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ABSTRACT
In the n*(p*)— GaTe(1— x) [As(x),Sb(x),P(x)] — crystalline

alloys, @ = x = 1, x being the concentration, the optical coefficients,

*Corresponding Author and the electrical-and-thermoelectric laws, relations, and various
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SRS coefficients, enhanced by: (i) our static dielectric constant law,
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Donmitia, Laboratoire de e(rara).X), Tare DeiNg the donor (acceptor) d(a)-radius, given in

Mathématiques et Physique Equations (la, 1b), (ii) our accurate Fermi energy at T=0K,
(LAMPS), EA 4217, Egn(rp) (Ernorpo)) » determined in Eg. (11) and accurate with a
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precision of the order of 2.11 x 107* [9], affecting all the expressions
52, Avenue Paul Alduy, F-

66860 Perpignan, France. of optical, electrical, and thermoelectric coefficients, are now

investigated, by basing on our physical model, and Fermi-Dirac

distribution function, as those given in our recent works.™ %3 In the following, for given
physical conditions, all the optical coefficients are expressed as functions of the effective
photon energy : E* = E — E_,.112p1), E and E_,1¢2p1y, being the photon energy and the optical
band gap. Then, some important remarks can be repoted as follows. From our essential
optical conductivity model, a5(E™), determined in Eq. (18), all the optical, electrical,
thermoelectric coefficients are determined, as those given in Equations (19a-19d, 20a-20d).

In particular, from the optical phenomenon and electro-optical phenomenon (OP - [E-OP])-

WWW.wjert.org 1SO 9001: 2015 Certified Journal 223




Cong et al. World Journal of Engineering Research and Technology

transition, obtained for E = E_, 1 (zp1)+Ernirp), and given in Eq. (15), one observes that the
optical conductivity oyt has a same form with that of the electrical conductivity, ogr, as
those given in Eq. (20a), suggesting thus many important concluding remarks on all the
optical, electrical, thermoelectric coefficients at such the (OP and E-OP)-transition, as those

given in Equations (20a, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*) — GaTe,_, [As,.Sb_ P _]— crystalline alloys, 0 =x=1, x being the
concentration, the optical coefficients, the electrical-and-thermoelectric laws, the relations,
and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(ry..%), rar.) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the

order of 2.11x 107* [9], affecting all the expressions of optical, electrical, and

thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.™ 2!

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate GaTe-crystal.®*®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpy,¢cpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).

N &batcop). being obtained with a precision of the order of 2.91 x 1077, as given in our

recent works.’ 3 Therefore, the effective electron (hole)-density can be defined as:
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N*=N —Ngpepp) 2 N —NEE T cpg, N being the total impurity density, as that observed

in the compensated crystals.

(2) The ratio of the inverse effective screening length k_,.,,, to Fermi wave number kg,
at 0 K, R_,.py (N7), defined in Eq. (7), is valid at any N*.
(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £, = Nﬂ“ﬁ—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgriqry present a same minimum [SET[Dﬂ)mm(k —1.563 x 10“‘%],
those of the figure of merit ZTgropy Show a same maximum (ZTgrigr) max. = 1, (i) for
Eatpy = 1, the numerical results of Sgrpgry, ZTgriory, the Mott figure of merit ZTerornomn
the first Van-Cong coefficient VC1grory, and the Thomson coefficient Tsgpqr;, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105x 1072, and 1.657 X 107*>,

=z
[T

respectively, and finally (iii) for €., = N ry > 1.8138, ZTergrmon = L aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

3L .
= [Z= according,
‘\q T

85gTI0T] s DerjoT;(Nora () %T) (E) kg
k)

kg _
—= X VC2 NrgxT)=— r a
. ET[OT] (N,rar0.%,T) Bnip) peromy(NramxT) VK a

in this work, to:

__ DeroT) (Nrgra =T

= X2 X
BET[OT] \MNrdl 2.%T)

ZTET[DT'Muttx[l_ ETE:T[DT'Mntt] (V] being

VEZET[DT] [Nrrdl:a:l!x’ T) = [1+ ZTET[DTMQ':JL

D 1 . . . .
reduced to: ﬁ:ﬂ”—:- , VClgror and VC2gpor, determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N,rg¢,.x T], all the numerical results of [o5(E), x5 (E), €55 (E), and
ocy (E)], given in the OP, and those of [cz(E), ¥z(E), £,z (E), and o (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrigr(N.ry,),% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the n'(z’)- GaTe,, [As, $h, P, ]-crystalline

alloys at any temperature T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n* (p*) — GaTe,__ [As_,Sb_, P_]—crystalline alloys, at T=0 KI* %3 we
denote : the donor (acceptor) d(a)-radius by rg.,, the corresponding intrinsic ones by:
Tdaa(a0) —TTeca), the effective averaged numbers of equivalent conduction (valence)-bands by:
2.0y » the unperturbed reduced effective electron (hole) mass in conduction (valence) bands

by m..,(x)/m,, m, being the free electron mass, the relative carrier mass by:

— m(xhxmy (%) ) . . . . .
m, (x) = < m.y(x), for given x , the unperturbed relative static dielectric

constant by: £,(x), and the intrinsic band gap by: E_,(x), as those given in the Following

Table 1.

Table 1: In the GaTe,_, [4s,, Sb_ P ]—crystalline alloys, the different values of

energy-band-structure parameters, for a given x, are given in the following.*®!

In the GaTe,_,As_-crystalline alloy, in which ra,a0)=Tre(cay=0.132 (0.126) nm, we havel®
& gu®=1xx+ix(t-x=1, we havel® ¥ my,(x)/m, = 0066 (0291)xx+0.209 (04) X (1-%)
£,(x) = 13.13 Xx+ 123 X (1 —x), E_,(x) = 1.52 X x + 1.796 X (1 — x),

In the GaTe,_,Sb.-crystalline alloy, in which rg,(a0)=Frera)=0.132 (0.126) nm, we have
[1, 3] g =1xx+1x(1-x)=1, my,(x)/m, =0.047 (0.3) Xx+ 0.209 (04) X (1-x) ,
£,(%) =15.69 Xxx+ 123 X (1 —x),E_,(x) = 0.81 X x + 1.796 X (1 —x).

In the GaTe,_,P.-crystalline alloy, in which ra,¢25)=T1e(ca)=0.132 (0.126) nm, we have [1,
3] gc,:v}(x] =1xx+1x(1-x) =1, M,y (x)/m, =0.13 (0.5) X x +0.209 (0.4) X (1—x),
£,(¥) =111 Xx+ 123X (1 —x),E_ (x) = 1.796 X x + 1.796 X (1 — x).

Here, the effective carrier mass my,(x) is equal to m,,, (x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:
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13600 =[my P (2} frmg ]
[25 (]°

Egqf “‘|'X:'
Beotee) 8= {00

Edorae) (%) = meV , and then, the isothermal bulk modulus, by:

Our Static Dielectric Constant Law [m:‘],:p} (%) = m, (x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(r4),x), developed as follows.

Atrge, = ragraq) the needed boundary conditions are found to be, for the impurity-atom

volume V= (41/3) X (raca) s Viotasy = (41/3) X (Taocaey ) » for the pressure p, p, =0,
and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two

important equations, used to determine the a -variation, A & = @ —a, = «, are defined by :

Sz —a dp——— , giving rise to : ( )— . Then, by an integration, one gets:
[&a[rd':ﬂ:”xj]nfp} = Ed‘:":ﬂ‘:"]' (Kj X (V_ VdD':E.D} ) x In
3 3
Tdra) _ Tz
Vo m:l‘l) Ednlan} [:X:] X [{‘du[auj) 1] X ln(rdﬂl:agj) =0

Furthermore, we also showed that, as rgsy = Tagrae) (Tdia) < Tdo(asy), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap E_, ., [rd,:ﬂ},x}, and
the effective donor (acceptor)-ionization energy E ., [rd,:ﬂ},x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [Aa(rge.x)]
( alp

z2olx) 2
Egnn(gpn} (rdl:a}’xj - Egn (Kj = Edl:a} (rd{a}’xj - Edn(an} (K] = Edn(an} (K] X l(m) -
1] =+ |Aa(rg %
|-+ boatawml,

for rd(a} = rl:]l:ll:El.D:I’ and for rd(a} = rdn(au:u}

20} 2
Egnu:n:gpu:-} [:rd(a}!x] - Egu:u [X] = Ed(a} [rd(a]“'x] - Ed-:n:au:} [:X:] = Edn(au:u} [:X:'] X |ﬁ — ) -

Elrgy aj:'

1] = — [ﬁﬂf(rdia}’xj]nip}

Therefore, one obtains the expressions for relative dielectric constant £(rg;.),%) and energy

band gap E.;, (e (Taca)x), as:
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(i)-for raca) = Tgpras), SINCE £(Trgre), %)= — <g,(x), being a new

£(rga).x)-law,
— — T'drey 3
EEnD(EF‘D} [rd':&}’x) - EED (X] - Ed':n!:l (rd':&:”x) - Edn':ao:' [X] - Edﬂ':ﬂ‘:‘:' (Xj X (—) —1fx

Tdoreo)

Tarm V2
In (ﬁ) =0, (13_)

according to the increase in both E_, (.., (racax) and Egep (raca),x), with increasing Fa(a)

and for a given x, and

]

> g,(x), with a

[ |y ragmy 3® ‘ Tdgmy 4F
!1_[(;“-} _l]xln(;ﬂ.}
N Tdoraoy Tdoreo)

(||)-f0r rdl:ﬂ:l £ I'dm:ﬂ_cl} ) SInCG E(rdl:E},K] =

. - _
condition, given by: [(rd—“‘) — 1] X 1n(ﬂ) < 1, being a new £(ry ., x)-law,

T'dofeo) T'do(ao)

EY:
Egnn(gpn} [rdl:a}’x) - Egc\ [Kj = Ed(nﬂ (_rdl:a:l’x) - Ednl:an:l [Xj = _Edc\l:an:l [Xj X [(rm;m) -

Tdo[ao)
Taray \°
1] o (22 <0, (ib)

corresponding to the decrease in both E_, ;.0 (raca).x) and Eara) (Tare)»X), with decreasing

ra(s and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new €(rg.,, x)-law.

Furthermore, the effective Bohr radius ag,gp) (raca).%) is defined by:

. 2 -
2(rgpe)x)xh 2(rgg )

- = 0.53 X 107% cm X

m;l':p:' (x)xmg =g (2)

3En(ep) (Ta(a)X) = My (9
niplh

Generalized Mott Criterium in the MIT [my; (x) = m_, (x)]
Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepninop) (Taga) %), was given by the Mott’s criterium, with an empirical parameter,

Mg, st >

1y —
NCDnI:CDp}(rdI:a}’xj 13X dpniEp) [:rdl:a}’x:] = Mnl:p}’ Mﬂ':[:'} = 0.25, (3)

depending thus on our new €(ry:4.%)-law.
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This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius r, .0y, in the Mott’s criterium, being characteristic of interactions, by:

3

1/3
_ 1
Peniep),M [N’rdiﬂ}’x) = (nm:w) X

=1.1723 X 10° X &)” X

my o () my

8En(Ep) (rg [ a:wx} E':""d:: g} )

being equal to, in particular, at N= Neonicop) (Tara - %)
Fontep)t (Neonceop) (FacayX)s Facay.X)= 2.4813963, for any (raca,x)-values. Then, from Eq.

(4), one also has:

1y 3 : 1
NCD!‘.II:CDP:I (rdl:a}’xj 13X EIBI!‘J':B[J:' [rd':ﬂj’x) = (;)5 X 74813963 =0.25= (WS:]“-'P} = M“':P:” (5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M = 0.25, according to the empirical Heisenberg parameter

alp)

H =0.47137, as those given in our previous work®! we have also showed that

n(p)
Nepnicop) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band  tail ., Népaicpp) » With a precision of the order of

2.91 X 1077 ,respectively B

It shoud be noted that the values of M., and H,.,, could be chosen so that those of

n(p

Ncpacepp) aNd NE5 T cpyy are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rgg,%) =N — Nepg ownp) (Tagay- )= N7, for a presentation simplicity. (6)

In summary, as observed in our previous paper®, for a given x and an increasing Tdia)s

E(rd':ﬂ,}’xj decreases, while Egnu:-l:gpn} [rdl:ﬂ.}’x)’ NCD:‘J':ND[J]' [:rd':ﬂa"x:] and NEIBJE':CDP} (I"d.:&},}{j
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
In the n*(p*) — GaTe,_, [As,,Sb,, P_]—crystalline alloys, the reduced effective Wigner-
Seitz (WS) radius r,(ny, Characteristic of interactions, being given in Eq. (4), in which N is

replaced by N¥, is now defined by:
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Lot 3Bt 1/3 1 i
W N*) = Fo(Fp) <1 ) ) = ( E‘.‘:-.)
¥ X Tan(op) (N) @En(Ep) '+ Tenlep) [:N,rd,\a},x) 4mN” X 23Bn(Bp (Tdiepx) being

Iet N s . .
i ) is the Fermi wave,

proportional to N*"Y3. Here, ¥ = (4/97)%, kg, (p,)(N°) = (

Eciw)

.1, being the effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k., .., to Fermi wave number
Kenikp IS defined by:

Ken(s pl _ kEﬁ[Fpﬁ'

Rsnl:sp}(N$j = = Roqwsizpws) T [RsnTF(spTF} - Rsn‘i.-‘-’E':sp‘i.-‘-’S}]e_r!nl:!pj =1 (7)

ken(Fp) kontap)

being valid at any N*.
Here, these ratios, R.yrrzpte) @14 Ropwsiepws), Can be determined as follows.

First, for N = Nepgowpp)(Tacap®) ,  according to the Thomas-Fermi (TF)-

approximation, the ratio R, tg¢zprey (N) is reduced to

Lot
ksnTFl'!pTF“l _ Fr(Fp) — ||4}"E‘31|:|'3p"| e 1’ (8)

E . (N*) = =
enTF(spTF) an[ij [.;! :I'TF[spTFj 2

being proportional to N*~%/¢.

Secondly, for N << Nep, (wpp) (Tagay), a@ccording to the Wigner-Seitz (WS)-approximation,

the ratio R s (=mws; IS respectively reduced to

_ Kanispiws a[r2, epyEce (V)]
RBHI:BP}‘-‘-’EENéc] = % =05x (% — ¥ !n;rijm!m )’ (ga)

Where E-¢ (N*) is the majority-carrier correlation energy (CE), being determined by:

e [a—nf)ly .
0.2 555. z : z) }xlnkrsm.sp,‘l}_ulugazas
oy _  —0.87553 00508 +Tgprgm b WP - (sp)
ECE [N :] - - 1.6TETEETE
D'I}EDB-I-FSHI'!FH 1+D'DEB4??‘BXFEHIEP‘|

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

N
i!'n:)(l:g —
kgt . krt | clw) C44n
Fn(Fp) Moy — 1 FniFp) — oy N 2 1/2
< = 1 MmEm_p oo (N)=I— x g2k Y2, (9h)
8En(Ep) E Fno(Fpo) .:!!Lm: m l{! EII:E B sn(sp) ! n(p) elryg, Bj:' Enisp)!?

. . E [ .::q' EowlE I:N'
Which gives: An':p]' (N*j = M , Ean(Fpn}(N*j = *hegp gy ()

N () (N7) Exm;,:pj(x}x:nﬂ'
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BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by!?:

AE e (N Ty, x) & ay + =225 NE + 2, x =22 NE x (2.503 x

z Iird[ n:uI:' zlrgy aj-'xj

= 1 z 1
[_ECE [:rsn,:sp}ﬂ k4 rsn,:sp}) + EIE b e |: EEI':I} :|4 b |fm"'.£:'_ bt NE+ 234 W |: En'..l’:' :|2 % N: +

EI:'-"d[aj-'x:I 11' miy i () E':f'd.j a:ux:'
5 .
( - = N-
235X|: fzuxx} :|2st’ N, =———,
=(rgrayx) r 5.999%10%7 cm (10a)

Here, a, = 3.8 X 1073 (eV), a, = 6.5 X 107*(eV), a; = 2.85 X 1073(eV), a, = 5.597 X 1073 (&V),
and a; = 8.1 X 107*(eV).

Therefore, at T=0 K and N* = 0, and for any rg), one gets: AE 0, according to the

gnigp)

metal-insulator transition (MIT).

Secondly, one has?:

B . 2.201 z.:n-_
AE (g r(T) = 020251 X [1 +( ) ] —1] (10b)

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — GaTe,_, [As,,Sb_, P, ] —crystalline alloys, in order to obtain the same one, as given

in the n™ — GaTe,_, [As,,Sb_, P_]—crystalline alloys, according to the reduced Fermi

Epp (Fpy (Norg (2% T)
kgT

energy Eenirpy Snrpy (Norgeay, % T) = = 0(=< 0), obtained respectively in the

degenerate (non-degenerate) case.

For any (N,rs.),% T), the reduced Fermi energy €, (N.ra¢.),% T) or the Fermi energy

n(p)
Era(ep)(NoTacw.x T), obtained in our previous paper, obtained with a precision of the
order of 2.11 x 107*, is found to be given by:

E [uj] EFm‘Fp‘\':'-‘:' _ G':U:'+A.UBFI:I_1} _ Wiu)
n(p) I-"EIT 1+A.I.IE - Wiu)

,A=10.0005372and B = 4.82842262, (11)
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5
. . N o) (RxmpxkgT
Where u is the reduced electron density, u(N,ry,,%T)= ﬁ Nt (TX) = zgw}x(w)

(™),

B, ——

F(u) = aus(1—|—hu s 4 cu s] ,a=[3vm/4]™® b= %[g)z o= ST My angd

1520 B

]
G(u) = Ln(u) + 27z xu x e™¥; d = 2372 [‘;__i] = 0.

27 16

So, in the non-degenerate case (u << 1), one has: Egyrppy (W) = kg T X G(u) > ky T X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u = 1),

e Bk (V)

e pl () mmg

Iz 4 B
one gets: Epyppy (U 1) = kg T X F(u) = kT X aus= (1 +bu =+ cu'E)

el .. E
asu — oo, the limiting degenerate condition. In other words, €., = 2208 s accurate,
N kgT

and it also verifies the correct limiting conditions.

In particular, as T—0K , since u*—=0 , Egq (11) is reduced to:
Rk
Epno(rpoy(N*) = ﬂiﬁ?— , being proportional to (N*)*3, and also equal to 0 at N* = 0,

;)-Cm pﬁlx}x
according to the MIT and noting that EFHDI:FFD}[mr(x])}EFHD':FFD}[m:(v}(x]) since

m, (x) < m_.,(x) for given x.

clwv)

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of g, (N,rd,:ﬂ,x,T).[g]

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")7t |
Y= (E - EFn(Fp}jf(kBTj'

So, the average of EF, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

af a _ 1 et
2 = 2
{E jl1"EIEI1" =G ( Fanp}:] X EFE'.II Fp) — ..r EF X { BE) dE’ T kgT X (1+e¥)2’

Further, one notes that, at 0 K, — = = 8(E — Expo(rpe) ) S(E — Eppnorrpe)) DEING the Dirac

delta (5)-function. Therefore, G, (_EPnn(Fpn}) =1

Then, at low T, by a variable change y = (E — Eg,gp) )/ (ks T), One has:
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G [EFH,FPJ}_ 1+ Eprgm X T 1}_ X (kg Ty + Eppeppy ) dy=1+Z0_,, CEX

Where cf =p(p—1)..(p —B +1)/B!  and the integral I is given by:

yFxel vE
IE - -Jr—q.c |:|_.|..:_l }" - .Jr_

=dy, vanishing for old values of §. Then, for even

“":Ie' L :I

values of B = 2n, with n=1, 2, ..., one obtains:

_ oy el
Ln =2 [ zapdy.

Now, using an identity(1 + e¥)™2 = £%,(—1)*"1s x e"*Y 3 variable change: sy = —t,
the Gamma function: f: t™e *dt=T(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: Z(2n) = 2**7*n**|B,, | /(2n)!, B,, being the Bernoulli numbers,
one finally gets: I, = (2*® —2) x 7 X |B,,|. So, from above Eq. of {E®}zppg, We get in

the degenerate case the following ratio:

(EF) p (p—1)..(p—2n+1)
GF‘ [EFH':FP]') = gEP R =1+ E

, X (27" —2) X [By, | X y** = Gy (), (12)
Fn(Fm (2n): ) P

b _ mkgT . _ mkpT T
e ——, noting that G, _,(yv=——=
m(p)(NT)  Epnerp (N°.T) g p=1(¥ EFn(Fp) E’n::P:‘:]

T— 0K, Gyuy(y = 0) = 1.

Where v =

=1, and as

Then, some usual results of G,.,(¥) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G,.,(y = Enlj, due to the Fermi-Dirac distribution function,
(B)

are used to determine the electrical-and-thermoelectric coefficients.

Gas2(¥) G, (v) Ggya(¥) G3(¥) Go/2(¥) G, (¥) Ggy2(¥)
(1+2+2) (1+%) (1+%-20) a+y) (14355 +2) (1424 )
(14287 )
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OPTICAL-AND-ELECTRICAL PROPERTIES

Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition
(M = m () [me (e (]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — GaTe,_, [As,,Sb,, P, ] —crystalline alloys, in order to obtain the same one, as

given in the n* — GaTe,__ [As,,Sb_, P, ] —crystalline alloys, according to the reduced

Epn (Fp (N.rd (a).6T)
kgT

Fermi energy Epnppy o Epppy (Nt xT) = =0(= 0) , obtained

respectively in the degenerate (non-degenerate) case, giving:

EFI!‘.ID':FFID:' = EFn':Fp} (Nlrd':ﬂ:”x’T = Dj-

Then, in the n* (p*) — GaTe,_, [As,,Sb,, P, ] —crystalline alloys, and for the temperature
T(K), One has:
(i) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn!(gp!} = Ec':v:l - Evc\'::n:l = Egni.l:gpi} - ﬂEgn(gp}:N’(N%‘j - "ﬁEgn':gp:l:T(Tj! (13)

Where E_yizpiy IS the intrinsic bang gap, AE .. (N¥) and AE_, (.. (T) are respectively the
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),
and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = fiw, and the optical

band gap by Egnl':gpl} = Egn!fgpﬂ + EFn(Fp}'

Therefore, for E = E_,1.,1), the effective photon energy E* is found to be given by:

E"=E—Egn(gp) =E— [Egn?{gpﬂ + EFnEFp}) = 0. (14)

From above Equations, the (OP — E-OP)-transition means that:

E*=[E—E 1], given in the OP, in which E = [E 1+ Egnepy ], is reduced in the

enligp gnllgp

E-OP, in which E = [E_,i(z01) T Epnirpy] and m,(x) are now replaced by

E = [Egna(epz) T Ernegy] and my . (%), t0: E* = E— E_ 52 = Epncrgy, and reciprocally,

noting that Ez,pg) (M, (%)) = Egqirp) (mc,:v} (xj) since m, (x) < m_,,(x), for given x. (15)

Eqg. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into

conduction  (valence)-bands, observed in the n"(p*)— type degenerate
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GaTe,_, [As,,Sb,, P, ] —crystalline alloys, Ep,py, are well defined, noting that at this
discontinuous (OP — E-OP)-transition: Eg,zy) [mr(x]] = EFn':Fp}(mcI:v} (x]), according to

the discontinuous case.

Optical Coefficients

The optical properties for any medium, defined in the OP and E-OP, respectively, according
to: [m:‘],:p} = m, (x) [my (xj]] , can be  described by the  complex
refraction: Mg = ngpg; — iKgey » Nopgy aNd  kgpg; being the refraction index and the
extinction coefficient, the complex dielectric function: &g = 40148 — 820287, Where

i* = —1, and Eqpg; = Nggg°. Further, if denoting the normal-incidence reflectance and the

optical absorption by Rqpg; and o<q g, and the joint density of states by:

. .oy B2 7
) 1 o (Fam® E~Egn: (gps) - —

]DDSHLF:‘H[E] (E] T 2n? X ( L ) X [E_[Egn:igpﬂ‘l'EFn:jij_EFnu:jFpnj]] X NFEFHDI:FPD} '

_ _ ka*xlw(E)|® 2.
and Fo g (E) = S one gets™:

E X €301261 (E) _ 2E X xg[g) (E)
o E) =]D0OS_; El = F E)= — =
O[E] (E) =] nxp}n[lz]( ) G[E][: ) hcnﬂ[E][E] he
Cllg[g] (Ej X Efres space’
_ ) _ Ex2gn[zE; E) _ 2E xrgg LE) _ 4 og g (E)
DCB[E] (Ej - ]DDSHKP}H[E] (Ej X FH[E] (Ej F“:nﬂ[E:':E} P EHU[E:I:E}XEEEBB space
= 2 2 - ng g —1] +xprm: >

100151 (E) = Nopm” — Korgy s S2002e1 (E) = 2Kp gyppg, AN Ry (E) = %H—ziﬁiﬁ: . (16)

It should be noted that, such the above joint density of states yeilds: (i) as E = E_p1(gp1) (T),

Zmp (%)

3/2
JDDSHEP}H[E] (E:] = ':I, and (") as E — 0 ’ ]DDSn.p}u[EJ(Ej —+ # X (T) X *.."EFI:IDI:F[JD} .
Further, £q.qq -pace 1S the permittivity of the free space, -q is the charge of the electron,

| Vore] (E)| is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index ngg; is found to be defined by!?l:

_ B ;E+C,;
nﬂ[E] (Er rdl:a:lj = ncu: (rdl:ﬂ;:lj + E?:i#E_:::L —* ncu: [rd':a})l as E — 00, (17)

Now, the optical [electrical] conductivity a4z can be defined and expressed in terms of the

i

My () (x)=my

kinetic energy of the electron (hole), Ey, = — , k being the wave number, as:

wWww.wjert.org ISO 9001: 2015 Certified Journal 235




Cong et al. World Journal of Engineering Research and Technology

Ey

T 1/2
oo (k) = 3 & ) , which is thus proportional to E,. .

mxh k:n[s o

X [k X E'Bn(Bp}] X (

Mnip)

z
Then, we obtain: (E2), 0. = G, (v = =2) X EZ, g,y @Nd Gg(y]:(l + y?) = Gy(N,ry(q).x.T),

Eijij

T

withy = 51:_
i)

 Eate) = Entpy(NiTaca).x, T) for a presentation simplicity.
Therefore, from above equations (16, 17), if denoting the function H[N, Ta(a) % T) by:

H(N,rgr5.%T) =

an':pr":N-} |I =
[—R!nl:!pjl:n-} > [kFﬂ':Fp}[NB:] 4 EIBH':BFI:' [I‘dl:&},}{)] > -.JAH':F:' (N*j =

Gy (N, rg(e), %, T)

Efng ':Fp:l"."':N-:':|
Mg (p)(N7)

-
s

Fno(Fpe) (NEN, our optical [electrical]

L [ - -
Where R_, ., (N*) = —2£. peing proportional to E
. an':prl

conductivity model can thus be assumed to be as:

0o(N. 1y % T.E) = 05(N. 1400).% T.E) =
z i

4 . A

vy X H[N,rd,\&},x,T) X = X H[N,I’d,:ﬁ:),x,T) X

{ E-Egp,(gps) } ( 1 J* and [ E—Egnz (gpa) ]‘ [ 1 )’ (18)
E_[Egn:':gp‘_‘+EFn'ﬁFp3_EFnu':Fpu)] ohmxem E'[Egm\igpa"+EFn|jij_EFnu[Fpuj] ohmyxem

z
Where —— = 7.7480735 x 10™° ohm™1.

wxk
It should be noted here that:

e’
ek

(i)GD[E](E = Egnligpﬂ[Egnligpﬂ]) =0, and ogpg (E = ) = X H(N,ry¢,),% T) = Constant

for given (N, ra.4),% T) —physical conditions, and

(ii) as T— 0 Kand N* =0 [or Eg_,(gpe)(N*)] = 0,according to: H(N,ry,;,x T) = 0, and
for a given E, [E—E_u;(epn] = [E— Egnigepn]=Constant, then from Equations (16-18),
ngg; (E)= Constant, ogpe(E) =0, Ko (E)=10, gipg(E)= (n.)* = Constant ,

£2002e1(E) = 0, and o<qpg; (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.?
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Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [o,(E), xo(E), £.5(E), and o5 (E)], and to the electro-optical
phenomenon ([E-OPY) as: [ox (E), ke (E), 5,2 (E), and o (E)],

[w(E)|® gn” k kpppy (N7
e T X - n.- Pﬁm-} X [krn(rp}(st X 8gn(Bp) [rd.;ﬂ},x)]] 4 G:[N:rd(ﬂ;}{,T), (19a)
LZmr}zx_\_.'qn,:P:, sn (ap)

e
=

Tqs E—Eqopn;(egnd
— 2q gna(gps)
Ko(E) = — X H(N,r..% T) X [ ] and
D[: j ”'~E}xzfraaspa|:'BXE [ *Hdla)s ) E_[Egn:lﬁgpﬂ+EFn'ﬁFpJ_EFnul:FpuJ]
2a2 E—-E (o] Z
kg (E) = — 2 X H(N, rgee.% T) X [ ST EpT ] : (19b)
”'~E}xzfreaspacax}: : E_[Egnzigpﬂ+EFn|jFp‘_'|_EFm:njFp|:lj]

Which gives: k[iz](E = E_p1(ep1) [Eenz(epn 1) = 0, and k[kg] (E — c0) = 0, as those given
in Ref.[?,

4q° E—Egns(gps) .
£,0(E) = 1 ® H[:N,rd,«ﬂ,x,T) ® [ - ERZEP ] and
Efres space *E : _[Egn:'.gpﬂ+EFm:Fp:|_EFm:I|:Fp|:|‘_'|]
4q® E—Egnz(gpa) .
e, (E) = <CH(N, 1 g%, T x[ (19¢)
IE Efres space ™ E (’ *dla)r ) E_[Egnzigp:ﬂ‘l'EFn[ij_Ean[Fpuj] !

Which gives: g, g (E=E [Eonstepn]) =0, and £ (E— o0) = 0, as those given

gnllgpl) [Pgn2igp2 Ea[zE]
in Ref.[?), and
o (E) = )
— ia KH[N,rd,:EJ,x,T)X[ — - E_EEMFEPL\'_ - ]‘ (em™) and
ten(E) X 2free space E—[Egns (epo)+ EFn(Fp) —EFno(Fpo)]

-

o (E) = SR | S— X H[N,rd.:ﬂa.,X,T) X [E_[ = Fenalgp ]‘ (em™), (19d)

hen(E)%2free space Egnzigpﬂ"’EFn[ij_EanjFpnj]

Which gives: o, [og] (E = Eaniep) [Egn2|:gp2:|:|) =0, and o, [¢g] (E~ o0) S S H(N,144,% T) = Constant,

Reny X efros space

as those given in Ref.[

Using the (OP - [E-OP]) transition, given in Eq. (15), at E = E_,1(zp1) + Egnrep), the optical
conductivity, oo, given in Eq. (18), in which my,y(x) = m,(x) is now replaced by
m,.,(x), has a same form with that of the electrical conductivity, g, given in our recent

work [1], for such the (OP - [E-OP])- transition. So, from Equations (18, 19b, 19c¢, 19d), and

for E = E_.1(zp1) [Egnatzpz) | T Ern(rp), ONES Obtains respectively, as:
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GDT[NJ‘rd':E:”x’ T!E) = izﬁ b4 H(N, ]."d,:E:,,X,T) bt ( Epnirp )‘ ( 1 )’

EfnalFpol ohmxcm

having the same form with that of ogr(N,rac0),% T) [1], as:

2 Epnipl 2
) — 4 ) Fn(Fp) ( 1 ]
ogr(N. T, % T, E) = Z— X H(N, 1409, %, T) X (EFHDEFW)) ——), (20a)
2q* Entrp)

K (N, T30, X T, E) = — 2 ¥ H(N,v3,%T) X (—P) and
OT[ dla) ) ”'~E}xzfraaspaca *(Egnalgpa) TEFn(Fp)) [ dla) ) Efno (Fpa)

2q° Epn(Fp) |
Ker (N, P, %, T,E) = — 3 * H(N,ryr.,%x T x(—" ) , 20b
ET[ dla) ) n(E}X2¢req space *(Egnalgps) TErn(Fp)) ( dla) ) Epna (Fpa) ( )

tfh:j1

20T [N,rd.:ag,,x, T,E) = X H(Nrrd-ia}!er) X( —— )‘ and

Zfres spacax':Egn:':gpﬂ+EFn':Fp3} EfnolFpol

¢f|-|:j1

X H(N, rgra),%T) X (E“‘—F‘”) (20c)

28T [N,rd.:ﬂ,x, TrE) = Epna(Fpo)

Zfres spacax':Egnz':gpﬂ+EFn':Fp3:'

tfh:j1

hen(E)x2fren spECe

Ko [N,rd,:ﬂg,,x, T,E) = ® H[N,rd,:ﬂg,,x,T) ® (M)L (em™1) and

Epno(Fpol

z ; 2
gy (N, raee), % T.E) = 29 X H(N, g% T) X (M) (em™1). (20d)

ﬁ':”':E:'ngraaspaca EPno(Fpal

One notes here that (i) the electrical conductivity oz (N, rs...% T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eg. (15), at this discontinuous (OP - [E-OP])- transition,
given in the discontinuous case :Egy(eg) (m,(x)) = EF,,.;FF.;.[mE.:,,,} (x)), since m, (x) < m,,, (x)
for given X, corresponding to: chT[mr[x)) > Opp (m:(v} [x)). In our recent work!™, all the

electrical-and-thermoelectric properties were investigated for this discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(N,rg:4.% T) -physical conditions, are reported in the following Table 3, in which

Og1 = Ogr.

Noting that H(N, r4.y.% T) is a constant for given (N, r4¢.% T)-physical conductions
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Table 3: As noted above, H(N, r4r5.x% T) is a constant for given (N,ra.% T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given as

follows.

EineV oo (E) Ko (E) €20 (E) g (E)

Eeni(gpn) 0 0 0 0

[Eenitept) T Ernrm] Opt KoT ZapT Kot

E— o0 TXH L, Constant 0 __*H_Constant
b F.u:nx_mfm,pm

EineV oz (E) xg(E) £2g (E) g (E)

Egna(gp) 0 0 0 0

[Egn:(gp:} + Ern(rp}] OgT KeT 28T g

E - 00 %, Constant 0 0 —2E _ _Constant
ik Renyg® 2free spece

Therefore, for given [N,rs.,).x, T], all the numerical results of [o4(E), kg (E), £20 (E), and
g (E)], due to the OP and those of [og(E), ¥z (E), £, z(E), and oz (E)], due to the E-OP,

being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to
explain all their corresponding past-or-future experimental results.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [, = m_,; () [m, (x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by

w
cmx K

Orherior] (Mo Taa- % T) N , and the Lorenz number L by:

Wxohm

L=2x [?) = 2.4429637 ( ) = 24429637 X 1078 (VX K™2), then the well-

known Wiedemann-Frank law states that the ratio, —=£"T  due to the (E-OP and OP)
CET [OT]
transition, respectively, is proportional to the temperature T(K), as:

OTh.ET[0T](Nrd (2% T)
o7 (0T Norg (% T)

=L xT. (21)

Further, the resistivity is found to be given by: pgrror(Nrgre) . T) = 1/0griom (Norga), % T),

noting again that N* = N — Nep, enpp) (Taga) X).
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E
s

In Eq. (20), one notes that at T= 0 K, ogr(gry (N, r4c4),% T = 0K) is proportional t0 Ez, , zpa),

&
or to (N7)=.Thus, from Eq. (21), one has: ogr(gr(N = Nepy(npp)s Tae)-% T = 0K) = 0 and

also OTh.ET[OT] (N = NCDn':ND[J}’ rdl:ﬂ:l!x.!T = ﬂ}{j =QpatN*= ﬂ, at which the MIT occurs.

Electrical Coefficients
The relaxation time Tzyror; is related to ozppor by™:

(90X i
Terior] (Mo Tata) % T) = Ogrpor)(NoTg(). % T) X ST —% . Therefore, the mobility
. - a*x (N /Ee 1)

Weror) IS given by:

— _ ax=gron(Nra@xT) _
HeT[oT)] [Nr Taca), % T) = HeT[oT] [:N *rrd'iaJ’T) = [ . -

mn.jpj'~x}x my

ogr o (Nrg (2. xT) ( em® )
A -y Vxe

(22)

Here, at T= OK, pgrem(N*rg.,.T) is thus proportional to (N*)*3, since
Sertor (N, Ta(e), T = OK) is proportional to (N*)*2. Thus, Torory (N = 0,1y, T = 0K) = 0

and pgrror(N* = 0,14, T = 0K) = 0 at N* = 0, at which the MIT occurs.

Then, the Hall factor is defined by:

=z -
lteroT; YPDDF . Gal¥) — n _ nkgT

I'HET[OT] (N, rdl:El:'rK;Tj = [':TET[DT::'FDDF]E = (G, ()] = Ep (p) (Nora(a) %) o EfnFpy(Norace =T’ and
therefore, the Hall mobility yields:
z
CIn
HHET[OT] [N’rd':a:l’x-' T) = UeT[0T] [N, Taia)s T) X THET[OT] (N*,T) [:“.-’}-Cs ) (23)

Noting that, at T=0K, since rygriom(N.raee.xT)=1 , one therefore gets:

Maerior] (N Tara)- % T) = Herpor (N Tage)- % T)

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

DeromNrgmaT) _ N' dBpq(pp) _ kgxT dip ) (u) |'E dEp(p (0 kg [3xL
— L2t i =) — = X lu = [ XTX|(uv——r)— = |—, (24)
HE‘T[DT;'-.N:F.iia:nx«TJ q dN q du 4 du q AT

Where Dgpor (N, raca.x T) is the diffusion coefficient, &, (1) is defined in Eq. (11), and

the mobility pgrrory(N.racm.x T)is determined in Eq. (22). Then, by differentiating this
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function &, (u) with respect to u, one thus obtains i“dﬁjﬂ Therefore, Eq. (17) can also be

rewritten as:

DE.'T[IIIT":NJ'&IZE:H-‘"-T) __ kgxT % u V)W) =V () W (u)
pgrioT) (Nrace =T) q W(u) ’

4 B
B

Where W' (u) = ABu®~? and V'(u) = u™* +277e ™% (1 — du) + 2Au®F(u) | (14 &) + % :

1+bu B+cu E
One remarks that: (i) as u— 0, one has: W?* 1 and u[V'XW—-VXW']~1, and

Dy gy} kgxT N s
therefore: nm™ o k8T ang (i) as u—o , one has: W2~ A2u?® and
w q

u[V/ X W—Vx W'] % Zau*3A%u®8 | and therefore, in this highly degenerate case and at
T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

DET[0T) (NorgaxT)
wgroT; (NracexT)

EEFW,FPD} (N*)/a. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

4 =
S bu_5+2cu_s)l
DE.'T[DT"-_N-'f'dl:a'J-'-"-'T:I — (

EFno ':Fpn)':'-‘} ¢
HET[OT] (M-rare . =T)

<
1+ 3 > Y =
(1+bu_g+cu_g)|

2
3

Where a = [3yi/4]”°, b=2(5)" and ¢ = %5 (m)*,

1520 e

Thermoelectric Coefficients
Here, as noted above, Epn.:Fp}(m,(XJ}}Epn.:pp:n(mc.;vg.lﬂ) Or &y (M () > Eoy (mc.;v}(:c)] for a
given T, since.  m.(x) <m,,(x) for given X, corresponding  to:

OgT [mr (X:J) = Ogr (m:(v} (x) )

Then, from Eq. (20a), obtained for Oerior) (N Tare) % T, the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sz, is found to be given by:

_ - ks m] _ —n* _ kg _ @lnceror(Eagp)
SET[OT] [N Taia)-* T} x X k T X 7E E=EpniFm 3 x q x fEnm .

Then, using Eq. (11), for the degenerate case, S, = 0, one gets, by putting

yz

Fsheriom (N; rd.;ag,,x,T} =

N E

T
EXGE(Y:EHI.F}\'J
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_ -n* kg EFS]:ET[DT:':N-JT} _ [3xL 2xEn(p) — T
SET[OT] [N,rd,:ﬂ,x,T) =5 X o X ) R X ( sxEp(p)’) —2VL X
& 1|
T
+ ZTET[0T Mott (V ) n’
—— |- =0, IT =—0
1+ ZTer (oo \K ET[OT]Mott INE (25)
according to:
EXEp | .
— nip |
8SgrpoT) _  [3xL % 3 X T Y =L % 3 % ZTer[oTiMote X [1— ZTET[OTMott)
Fnip) N ™ (1+5><En-:p31~)z N [1+ 2TeromyMord
T

Here, one notes that: (i) as €,¢,) — +00 or&,,) = +0, one has a same limiting value of
=

) . _ "t oo OSETIOT] _ .
Setrory: Serpory = —0, (i) at &,y = N e 1.8138, since B_EHEPT = 0, one therefore gets:

a minimum ( Sggpor;) = —VL~ —1.563 x 107* C"—c] and (iii) at £,¢,) = 1 one obtains:

min.

Serior; & —1322x 107* (%),

Further, the figure of merit, ZT, is found to be defined by:

_ 5%wapxT 5% 4% ZTET10T1M
ZTerior (N, a6 T) = ——— = — = [OTMote )

[1+ ZTET[EI'T:Mutt]z.

~ B(ZT . 5 . 8s ..
Here, one notes that (i) —ifllOT) _ ; y SET0T 2%ET(0m Seromy < 0. (i) at

BEnig L Hnip
. l'F - . @ ZTgrom) _ . : =
Entp) = N 1.8138, since _[_'_BEH-:;}J =0, one gets: a maximum [ZTET[GT])mm =1

,and ZTgorer = 1, and (i) at €, =1, one obtains: ZTgppp 2 0.715 and

Iz

o
ETET[DT]MDtt =3 ~ 3.290,

Finally, the first Van-Cong coefficient, VC1griqr;, Can be defined by:

d5 v 25 AEnrm
, = _N* x 25ETOm (V) e  25Em0m o )
VClgror; (N, rac % T) = —N* x 5L (2 ) = N x et X T 27)

[ 2
being equal to 0 for &, = wﬂ“?, and the second Van-Cong coefficient, VC2grg7y, as:

VC2grior) [Nrrd'ia:?’x’ T) = T X VClggpn (V) (28)

the Thomson coefficient, Ts, by:
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ds 1 [V 85 - BEm
. = ZUET[OTI (X ) = ET[OT nlp)
TSerior (NTaca, % T) =T x 2200 (1) = T x X 22, (29)
=
being equal to O for E"':Pj':*q'lﬂ?’ and the Peltier coefficient, Ptgrior , as:
PterioT [N,rd.:a:,,x,T) =T X Seror (V) (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

. —d SgTroTH
VClgror (N,racq.x T) and TSero1] (N,r44,% T) are expressed in terms of —l—~dN_ and

—
d SgrioT; . [n® _
—dT[—-, one haS [VE 1ET[CIT]-"TSET[DT]] =<0 fOI’ En':p} = 1‘|? y [YCIET[GT], TSET[DT]] =0 fOI’
= [
Ealp) = J3 and [ VClgpory Tserpor] = 0 for &, =::*q|? , stating also that for
o
_ .
En':p:' - 1‘|?-
() Sgror; » determined in Eq. (25), thus presents a same minimum
—_— 'I'_E J— —3 E
(Serom)__ L~ —1563x107* (1),

(i) ZTgrer » determined in Eqg. (26), therefore presents a same maximum:

[ZTET[DT])mm=1, since the variations of  ZTgror; are expressed in terms of

[VC1erory: TSeriori] ¥ Seroryr Serior) < 0

Furthermore, it is interesting to remark that the VC2gr;qr;-coefficient is related to our

generalized Einstein relation (24) by:

s '_
8 5eT0T) % DET[DT-I,_N,rdIZaJ.-K-TJ (V_“) kg _  [3xL (31)
1

kg _
—= X VC2 N,ryxT)=— >
aq ET[Dﬂ[ Tdla) % ) GEnip HET[OT] (NorgraxT) LK

according, in this work, with the use of our Eq. (25), to:

DeT[0T) (Norare 2 T)
EETOT W Mrar 2:%T)

ZTET[DT-MuttK[l— ETE.'T[DT-M.:tt] (V)

¥ 2 X
[1+ ZTET[0T) Mn:ltt-lz

VC2erpor) (N rara. x. T) = —

Of course, our relation (31) is reduced to: E[[D”—:}, VClgror; and  VC2grror;, being

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS
Some important concluding remarks can be repoted as follows.
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In the n*(p*)— GaTe;_,[As,Sb,,P,]— crystallinealloys, 0 =x=1 , x being the

concentration, the optical coefficients, and the electrical-and-thermoelectric laws, relations,

and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(r4,.x), ra(,) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(i) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the
order of 2.11 x 10™* [9], affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients ,
(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally
(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now

investigated, basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!*?

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate GaTe-crystal. ! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpn¢cog), defined by the

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).

Nhaccop) DEINg obtained with a precision of the order of 2.91 x 1077 , respectively, as

given in our recent works [3]. Therefore, the effective electron (hole)-density can be defined

as: N* = N — Neparepp) @ N — NE5 Tenm, N being the total impurity density, as that observed

in the compensated crystals.

(2) The ratio of the inverse effective screening length k_, ., to Fermi wave number kg,

at 0 K, R y.py (N7), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,¢,; = ﬂq|'“3—h = 1.8138, while the numerical results of the
. - w _4E
Seebeck coefficient Sgroy Present a same minimum (SET[Dﬂ)min.(_ 1.563 X 10 K],

those of the figure of merit ZTgroy Show a same maximum (ZTgrigry) max. = 1, (i) for
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Eatpy = 1, the numerical results of Sgrpgry, ZTgrror, the Mott figure of merit ZTeroruorn

the first Van-Cong coefficient VC1gpqr, and the Thomson coefficient Tsgrpqr;, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105X 107*Z, and 1.657 X 107*=,

respectively, and finally (iii) for £, = Nﬂ“ﬁ—h >~ 1.8138, ZTerommor = 1 aS those given in
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

f- L
kg _ _ 3sgrory ., Derpory(NraxT) (v K [3xL .
£ xvecz N,ry.%5T)=— X . (—] —£ = [ accordin
q ET[CIT](-. dia) ) aEni[}:' I""E'T[D'T:I-.N-'rdia:'-'x-'T:l w ) 3 1‘| I gv

in this work, to:

DET[OT] (Nrgra =T

ZTgr[oT)Mot X [1~ ZTeT[0mMOtt] .
( V), bein
BeTOT LTl B:uX.-Tj ( ], g

X 2 X J
[1+ ZTET[OT Mott]

reduced to: —EL2TI |y lerior; @nd  VC2gpory, determined respectively in Equations (24,
HET[OT]

27, 28). This can be a new result.

(5) Finally, for given [N,rg,x, T], all the numerical results of [o4(E), ¥5(E)}, £, (E), and
oy (E)], given in the OP, and those of [oz(E), ¥z(E), £,z (E), and o (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrigr (N, ra¢s,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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