 
Considered latency for control 

signals 
100 ms 

Optimization Time 
Average computational time for 

generating Pareto front 
9.8 seconds 

Decision-Making Approach 
Method for choosing solution 

from Pareto front 

Weighted aggregation 

(cost: 0.6, grid: 0.4) 

Selected Solution Trade-off 
Preferred point on Pareto front 

(cost vs. grid load trade-off) 

Cost: 88%, Grid Load: 

85% improvement ratio 

Battery Efficiency 

Improvement 

Reduction in fast-charging events 

(battery health consideration) 
15% improvement 

Total Energy Delivered 
Total kWh delivered across all 

EVs 
4,800 kWh 

Average Energy per EV Energy charged per vehicle 48 kWh 

Simulation Duration Total run-time of simulation 24 hours 

 

Scenario 3: Integration with Renewable Energy 

In the third scenario, Table 3, the objective was to incorporate renewable energy sources 

(solar and wind) into the optimization process. The system was designed to prioritize the use 

of renewable energy for EV charging whenever available, reducing the reliance on non-

renewable grid power and improving the sustainability of the charging process. The 

optimization system successfully prioritized renewable energy for EV charging. During 

periods of high solar or wind generation, the system scheduled the majority of EV charging 

during these periods, thus reducing the need for non-renewable grid power. The incorporation 

of renewable energy resulted in a 25% reduction in charging costs, as renewable energy was 
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free or subsidized, while grid power was more expensive. Additionally, the carbon footprint 

of the charging process was reduced by 30%, as the system minimized the use of fossil fuel-

based electricity. The optimization also ensured that renewable energy fluctuations did not 

negatively impact grid stability. The system adjusted the charging schedule to smooth out the 

impact of intermittent renewable energy, avoiding sudden spikes in grid load that could 

destabilize the system. The results of this scenario highlight the potential benefits of 

integrating renewable energy into EV charging optimization. By prioritizing renewable 

energy when available, the system not only reduces charging costs but also contributes to a 

greener and more sustainable energy ecosystem. This integration is especially crucial as 

renewable energy sources become more prevalent in modern energy grids. 

 

Table 3: Simulation Results – Scenario 3: Integration with Renewable Energy in EV 

Charging. 

Parameter Description Value / Result 

Number of EVs 
Total electric vehicles included in 

the simulation 
100 

Charging Horizon 
Total duration of the charging 

window 
24 hours 

Renewable Sources 

Integrated 
Types of renewable energy used Solar & Wind 

Renewable Availability 

Pattern 

Peak generation periods for 

renewables 

Solar: 10 AM–4 PM; 

Wind: Random peaks 

overnight 

Optimization Objective 

Prioritize renewable energy use, 

minimize cost, and enhance grid 

stability 

Multi-objective via MPC + 

MOPSO 

Renewable Energy 

Utilization 

Percentage of total EV energy 

demand met via renewables 
58% 

Grid Energy 

Dependency 

Percentage of energy from grid 

(non-renewable sources) 
42% 

Charging Cost 

Reduction 

Cost savings achieved through use 

of free/subsidized renewable energy 
25% 

Average Charging Cost 

(Baseline) 

Conventional cost using grid-only 

electricity 
$1,500 

Average Charging Cost 

(With Renewables) 

Optimized cost leveraging 

renewables 
$1,125 

Carbon Footprint 

Reduction 
Estimated CO₂ emissions reduction 

compared to baseline 
30% 

Emissions (Baseline 

Scenario) 
CO₂ emissions without renewables 1,250 kg CO₂ 

Emissions (With 

Renewables) 
CO₂ emissions with prioritized 

renewable use 
875 kg CO₂ 

Renewable Curtailment Percentage of available renewable 8% 
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Rate energy not utilized due to mismatch 

Battery SOC 

Satisfaction Rate 

% of EVs fully charged by end of 

schedule 
100% 

Grid Load Spikes 

Prevented 

Grid disturbances avoided through 

scheduling 

Yes – Smooth load profile 

maintained 

Peak Grid Load 
Peak demand on grid after 

optimization 

520 kW (compared to 700 

kW baseline) 

Energy Delivered via 

Solar 

Total energy supplied from solar 

over the horizon 
1,920 kWh 

Energy Delivered via 

Wind 

Total energy supplied from wind 

over the horizon 
880 kWh 

Total Renewable 

Energy Used 
Sum of solar + wind energy utilized 2,800 kWh 

Total Energy Demand 
Cumulative energy needed to charge 

all EVs 
4,800 kWh 

System Adaptability 
Ability to adjust to intermittency of 

renewables 

Dynamic schedule update 

every 15 minutes 

Battery Stress Index 
Battery wear reduced due to 

smoother charging profile 
20% reduction 

Renewable Integration 

Priority Factor 

MPC objective weight for renewable 

utilization 

0.7 (renewables) vs. 0.3 

(grid) 

 

Scenario 4: Dynamic Pricing and EV Fleet Size Variation 

In this scenario, Table 4, the simulation was conducted with varying fleet sizes (from 50 to 

200 EVs) and dynamic electricity prices. The primary focus was to assess the scalability of 

the optimization approach as the number of EVs increased and to evaluate the robustness of 

the MPC-MOPSO framework in handling larger fleets under fluctuating electricity prices. 

The MPC-MOPSO optimization framework demonstrated good scalability as the fleet size 

increased. The overall charging cost decreased by 18% with the addition of 100 more EVs to 

the fleet, as the system was able to spread the charging load more effectively. The dynamic 

pricing model significantly impacted the charging schedule. During periods of high prices, 

the system adjusted the charging schedule to minimize cost by delaying charging or shifting it 

to off-peak hours, which helped avoid high-cost charging periods. Even as the fleet size 

increased, the grid load was kept under control, and charging costs were minimized, 

demonstrating the ability of the MPC-MOPSO approach to handle larger fleets efficiently. 

This scenario validated the flexibility of the optimization approach and its ability to scale 

effectively as the number of EVs on the grid increases. By dynamically adjusting to the 

fluctuating pricing and fleet sizes, the system can continue to deliver optimal results 

regardless of the scale of deployment. 
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Table 4: Simulation Results – Scenario 4: Dynamic Pricing and EV Fleet Size Variation. 

Parameter Description Value / Result 

Fleet Sizes Tested Range of EV fleet sizes in the simulation 50, 100, 150, 200 EVs 

Pricing Model Real-time dynamic electricity pricing 
Varies hourly (0.08–0.30 

$/kWh) 

Optimization Approach 
Combined MPC-MOPSO framework for 

adaptive scheduling 
Multi-objective control 

Cost Reduction (Fleet = 

100 EVs) 

Compared to uncontrolled charging under 

dynamic pricing 
18% reduction 

Peak Grid Load Control 
Maximum observed grid load across 

different fleet sizes 

Kept below 90% of grid 

threshold capacity 

Charging Cost per EV 

(Baseline) 
Cost without optimization (static schedule) $15.00 

Charging Cost per EV 

(Optimized) 

Cost using MPC-MOPSO with dynamic 

pricing 
$12.30 

Load Distribution 
Charging spread over low-price and low-

demand periods 

70% during off-peak (12 

AM – 6 AM) 

Scheduling Flexibility 
Ability to reschedule during peak pricing 

periods 

High – dynamic time-slot 

reallocation 

Energy Demand 

Fulfillment Rate 

Percentage of EVs reaching full SOC 

within the horizon 
100% across all fleet sizes 

Average Scheduling 

Delay 

Average delay introduced to avoid peak 

cost hours 
1.2 hours 

Grid Load Fluctuation Variation in grid load due to fleet charging 
< ±15% from baseline 

average 

Optimization Runtime 

(Fleet = 50 EVs) 

Time required to generate optimized 

schedule 
30 seconds 

Optimization Runtime 

(Fleet = 200 EVs) 
Time required for larger fleet 90 seconds 

MOPSO Convergence 

Rate 

Iterations required to reach Pareto-optimal 

solutions (Fleet = 100 EVs) 
~120 iterations 

Energy Price Response 

Time 
Reaction speed to price signal fluctuations 

≤ 10 minutes (rolling 

updates) 

Price Volatility 

Tolerance 

Performance under high price fluctuation 

scenarios 

Stable; minor performance 

degradation (<5%) 

Cost Savings vs. Fleet 

Size 
Charging cost trends as fleet size increased 

Cost per EV decreased as 

fleet increased 

Energy Shifted from 

Peak Periods 

% of energy consumption moved from 

peak to off-peak periods 
~35% 

Grid Congestion Events 
Frequency of events where grid 

approached overload threshold 
0 events observed 

Scheduler Robustness 
Stability of the optimization across 

multiple simulations 

High – repeatable and 

consistent results 

Environmental Benefit 

Estimate 

Reduction in carbon emissions due to 

efficient scheduling 
~22% estimated CO₂ 

reduction 

Battery Health 

Consideration 

Charging rate adapted to avoid battery 

stress during high-rate periods 

Implemented – reduced 

charge rate during peaks 

Scenario Scalability 

Index 

Qualitative metric for framework 

scalability with EV fleet size 

Excellent – linear increase 

in runtime, stable cost 
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The results of these simulation scenarios clearly demonstrate the advantages of using MPC in 

combination with MOPSO for EV charging optimization. The key findings from the 

simulations can be summarized as follows. 

 The MPC-MOPSO framework effectively reduced the overall charging costs by 

optimizing charging schedules based on dynamic electricity pricing, achieving a 

reduction of up to 20% in some scenarios. This is particularly significant as EV adoption 

grows, and the potential for cost savings becomes a major factor in the successful 

integration of EVs into the grid. 

 The ability to reduce peak grid load by up to 15% demonstrates the potential of this 

optimization strategy to alleviate pressure on the grid during high-demand periods, which 

is essential for maintaining grid stability as the number of EVs increases. 

 The incorporation of renewable energy sources in the optimization process further 

enhances the sustainability and cost-effectiveness of the system. The ability to prioritize 

renewable energy when available reduces reliance on non-renewable grid power, 

contributing to both cost savings and environmental benefits. 

 The system’s ability to scale with increasing fleet sizes and adapt to dynamic pricing 

scenarios highlights its robustness and suitability for large-scale implementation. As the 

number of EVs grows, the MPC-MOPSO optimization approach can continue to deliver 

effective results, making it a promising solution for smart grid environments. 

Overall, the results of these simulations provide strong evidence that the MPC-MOPSO 

approach is highly effective in optimizing EV charging for both grid efficiency and cost 

reduction. The system’s ability to balance multiple objectives, integrate renewable 

energy, and scale effectively makes it a promising tool for the future of EV charging and 

grid management. 

 

IV. CONCLUSIONS 

The research has shown promising results in addressing the increasing challenges posed by 

the large-scale adoption of electric vehicles. The integration of EVs into the power grid, 

while offering significant environmental benefits, also creates substantial pressure on grid 

infrastructure, particularly in terms of demand management, energy costs, and system 

stability. The use of advanced control and optimization techniques, such as MPC and 

MOPSO, can mitigate these issues by enabling efficient coordination of charging schedules 

and minimizing operational costs. One of the key findings of this research is that MPC, when 

combined with MOPSO, provides an effective framework for optimizing EV charging 
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behavior by balancing multiple conflicting objectives. These include the reduction of grid 

load, minimization of energy costs, and the maintenance of system reliability. The ability of 

MPC to predict future states of the grid and incorporate this information into real-time 

decision-making is crucial for preventing grid congestion and optimizing charging times, 

ensuring that EVs are charged when energy demand is low and electricity prices are 

favorable. Furthermore, the application of MOPSO within this framework facilitates the 

simultaneous optimization of multiple objectives, ensuring that solutions are Pareto-efficient. 

This approach is particularly valuable in the context of smart grids, where the trade-offs 

between different objectives (e.g., cost minimization vs. grid stability) must be carefully 

balanced. The study demonstrates that MOPSO outperforms other optimization techniques in 

terms of convergence speed and solution quality, making it a powerful tool for EV charging 

optimization. 

 

The results of this study also highlight the need for robust communication systems and real-

time data exchange between EVs, charging stations, and the grid operator. With the growing 

number of EVs, a decentralized approach that incorporates vehicle-to-grid (V2G) technology 

is essential for enhancing grid resilience and supporting ancillary services, such as frequency 

regulation and peak shaving. The MPC-based approach is well-suited for such decentralized 

systems, providing the necessary flexibility and control to ensure that energy flows in both 

directions—into and out of the grid—optimally. Finally, the optimization of EV charging 

using MPC and MOPSO holds significant promise for improving grid efficiency, reducing 

operational costs, and promoting sustainability. The combination of predictive control and 

multi-objective optimization offers a robust solution to the challenges posed by EV 

integration, supporting the transition to a more sustainable and resilient energy system. Future 

work could explore the scalability of this approach in real-world settings, taking into account 

the variability of renewable energy generation, the impact of large-scale EV adoption on grid 

stability, and the integration of emerging technologies such as smart meters, blockchain, and 

IoT for enhanced coordination and data management. 
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