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ABSTRACT

In the n*(p*)— GaAs(1l—x) Te(x)[Sb(x),P(x)] — crystalline

alloys, @ = x = 1, x being the concentration, the optical coefficients,
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e(rara).X), Tare DeiNg the donor (acceptor) d(a)-radius, given in
Equations (la, 1b), (ii) our accurate Fermi energy at T=0K,
Eentrp) (Erno(Fpo)) » determined in Eq. (11) and accurate with a
precision of the order of 2.11 x 107*F affecting all the expressions of

optical, electrical, and thermoelectric coefficients, are now

investigated, by basing on our physical model, and Fermi-Dirac

distribution function, as those given in our recent works.[' % In the

following, for given physical conditions, all the optical coefficients are expressed as functions
of the effective photon energy : E* = E— E_pyzp1), E and Egq(zp1y, being the photon
energy and the optical band gap. Then, some important remarks can be repoted as follows.
From our essential optical conductivity model, ,(E*), determined in Eq. (18), all the optical,
electrical, thermoelectric coefficients are determined, as those given in Equations (19a-19d,

20a-20d). In particular, from the optical phenomenon and electro-optical phenomenon (OP -
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[E-OP])-transition, obtained for E = E_p3zp13+Egncrpy, and given in Eq. (15), one observes
that the optical conductivity o, has a same form with that of the electrical conductivity, ogr,
as those given in Eq. (20a), suggesting thus many important concluding remarks on all the
optical, electrical, thermoelectric coefficients at such the (OP and E-OP)-transition, as those

given in Equations (20a, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p™) — GaAs(1 — x) Te(x)[Sb(x),P(x)] —crystalline alloys, 0 < x =1, x being
the concentration, the optical coefficients, the electrical-and-thermoelectric laws, the
relations, and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(ry..%), rar.) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the

order of 2.11x 107* [9], affecting all the expressions of optical, electrical, and

thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!+2

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaAs-crystal.**®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpy,¢cpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).

N&batcop). being obtained with a precision of the order of 2.92 x 1077, as given in our

recent works. 3 Therefore, the effective electron (hole)-density can be defined as:
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N*=N —Ngpepp) 2 N —NEE T cpg, N being the total impurity density, as that observed

in the compensated crystals.

(2) The ratio of the inverse effective screening length k_,.,,, to Fermi wave number kg,
at 0 K, R,y (N7), defined in Eq. (7), is valid at any N*.
(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £, = Nﬂ“ﬁ—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgriqry present a same minimum [SET[Dﬂ)mm(k —1.563 x 10“‘%),
those of the figure of merit ZTgropy Show a same maximum (ZTgrigr) max. = 1, (i) for
€atpy = 1, the numerical results of Sgrpgry, ZTgriory, the Mott figure of merit ZTeroraon
the first Van-Cong coefficient VC1grory, and the Thomson coefficient Tsgpqr;, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105x 1072, and 1.657 X 107*>,

=z
[T

respectively, and finally (iii) for €., = N ry > 1.8138, ZTergrmon = L aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

3L .
= [Z= according,
‘\q T

85gT[0T] s Deromy(Nora (e xT) (E) kg
i)

kg _
—= X VC2 NrgxT)=— r a
. ET[OT] (N,rar0.%,T) Bnip) peromy(NramxT) VK a

in this work, to:

__ DeroT) (Nrgra =T

= X2 X
BET[OT] \MNrdl 2.%T)

ZTET[DT'Muttx[l_ ETE:T[DT'Mntt] (V] being

VEZET[DT] [Nrrdl:a:l!x’ T) = [1+ ZTET[DTMQ':JL

D 1 . . . .
reduced to: ﬁ:ﬂ”—:- , VClgror and VC2gpor, determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N,rg¢,.x T], all the numerical results of [o5(E), x5 (E), €55 (E), and
ocy (E)], given in the OP, and those of [cz(E), ¥z(E), £,z (E), and o (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for oo (N, r4¢.,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the
n*(p*) — GaAs(1 — x) Te(x)[Sb(x),P(x)] — crystalline alloys at any temperature

T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n* (p¥) — GaAs(1 — x) Te(x)[Sh(x), P(x)] —crystalline alloys, at T=0 K
[1, 2, 3], we denote : the donor (acceptor) d(a)-radius by ry.;, the corresponding intrinsic
ONES DY: Tygran) =Tee(ce) AN Taoran) =Tsicsi, espectively, the effective averaged numbers of
equivalent conduction (valence)-bands by: g_.., , the unperturbed reduced effective electron

(hole) mass in conduction (valence) bands by m, ., (x)/m,, m, being the free electron mass,

m (3 Xmy, (%)

the relative carrier mass by: m, (x) = — v
|:"-. rl,

< m,.y (%), for given x , the unperturbed

relative static dielectric constant by: £,(x), and the intrinsic band gap by: E_, (x), as those

given in the Following Table 1.

Table 1: In the GadAs(1 — x) Te(x)[Sb(x), P(x)] —crystalline alloys, the different values

of energy-band-structure parameters, for a given x, are given in the following.[***

In the GaAs,_,Te,-crystalline alloy, in which ry,(a0) =rasiea) =0.118 (0.126) nm and
8o (¥) = 1 X x4+ 1x(1 —x) = 1, we have [1, 3]: m,(x)/m, = 0209 (0.4) X x + 0.066 (0.291) X (1 —x),
£,(X) =123 Xx+ 1313 X (1 —x),E_,(x) = 1.796 X x + 1.52 X (1 —x).

In the GaAs,_ Sb_-crystalline alloy, in Which rgy.s)=Tascs=0.118 (0.126) nm, we have["°]:
1xx+1x(1—x) =1, we have ™ % m g, (x)/m, = 0.047 (0.3) X x + 0.066 (0.291) X (1),

£,(x) = 15.69 Xx+ 13.13 X (1 —x), E,, (x) = 0.81 X x + 1.52 X (1 — %),

In the GaAs, P, -crystalline alloy, in Which rag¢a0)=ras(ca)=0.118 (0.126) nm, we have! .
1xx+1x(1-x)=1, we have!® % m,(x)/m, =013 (0.5) x x +0.066 (0.291) X (1 —x) ,

£,(x) =111 Xx+ 1313 X (1 —x),E_,(x) = 1.796 X x + 1.52 X (1 — x).

Here, the effective carrier mass my,(x) is equal to m,,, (x). Therefore, we can define the

clv)

effective donor (acceptor)-ionization energy in absolute values as:
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13600 =[my P (2} frmg ]
[25 (]°

Egqf “‘|'X:'
Beotee) 8= {00

Edorae) (%) = meV , and then, the isothermal bulk modulus, by

Our Static Dielectric Constant Law [m:‘],:p} (%) = m, (x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(r 44, %), developed as follows.

Atrgey = ragrae) the needed boundary conditions are found to be, for the impurity-atom

volume V= (4m/3) % [rd,ﬂj) Vio(ao) = (41/3) X [rdﬂ,ac_}) for the pressure p, p, =0,
and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two

important equations, used to determine the @ -variation, A & = & —a, = @, are defined by :

:—:,——— and p——d— , giving rise to : ( )- —. Then, by an integration, one gets:
[ﬂa(rd':ﬂ}’xj]nfp} = H'ﬂ':":ﬂ':':' (Kj x (V_ UdD':EI.D:' ) X In
3 3
Fd(a) _ Tdia)
Vo Bl:l"l) EdD'ED} [:X:] X [{rdn[anj) 1i| X 1n(fdmjanj) = 0.

Furthermore, we also showed that, as Taiay > Tdorae) (Tdaia) = Tdo(as)), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap E_,, ., [rd,:ﬂj,x), and
the effective donor (acceptor)-ionization energy E, [rd,:a},x} in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [&cx[rd,:ﬂ},x]] )

_ _ 20\’
Egno(gpn} (rd(a}’x:] - Egn:\ (X:] - Ed(a} [:rd(a}’xj - Edu(ao} [X:] - Edn:l:an:} [}{:] X |ﬁ — ) -

2lrgy aj:'

1] =+ [&rx(rd,:ﬂj,x]]

n{p)

for rdl a) — rdnl aoh and for rdl a) = rdc\l ao)

-

g lx) \°
Egnu:n:gpu:-} [:rd(a}!x] - Egu:u [X] = Ed(a} [rd(a]“'x] - Ed-:n:au:} [:X:] = Edn(au:u} [:X:'] X |ﬁ — ) -

Elrgy aj:'

1] = — [ﬁﬂf(rdia}’xj]nip}

Therefore, one obtains the expressions for relative dielectric constant £(rg;.),%) and energy

band gap E.;, (g (Tace)x), as
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(i)-for raca) = Tgpras), SINCE £(Trgre), %)= — <g,(x), being a new

£(rga).x)-law,

.3
Egno(epo) (Tae)X) — Ego (%) = Eata)(Fata) %) — Edotan) () = Eao(ae) (x) X [[ﬂ) - 1] X

Tdo(ao)

rare 42
In (fd:T?:j) =0, (13_)

according to the increase in both E_, .y (racs.x) and Egrg(raca,x), with increasing rye,

and for a given x, and

202

(ii)-for I'd,:a}ﬂ Pdofao) since E[:rd(a}’xj = = ED[}{], with a

BORS ‘ Tdgmy 4F
(;ﬂ} -1 xln(;&}
Fdorao) Tdoreo)

-
R

Fdr 3 Fdr 3 .
condition, given by: |( =221} —1| xIn{—2E-) < 1, being a new &(ry.,,x)-law,
(a)

T'doreo) T'do(ao)

.3
Egno(epo) (Tae)X) — Ego (%) = Eaca) (ate) %) — Edotas) () = ~Eaotac) (%) X [(ﬁj -

Tdogao)
Tdia)y 3
1:| X ln(fdmjm:lj) = ﬂ! (1b)
corresponding to the decrease in both E_,,, (0 (race.x) and Eacay (Tacay,x), with decreasing

ra(e and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new €(rg.,, x)-law.

Furthermore, the effective Bohr radius ag,gp) (rara).%) is defined by:

e(rg gy ) xh* 2(rg g x)

- = 0.53 X 107% cm X

my p) (x)xmg =g

EIBI:II:BP} (rd,:a},x] = m;ll.p\l(x}- (2)

Generalized Mott Criterium in the MIT [m;,:p} (%) = mg, (x)]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepninop) (Taga %), was given by the Mott’s criterium, with an empirical parameter,

[1,2,3].

M as

n(ph
1y —
NCDnI:CDp}(rdI:a}’xj 13X EIBnI:Bp} [:rdl:a}’x:] = Mnl:p}’ Mﬂ':[:':' - 025’ (3)

depending thus on our new &(ry:4.%)-law.
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This excellent one can be explained from the definition of the reduced effective Wigner-Seitz
(WS) radius r, .0y, in the Mott’s criterium, being characteristic of interactions, by:

3

1/3
B 1
Ten(ep).M [N’ rd(ﬂ]"x) = (:m:w) X

=1.1723 X 10% X G]H X

My () () rmg

(4

EBn::Bpj':rd::aij:' E':'-"d:ja:ux:'
being equal to, in particular, at N= Neonrenp) (Taray - %)
T en(ep) vt (Nepaenp) (Facay¥)s Taay, %)= 24813963, for any (rac.).x)-values. Then, from Eq.

(4), one also has :

1y 3 : 1
NCDI!'.II:CD[J:I (rlﬂl:ﬂ.:l’x:] 13X EIBI:I':B[J:' [rd':ﬂj’x) = (;)5 X 74813963 = ﬂ25 = (wsjll'ﬂ:' = Mll':l!:" (5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M = 0.25, according to the empirical Heisenberg parameter

alp)

H oy = 0.47137, as those given in our previous work!®], we have also showed that

n(p)

Nepnicop) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band  tail . Nepaicpp) » With a precision of the order of

2.92 X 1077 ,respectively B

It shoud be noted that the values of M, and #,,, could be chosen so that those of

N cpaepp) aNd NE5 T cpyy are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:
N*(N,rgs,%) =N — Nep, onpp) (Farap¥)= N7, for a presentation simplicity. (6)

In summary, as observed in our previous paper®, for a given x and an increasing Tdia)s

E(rdl:gjrxj decreasesy Whlle EE[]DI:EFID:I (rd|:a_:|!x)1 NCDE‘.I':ND[J:' (rd':ﬂj’x] and NEI?E':CDP} (rd':a:i"xj

increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the n™ (p*) — GaAs(1 — x) Te(x)[Sb(x),P(x)] —crystalline alloys, the reduced effective

Wigner-Seitz (WS) radius r characteristic of interactions, being given in Eq. (4), in

sni=p}

which N is replaced by N*, is now defined by:
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Lot 3Bt 1/3 1 i
W N*) = Fo(Fp) <1 ) ) = ( E‘.‘:-.)
¥ X Tan(op) (N) @En(Ep) '+ Tenlep) [:N,rd,\a},x) 4mN” X 23Bn(Bp (Tdiepx) being

Iet N s . .
i ) is the Fermi wave,

proportional to N*"Y3. Here, ¥ = (4/97)%, kg, (p,)(N°) = (

Eciw)

.1, being the effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k., .., to Fermi wave number
Kenikp IS defined by:

kenism) I'{E‘_I'F ] - .
«y — snlsp) _ “FnlFp) _ r 5
Rsn(sp} (N j = ko T kL - Rsm-‘-’sfspﬁ.-‘-’s} + [RsnTF':spTF} - Rsm-‘.’S':spﬁ.-‘.?S}]e snlapl < 1, (7)
Fn(Fp) snlap)

being valid at any N*.

Here, these ratios, R ,rr(=pre) @14 Ropwsiepws), Can be determined as follows.
First, for N> Neppowpp)(Taca»®) ,  according to the Thomas-Fermi (TF)-

approximation, the ratio R, pzprey (N) is reduced to

k kpn [4yr

— TF(spTF) Fn(Fp) 50 (81

B_ o (N*) = =2 = — = | « 1 (8)
TF TF -1

=nTF(=pTF) kpnEp KenTRspTFy N 7 '

being proportional to N*~*/%

Secondly, for N << Nep, (wpp) (Tagay), @ccording to the Wigner-Seitz (WS)-approximation,

the ratio R s =nws; 1S respectively reduced to

_ Ksn(spws afr2, oxEeg (6]
Rsn.:sp}mv5(N$j = % =05x (zi_r — ¥y !n"i!-'?n.-spn )’ (%)

Where E.¢ (N*) is the majority-carrier correlation energy (CE), being determined by:

&7 laolnfzlly . .
D.ETSEE z 21. N}le‘rm-g J-0.053288
« —0.87553 0.0S0E +Tgprgpy b M (5P]
ECE [N :] - 2 - 1.6TETEETE
0.0908 +rgp rapy 1+0.03847 728 Xrgy o

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

l{_‘_ll Mny 1 I'{_‘_I' - ey —1/T
Fon(Fp) o nipl — o Fon(Fpy =R w q‘k 1/2 (9b)

eniesp)’

= fn oy =1, (N =Y
8En(Ep) EPno(Fpo) Aprp k, nisp) sa(=p) n(p) (N 2irdrm )

Wthh glveS A:]LF':' (N j - rlnl:p:l':N-} y EFHDI:FFID::I[N j = z}qm;ll:pjl:x}}{mﬂ'

www.wjert.orq 1SO 9001: 2015 Certified Journal 206




Cong et al. World Journal of Engineering Research and Technology

BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by!?:

N ) s ) s
AE (e (N Tagayx) = a, + z(r;m,xj X N2+ a, X EEEEW) X NZ x (2.503 x
] A i 4

o(x) | My o) : G I CRVEN

Bt )] X ) 25 % [ 2225 x [ v+ 20, x [ o +
g 2
2glx) z é — N

2ag X L'ira.jajﬁ:'] X Ne, N = 9.5559x10%7 cm 8" (108.)
Here, a;=38x10"3(eV) , a,=65x10"%(eV) , a;=285x10"3eV) |,

a, = 5.597 x 1073 (eV), and a; = 8.1 x 107*(eV).

Therefore, at T=0 K and N* = 0, and for any rg,, one gets: AE 0, according to the

gnigp)

metal-insulator transition (MIT).

Secondly, one has?:

AE gy (g7 (T) = 020251 X ([1 - (ﬁ}mi}““ - 1). (10b)
FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — GaAs(1—x) Te(x)[Sb(x),P(x)] —crystalline alloys, in order to obtain the same one,
as given in the n™ — GaAs(1 — x) Te(x)[Sb(x),P(x)] —crystalline alloys, according to the

Epn Fp) (Nra(e)2T)
kpT

reduced Fermi energy Epnipp), Enipy(Norace) % T) = = 0(=< 0), obtained

respectively in the degenerate (non-degenerate) case.

For any (N,rs.),% T), the reduced Fermi energy &, (N.ra¢2),% T) or the Fermi energy
Epnirp) (N.Ta(a),% T), obtained in our previous paper[gl, obtained with a precision of the

order of 2.11 x 107*, is found to be given by:

E [u] — EFm‘Fp‘u':'-‘::' _ G':u:'+ﬂ.uBF(u} _ Wiu)
n(p) - kgT 1+auf = Wiu)

,A=0.0005372and B = 4.82842262, (11)

Where u is the reduced electron  density, u(N,rg.xT)= ”, ,
h Nn:'ujijT*x:'

E I &4 E _E

m; o (K xmgxkpTy 2 _ z _3 _Ey s

Neo) (Tox) = 28 X (%) (em™) ,  Fu= aus(l +bu":+ cu s) ,
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= [3ym/4]™”, b= =2 =221, and G(w) > La(w)+ 275 X u X &4

So, in the non-degenerate case (u << 1), one has: Egyrgp (W) = kg T X G(u) > kg T X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u = 1),

=75 L, B XK (V)
one gets: Egcppy(u > 1) = kyT X F(u) = kT X aus(1+bu s+ cu ) oo

ZHmy g p) () =my

asu — o, the limiting degenerate condition. In other words, &,,;,; = EZ“EF Is accurate,

and it also verifies the correct limiting conditions.

In particular, as T—0K , since u*—=0 , Egq (11) is reduced to:
B2 ke

Efno(rpoy(N*) = ket YOI , being proportional to (N*)?3, and also equal to 0 at N* = 0,

:.)-Cm P“,'X}Km
according to the MIT and noting that EFnD':FpD}[mr[xj)}Eanl:Fpn}(mcl:v}(x]) since

m, (x) < m,,, (x) for given x.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of g, (N,rd,:ﬂ,x,T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")71
Yy=(E- EPn.:Pp}]f(kBTj-

So, the average of EF, calculated using the FDDF-method, as developed in our previous

workst ® is found to be given by:

_ af aF 1 e¥
(E¥)pppr = G ( FI:'JIF[:I:I:] X EFn.Fp} = .r EF X { E.E) dE, T @ X (1+e¥)2’
Further, one notes that, at 0 K, — === 8(E — Egpo(rpo) s 8(E — Ezporrpey) beINgG the Dirac

delta (8)-function. Therefore, G, (_EFHD(F[JD}) =1.

Then, at low T, by a variable change Y = (E — Egperpy )/ (kgT), one has:

[EPH,FP})_ 1+ Epfiemy X S, roare X (ke Ty + Epnrpy) dY =1+20_,, CEX
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Where cf =p(p—1)..(p —B +1)/B!  and the integral I, is given by:

oo B e.'l' oo B . .
Ip=J *=—dy= [~ ————=dy, vanishing for old values of B. Then, for even

o (14al )2 oo EE}' 24 a— }'.-':)

values of B = 2n, with n=1, 2, ..., one obtains:

L, =2 [=Yxe
2n 0 (1eeVyEC 0

Now, using an identity(1 + e*)™ = EZ,(—1)"*s x e"*™% 3 variable change: sy = —t,
the Gamma function: _f: t*"e " dt=T(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: {(2n) = 2** *n®?|B,, | /(2n)!, B,, being the Bernoulli numbers,

one finally gets: I, = (2** —2) x m*® x |B,,|. So, from above Eq. of {E®})zppr, We get in

&

the degenerate case the following ratio:

= I:EF}:'FI:II:IF - P pip—1)..{p—2n+1)
G |Eo. - = —0lE = 9 L %P .
Fn(F 7] = P
[J[: nf [J]') EFn:jij n=1 (2m)!

X (2% = 2) X Byl X 57 = Gyua5), (12

nkgT

T _ mhkgT T
Enip)':N-JT} EpnFm N7

noting that G,,(y = r— = %j =1, and as

Where v =

T_} 0 Kl Gp}l(}r - ﬂ] —* 1

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G, (v = Enlj, due to the Fermi-Dirac distribution function, are
(B

used to determine the electrical-and-thermoelectric coefficients.

Gayz(¥) G, (¥) Gg 2 (¥) G3(¥) Goa(¥) G,y (¥) Ggyz(¥)
2 4 : 5y Ty© 2 35y% | a9yt 7yt 21y | 147y°
(1+5+2) (1+%) (1+5 -0 A4y 1+ 2+ 2 (142y?+ ) (1450 +77)

OPTICAL-AND-ELECTRICAL PROPERTIES
Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition

[m;l:p} = m, (Xj [mcl:v} (Xj:l]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — GaAs(1—x) Te(x)[Sb(x),P(x)] —crystalline alloys, in order to obtain the

same one, as given in the n* — GaAs(1— x) Te(x)[Sb(x),P(x)] — crystalline alloys,

according to the reduced Fermi energy Egpcep), &nem (NoTg(e), % T) = EF“:'FP‘LN’;M’X’T} = 0(< 0),
( ( ( -
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obtained  respectively in  the degenerate  (non-degenerate) case,  giving:

EFI!'.ID':FPD:' = EFI!‘.I':FFI:' (N,I"d,:&},}{,T = Dj

Then, in the n*(p*) — GaAs(1 —x) Te(x)[Sb(x),P(x)] —crystalline alloys, and for the
temperature T(K), One has:
(1) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn!(gp!} = Ec':v} - Evn:t':cu} = Egni.(gpl} - &Egn':gp}:N(Ngj - E"Egn':gp}:T[Tj, (13)

Where E y is the intrinsic bang gap, AE.,i.,) (N7) and AE (T) are respectively the

eni{gpi gnlgp)

reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and

(i) in the optical phenomenon (OP), the photon energy is defined by: E = fiw, and the optical

band gap by Egnl':gpl:' = Egn!(gpﬂ + EFn(Fp}-

Therefore, for E = E_,1.,1), the effective photon energy E* is found to be given by:

E"=E- Egnl':gpl:' =E- (_Egnﬂfgpﬂ + EFnI:Fp}) = 0. (14)

From above Equations, the (OP — E-OP)-transition means that:

E* = [E— E.n1(gpn ], given in the OP, in which E = [E_,11zp1) + Epneep ], IS reduced in the
E-OP, in which E=[E_ i(zp1) + Epnrrpy] and m,(x) are now replaced by
E=IE

gn2(gp2) + EF!‘.II:FP:I] and m:l:v} [K:], to: E*=E— Egnzl:gpzjl = EF[‘_II:FF}, aﬂd rECIpI‘OC&”y,

noting that Epycpp) (m, (x)) = Epyip) (mm:v} [x]) since m,(x) < m_.,(x), for given x. (15)

Eq. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into
conduction  (valence)-bands, observed in the n*(p*)— type degenerate
GaAs(1 —x) Te(x)[Sb(x),P(x)] —crystalline alloys, g,y are well defined, noting that
at this discontinuous (OP — E-OP)-transition: Eg,cpp) (m.(x)) = EFH,:FP}[mE,:v} (xj) ,

according to the discontinuous case.

Optical Coefficients
The optical properties for any medium, defined in the OP and E-OP, respectively, according
to:  [miy =my(x)[m,,(x)]] , can be described by the  complex

refraction: Mg g = ngpgy — iKgpey » Doy aNd  kgpg; being the refraction index and the
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extinction coefficient, the complex dielectric function: &g = 40148 — i€20287, Where

"

i* = —1, and Eqpg; = Nggg°. Further, if denoting the normal-incidence reflectance and the

optical absorption by Rqpg; and o<q g, and the joint density of states by:

e 32
_ 1 2oy (%) E-Egna(gpa)
]DDSH':FI:'H[E] (E] =% ( k2 E—[E i 2Er oo —Eme
<m L gnalgpd) ™ EFn(Fp) ~ EFno(Fpo)

hgtx|vw(E)®

n(E}<cEX2fres space

]] X M’EFHDI:F[JD} ’

and Fo g, (E) = , one gets?:

%o (E) =JDOS,;1)0e1 (E) X Fore (E) = - he

hCIlu [E] (Ej
41t Gﬂ [E] (E]

Clg[g] (E:] X Zfres space

r

. ) _ EXEzD[zE":E:' _ :EXH’.[,[E":E:' _ “mopg (E)
XorE] [:E:] - ]DDSMP}H[E] (Ej X F“[E] (Ej kengg; (E) ke engE] E) % 2free space
— 2 n 1] +x,
£10015] (E) = ngpg KB[E] » £200281 (E) = 2Kg g1opmy @Nd Ry (E) = —L'—L"” s o (16)
nQE] FCI:![E

It should be noted that, such the above joint density of states yeilds: (i) as E = E_p1(gp1) (T),

. . 372
- i 1 2y (g (%) _—
JDOS,, )0 (E) = 0, and (ii) as E = 0, JDOS ¢y o (E) = =X ( ﬁf ) X \/Egno(Ppoy

Further, €g.eq cpace IS the permittivity of the free space, -q is the charge of the electron,
| Vore] (E)| is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index ngg; is found to be defined by

E+C
nﬂ[E] (E rd El,}j = N, (rd El:':] +EL 1Esz :E_:I:: . [rdlza,})a as E— oo, (17)

Now, the optical [electrical] conductivity a4g; can be defined and expressed in terms of the

kinetic energy of the electron (hole), Ey, = - Rk , k being the wave number, as:

Ixmp () mmy

1/2
_ a=k Txk k Ej. . . . 3
ooy (K) = - X — [k X ag,zm] % (nm}m) , which is thus proportional to E,”.

Then, we obtain: (E*)zppe = G, (v = E";kiT\j X Eq(epy» @Nd Gg(y]:(l + y?) = Gy(N,rgra,xT),
n(Fp]

withy = EEL Entp) = Entpy(N.Tarw.x T) for a presentation simplicity.
@' ‘ ‘
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Therefore, from above equations (16, 17), if denoting the function H[N, Ta(a) % T) by:

H(N,r4¢0.%T) =

an':pr":N-:' |I =
[Rmu:sp:u::w'} X [kFﬂ'iF:ﬂ(N*j X 3gn(Bp) [rd':“:-"x)] X u'A"'ip}(Ngj =

Gy (N, rg(0),%, T)

Epno(Fpal ( N-}]
Mn (g ()

k,n[! X . . = - -
Where R, (N*) = ?F‘; being proportional to Ez,, g0y then, our optical [electrical]

conductivity model can thus be assumed to be as:

oo(N, raca), % T,E) = o5 (N, rg(a), % T.E) =
2 z

2 . q

pvry X H[:N,rd,‘aj,,x,T) X v X H[:N,rd,:a),x,T) X

|: E-Egna(gps) i| { 1 ), and [ E—Epna(gpz) il‘ { 1 )’ (18)
E_[Egn:':gpﬂ+EFn':Fp)_EFm:l':Fpu)] chmxem E_[Egmigp:ﬂ"’EFn(Fp}_Ean[Fpn)] ohmxem

Where E‘—F = 7.7480735 x 10~% ochm™1.

T P

It should be noted here that:
) _a _
(i) Oope] [E = Egn1(gp1) [Egn:{gp:}]) =0, and oy (E — o) = — X I—I(N,rd,:ﬂ,x,T) = Constant

for given (N, rac.,x, T) —physical conditions, and

(ii) as T— 0 Kand N* =0 [or Egy(gpe)(N*)] = 0,according to: H(N,ra¢,,x T) = 0, and
for a given E, [E—E_u;(epn] = [E— Egnigepn]=Constant, then from Equations (16-18),
ngrg; (E)= Constant, g (E) =0, wog(E)=10, £51g(E) =(n.)? = Constant,

200221 (E) = 0, and oy (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [o,(E), x5(E), £.5(E), and o5 (E)], and to the electro-optical
phenomenon ([E-OP]) as: [og(E), kg (E), £, £ (E), and g (E}],

[w(E}® _ gntk kpnipp) (N7}

E Y P fepl ()
'~2mr}"x-\."|'ln[p:l sn (ap]

X [Kpnirp)(N*) X ap(ep) [rd':a}’x)]:l X Gy(N,rg,xT),  (199)

z
2g

E—Eops (zns z
XH[N,rd,:E},x,T)X[ g ] and

K5lE) =
G( j E_[Egn:':gpﬂ+EFn':Fp:'_EFnu':Fpuf']

”':E:'ngraaspaca =E

www.wjert.orq 1SO 9001: 2015 Certified Journal 212




Cong et al. World Journal of Engineering Research and Technology

-
=

1 E-E (epol

— =q gnzlgpz)
ks(E) = — X H(N,14(2,% T) X [E_[E — SR ]
L E X 2 fren space enz(gpz) TEFn (Fpy~ EFnoFpoy

, (19b)

Which gives: «[ig](E = E_p1(gp1) [Eenz(epy 1) = 0, and x[kg] (E — c0) = 0, as those given

in Ref.[2,

4q® E—Egns(gpa) .
£,0(E) = 2 X H(N, rgr0.% T) X [ : =n° SP ] and
Efres apace *E N E_[Egn:'.gpﬂ+Eijij_EFm:l[Fpuj]
4q° E-Egpz(gpa .
ers(E) =—T  H(N,ry% T x[ (190)
IE Zfres space = B ( *hdla)r ) _[Egnzigpﬂ‘*EFn[ij_Ean[Fpuj] !

Which gives: £,1,6)(E = Egpy (gp1) [Egnaepn 1) = 0, and . (E— @) — 0, as those given
in Ref. [2], and

o, (E) =
41:1:"
hen(E)<2free spacs

E-E

202 8p% ]‘ (em™) and

= H(N, % T X[
[ dla) ) E_[Egn:':gpﬂ+EFn':Fp:'_Ean':Fpn:']

-

g (E) = 2a- X H(N, rgep,% T) X [E_[E L ]‘ (em™), (19d)

hen(E) xefmg Space gnz'ﬁgpﬂ"’EFn[ij_EanjFpuj]

Wthh gIVGS DCD [DCE] (_E = gnllgpﬂ gnZi g[:u:']) and

- - 2
oo [o6e](E— 0) = — 2% % H(N, ra0s,% T) = Constant, as those given in Ref.”

fiong ®efree space

Using the (OP - [E-OP]) transition, given in Eq. (15), at E = E_,1(zp1) T Ernrrg), the optical
conductivity, ogr, given in Eq. (18), in which my,y(x) = m,(x) is now replaced by
m, (%), has a same form with that of the electrical conductivity, g, given in our recent

work [1], for such the (OP - [E-OP])- transition. So, from Equations (18, 19b, 19c¢, 19d), and

for E = E_y1(zp1) [Egnztzp2) ] + Erncrp), ONES Obtains respectively, as:

z Eo 2
) — 4 ) FnlFp) ( 1 )
oor(N. T4, % T.E) = = X H(N, 1400, %, T) X (EFM[FPDJ) —),

Having the same form with that of ogr(N,ra.x T) [1], as:

z Epn(pp) \- 1
— a Fn(Fp)
CFET[N,I"E],:E:,,X, T, E) = E X H[N, rd,:ﬂ,x,T) X (Eﬁngfﬁpg\) (Dhmx:m]’ (203.)
K [N,rd,«ﬂ,x,T,E) =— 2a” ® I—I[N Ta(a)eXs T) (ﬂ)‘ and
ot . “'~E}xzfraaspnc‘a *(Egnalgps) FEFniFp)) EPno(Fpa)
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2g* En(Fg) |-
Ker [N, T, X T, E) = — = % H(N,ryr,% T x( B ) , (20b
ET[ dla) ) "'~E}xzfraaspace *(Egnalgpz) YEpn (Fpl) [ dla) ) Efna(Fpal ( )
EHDT [N_r rdfﬂ:l.l'x_r T_FE) = - 4q: X, H(N_r rdl"a:l.rx_rT) x( EFn::FP:I )‘ a.nd
- : Zfres spacax'~£gn:igpﬂ+EFninﬁ : EfnalFpol
4q° Epn(Fp) )2
Sorr M, ry,% T,E) = - ¥ H(N,rq.4,xT X( 20c
‘ET[ dla) ) Zfres spacax'~£gn:igpﬂ+EFninﬂ (' dla) ) Efno(Fpol ( )
— 2q° EpniFp) )2 -1
o N.ry.xT.E] = - ®H(N, rg..%5T) X | —— cm and
oT [ d(a) ) ﬁ':nl*E}xzfrBB!pEE‘B [ d(a) ) (EFnuinuJ [ ]
ogr (N, Tgca),% T,E) = — td” X H(N, rgee.%T) X (ﬂ)L (em™1). (20d)
ET : ﬁ':”LE:'xzfraa!paca : EFno(Fpal

One notes here that (i) the electrical conductivity oz (N, rs...% T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eq. (15), at this discontinuous (OP - [E-OP])- transition,
given in the discontinuous case: Epyepp(m,(x)) > EF,,.;FP}(mE,:v} (x]) . since
m, (x) < m,,,(x) for given X, corresponding to: oor(m,(x)) > ogp (mc,:v} [x]). In our

recent work™, all the electrical-and-thermoelectric properties were investigated for this

discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(N,rgr4.% T) -physical conditions, are reported in the following Table 3, in which

Og1 = Ogr.
Noting that H(N, r4),% T) is a constant for given (N, r4¢),% T )-physical conductions

Table 3: As noted above, H(N, r4¢,).% T)is a constant for given (N,rs..x T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given

as follows.

EineV o5(E) Kq (E) €40 (E) g (E)

Egnl':gpl:' 0 0 0 0

[Egnligpﬂ + Ern(rp}] ) ToT Kor 207 Kot

E—om 3 *H _,Constant 0 0 —=3*% ___ _.Constant
ek Rehg® Zfree space
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EineV ox(E) kg (E) €4 (E) o (E)

Ecnz(ens) 0 0 0 0

[Egn2(ep2) T Epnep)] ) OgT KgT E2ET Kgr

E — 00 3 *H _LConstant 0 0 — %%  _.Constant
Tk Rehg Zfres space

Therefore, for given [N,rs.,).x, T], all the numerical results of [o4(E), x5 (E), £20 (E), and
g (E)], due to the OP and those of [6z(E), ®z(E), £, (E), and o (E)], due to the E-OP,

being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to
explain all their corresponding past-or-future experimental results.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m:‘,,:p} = m, (%) [m,[x]]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by
w
cmx K

Ornerior] (N Tac- % T) N , and the Lorenz number L by:

Wxohm

L=2x (Ej = 2.4429637 [ j =2.4429637 X 1078 (V2x K~2), then the well-
g

known Wiedemann-Frank law states that the ratio, —=£"2%  due to the (E-OP and OP)
CET [0T]
transition, respectively, is proportional to the temperature T(K), as:

OTh.ET[0T](Nrd (2% T)
egT (0T (Norg (2% T)

=LxT. (21)

Further, the resistivity is found to be given by: perior)(Norgeq),% T) = 1/6grior (N rgra. % T),

noting again that N* = N — Nep,, rypp) (Taga) %)

In Eq. (20), one notes that at T= 0 K, ogrgry (N, r4(4),% T = 0K) is proportional to EZ_, zpoy
&
or to (N*)=.Thus, from Eq. (21), one has: ogriom(N = Nepg (npp)s Tata)» % T = 0K) = 0 and

also OThET[OT] [N = NCDEI':NDFI:" rdl:a:lrer = GK:] =QatN*= 0, at which the MIT occurs.

Electrical Coefficients

The relaxation time Tzrror; is related to ogppor by™:

_ m, (X ® mg .
Terior] (N Ta(e) % T) = Gprrory(Nirara,% T) X q—';ﬂm Therefore, the mobility pgror

IS given by:
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QX TET[OT] (MrgrwxT)
m;“: B (%)= mg

HET[OT] [N, Faiay % T) = UeT[0T] [N $rrd'2anT) =

ogr o7 (Nora ()% T) ( cm”']
ax (N /Ep (v} Ve . (22)

Here, at T= OK, ugro(N*ra,,T) is thus proportional to (N*)Y3, since
oeriom (N Tg(e. T = 0K) is proportional to (N*)3/3 . Thus |
Terjor](N* = 0,rg), T = 0K) =0 and pgrop(N*=0,ry.,, T=0K) =0 at N° =0, at

which the MIT occurs.

Then, the Hall factor is defined by:

_ ‘erpor;*'epDE _ _Gi» — T _ nkgT
Prerion (N Tat % T) = [ceroryieope).  [G2001Y 7 Enip(Nraw.xT)  Epnpy(Nrar 1)’ and
therefore, the Hall mobility yields:
z
_ cm
HueT[0T] [N,rd.:ﬂ:,,x,T) = ULeT[oT] [Nrrd'ia:)rer) X TyeT[OT] (N*,T) (sz ) (23)

Noting that, at T=0K, since rygriom(N.raee.xT)=1 , one therefore gets:

beerior] (NoTaia)- % T) = Herpor (NoTaca). % T)-

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

i A — . (.
D AMegrmaaT) _ N* dEpn(Fm dip g (u) dinip ()Y Kk 3L
T 0T\ Nrd e & ) =N s ZEFnlFpl _ kgxT % (1.1 fn (p) ) — 3L T % (u L), % | (24)
q

um[DT:I:N,rd[Bj,x,TII dn* 7 g du L du q ‘\ll nt ]

Where Dgpor (N, raca.x T) is the diffusion coefficient, &, (1) is defined in Eq. (11), and
the mobility ngrrory(N.racm.x T)is determined in Eq. (22). Then, by differentiating this
function &,,,,; (u) with respect to u, one thus obtains i"dﬁjﬂ Therefore, Eq. (17) can also be
rewritten as:

Der o (Nora@T) _ kpxT V' (u)xwiu)-v{u)xw' (u)

= Xxu =
HET[OT] (M.rage) =T) ! W (u)

Where W'(u) = ABu®™" and v'(u) =u? +272e 7% (1 — du) + 2AuP T F(u) | (1 + ) + bl E ]
1+bu E+cu B,

One remarks that: (i) as u— 0, one has: W?~1 and u[V'xW—-VxW']~1, and

Dpp(u) . k . 2t w3 2
therefore: ™ o keXT gy (i) as u—=o , one has: W*#~ A%u*® and
M |

u[V/ X W—Vx W'] % Zau*3A%u®8 | and therefore, in this highly degenerate case and at
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T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

DET[0T) (NrgaxT)
wgroT) (Nrace . xT)

2 %EFHDI:F[JD} (N*)/qa. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

4 A
. hu_5+2cu_E~J
EFnuinuJLU} (

Derpory(Nraw=T) .,

4
- X1+ -%
BET[OT] (Morgra =T 2 218

3% ;
H (1+bu_g+cu_g

Where a = [3y7/4]”°, b=2(5)" and ¢ = %55 (m)*,

Thermoelectric Coefficients
Here, as noted above, Egy(zy) (m, (x)) = EFn':Fp}(mc(v} (XJ)Or Eate) (M () > Eugyy (mciv} (XJ) for

a given T, since m.(x)<m,,(x) for given X, corresponding to:

oor(m,(x)) > ogr (m.:.:v} (x) )

Then, from Eq. (20a), obtained for oz (N, r414).% T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrqry, is found to be given by:

_ - kg E'l“GE.'T[DT'] _ - kg, @lncerori(tngm)

Then, using Eq. (11), for the degenerate case, &,¢,) = 0, one gets, by putting

z

FE]‘JET[DT] [N! rdl:&}:x; T) =|1-— Y

L
T
EKGQ(Y:EHI.[}\'J

-n* _ kg ., ZFspeTOT)IN T [3xL 2%%n(p) T
5 NryowxT|]=E— X —X—m——= — ¥——m=—2yL X
ET[DT][: dia) ) 3 a fn(p) ‘\Il = s xEn(p) W
! ZTETI0T: W ot
4 [0T]Mott _
(_ ) =0, ZTET[DT]}iutt - z
1+ ETET[UT:MEILT K EKEm:p:l (25)

according to:

ExEnisz

[ —— Ztenipl ——
85groT; _  [3™L % 3 X e 1 JaxL % 3 % ZTE.'T[DT-MmK[l— ZTET[III'T'M:ltt]
= _ —" - —_ B P .
aEn':P:‘ Nl w ( 1+E~><En|:pjz jlz ' m* [1+ ZTET[DT:MEIEL]
TI::"
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Here, one notes that: (i) as §,¢p) — +02 or &,y — +0, one has a same limiting value of

—

_ .. _ " . 8 SgTI0T] _ .
Setiory: Serpory = — 0 (i) at &, = J7 = 18138, since B_En[pT = 0, one therefore gets:

a minimum ( Sgpor;) = —VL~ —1.563 x 107* [E] and (iii) at £,¢,) = 1 one obtains:

min.

Serior; & —1322x 107* (5),

Further, the figure of merit, ZT, is found to be defined by:

5*xogxT _ §° 4% ZTET[0T]Mott
ZT, N, Tyrayx T) = B0 =% = . (26)
ET[DT][ dial ) W L [1+ ZTET[I:I'T:Mutt]z

. A ZT . 5 . g5 ..
Here, one notes that: (i) YZemom) - 5  SET1OT o 2 SETIOM Serory <= 0 (i) at

Henip) L B (p)
. lg . . @ ZTgTr0T1) _ . : =
Entp) = J7 = 18138, since —L_ﬂzn-:pn =0, one gets: a maximum [ETET[nT])mm =1

,and ZTerpormen = 1, and (iii) at §,y =1, one obtains: ZTgep = 0.715 and

Z

ZTer0TIMon = 5 ~ 3,290,

Finally, the first Van-Cong coefficient, VC1 g, Can be defined by:

_ dSgrpom (V) _ 8 Ser[oT) 8Eaip
VCprior) (N, racg,x T) = —N* x ZE0T (1) — N+ S x -, 27)
=

|
[—

!'.I':F':'=a|H 3 '

being equal to O for £

and the second Van-Cong coefficient, V€2, as:

VC2eriom) (N,rgcsy,xT) =T X VC Leriory (V). (28)

the Thomson coefficient, Ts, by:

ds 1 [V 85 1 B
. = S SET[OT] (¥ — ET[OT n(p)
TSeriory (NTaca,®T) =T x 2200 (1) = T x el X 22, (29)

[z
being equal to 0 for £,y = Nﬂ“;, and the Peltier coefficient, Ptgr g1y, as:

PterioT [N, Ta(a): % T) =T X Sgrper (V). (30)
One notes here that for given physical conditions N (or T) and for the decreasing &y, since
. —-d s -
) ) ET[OT
VC1grory(Noracay,x T) and Tsgpory(N,rar,.x T) are expressed in terms of ot and

d SET[0T) . [ —
— 1 One has: [VClgpory, Tseppory] <0 fore,, > w'l? » [VC1grrory: TSerrory] = 0 for
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= =
[m™ fm? .
Enl:p:' = |— and [ W ClET[OT]-’TSET[UT]] = 0 fDr Enl:p:l = ‘lqlﬂ_ y Statlng also that fOr

4 3
_ =,
Enl:p:l_wl?.
(i) Serpor; . determined in Eg. (25), thus presents a same minimum
T —a [V
[SET[DT])mmI = /L~ —-1563x 107* (E)

(i) ZTgrpry , determined in Eq. (26), therefore presents a same maximum:

[ZTET[DT])mm=1, since the variations of  ZTgror; are expressed in terms of

[VC1grory TSeriori] X Serory Setror) < 0

Furthermore, it is interesting to remark that the VC2gpoc-coefficient is related to our

generalized Einstein relation (24) by:

kg _ _ 3sgrory ., Derpor(Nra@xT) (v? k [3xL
X VC2 N, ry.%T)=— X - [_] kg _ (3L
a ET[CIT]( dia) ) By () MET[OT] |._Na!'d::al1;x-T:| ) a 14| R (31)

according, in this work, with the use of our Eq. (25), to:

DET[OT] (NrarexT)
veToT; (Nora (2.2 T)

ZTET[DT-MmK[l— ETE.'T[DT-Mm] [V]

X 2 X J
[1+ ZTET[OT Mott]

VC2eriory (Norgr0.x. T) = —

Of course, our relation (31) is reduced to: 2—2:2—:- VClgrer and  VC2gpor, being

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n* (p*) — GaAs(1 — x) Te(x)[Sb(x),P(x)] — crystalline alloys, 0 < x < 1, X being

the concentration, the optical coefficients, and the electrical-and-thermoelectric laws,

relations, and various coefficients, being enhanced by :

(i) our static dielectric constant law, =(r4,.x), ra(,) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg, gy, given in Eq. (11) and accurate with a precision of the
order of 2.11 x 10™* [9], affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients ,
(iif)our optical-and-electrical transformation duality given in Eq. (15), and finally
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(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!*?

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaAs-crystal.™ ® Then, some important remarks can be
repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpy,¢cpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &patcog)» Deing obtained with a precision of the order of 2.92 x 1077 , respectively, as
given in our recent works [3]. Therefore, the effective electron (hole)-density can be defined
as: N* =N —Neporcpn) 2 N —NEhocopy» N being the total impurity density, as that

observed in the compensated crystals.

(2) The ratio of the inverse effective screening length k., to Fermi wave number kg,

at 0 K, Ry (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, r; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,.,; = Nﬂ“ﬁ—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgo Present a same minimum [SET[Dﬂ)mm(x —1.563 X 10‘4:";),
those of the figure of merit ZTgpgr Show a same maximum (ZTgrigry) max. = 1, (ii) for
Eatpy = 1, the numerical results of Sgrpgry, ZTgrior, the Mott figure of merit ZTerornorn

the first Van-Cong coefficient VC1gpqry, and the Thomson coefficient Tsgrpqr;, present the

same results: —1.322x1n‘4£ . 0.715, 3.290, 1.105><1u“‘§, and 1.55?><1u‘4§,

respectively, and finally (iii) for £,.,, = Mﬂ“ﬂ—h 2 1.8138, ZTerormon = 1, aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£,¢,) = 0).
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(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

DeroTy (Nora ()% T) (‘—") kg _ [3xL
]{ i)

k CL— :
=& X VC2gpiory (N, ra(. % T) = — — 2 x |==, according,

q Btnim  eeTT(Nra@xT)
in this work, to:

DeT[0T) (Norare 2 T)
EETOT W Mrar 2:%T)

ZTgr[oT)Mor X[1~ ZTer[0mMort] (V), being

X2 X 2
[1+ ZTET[0T) Mott]

VC2erory(Norgea), = T) =
reduced to: E—E”ﬂl , VClgror and VC2gpor, determined respectively in Equations (24,
ET[OT]

27, 28). This can be a new result.

(5) Finally, for given [N,rg,,x, T], all the numerical results of [o4(E), ¥5(E)}, £, (E), and
g (E)], given in the OP, and those of [gz(E), ¥z(E), £,£(E), and o<z (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrpgr (N, ra¢s,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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