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ABSTRACT
In the n*(p*) —InAs(1 —x) [P(x),Sh(x)] — crystalline alloys,

0 =x = 1, x being the concentration, the optical coefficients, and the
*Corresponding Author
Prof. Dr. Huynh Van

Cong
Université de Perpignan Via rq(a) being the donor (acceptor) d(a)-radius, given in Equations (1a,

electrical-and-thermoelectric laws, relations, and various coefficients,

enhanced by: (i) our static dielectric constant law, e(rgc),x),

Domitia, Laboratoire de 1b), (ii) our accurate Fermi energy at T = 0K, Egy(rp) (Efnocrpo))
Mathématiques et Physique

(LAMPS), EA 4217,
Département de Physique,
52, Avenue Paul Alduy, F- thermoelectric coefficients, are now investigated, by basing on our

determined in Eq. (11) and accurate with a precision of the order of

2.11 x 107+ I affecting all the expressions of optical, electrical, and

66 860 Perpignan, France. physical model, and Fermi-Dirac distribution function, as those given

in our recent works.> ¥ In the following, for given physical

conditions, all the optical coefficients are expressed as functions of the effective photon
energy : E" = E — Egni(gp1), E and Egnq(gp1), bEING the photon energy and the optical band
gap. Then, some important remarks can be repoted as follows. From our essential optical
conductivity model, oo (E*), determined in Eq. (18), all the optical, electrical, thermoelectric
coefficients are determined, as those given in Equations (19a-19d, 20a-20d). In particular,
from the optical phenomenon and electro-optical phenomenon (OP - [E-OP])-transition,
obtained for E = Egn1(gp1)+Esn(rp). and given in Eqg. (15), one observes that the optical

conductivity oot has a same form with that of the electrical conductivity, ogt, as those given
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in Eq. (20a), suggesting thus many important concluding remarks on all the optical, electrical,
thermoelectric coefficients at such the (OP and E-OP)-transition , as those given in Equations
(20a, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*) —InAs,_, [P, Sh,] — crystalline alloys, 0 <=x=1, x being the
concentration, the optical coefficients, the electrical-and-thermoelectric laws, the relations,
and various coefficients, being enhanced by:

(i) our static dielectric constant law, £(rg(a), %), rqca) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Epncgpy, given in Eqg. (11) and accurate with a precision of the

order of 2.11 x 10~* [9], affecting all the expressions of optical, electrical, and
thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.!* 2]

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate InAs-crystal.***! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density N¢pycpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
Népn(cpp): Deing obtained with a precision of the order of 2.91 x 1077, as given in our
recent works.™ 3 Therefore, the effective electron (hole)-density can be defined as:
N* = N — Nepn(eop) = N — N&pccpp): N being the total impurity density, as that observed

in the compensated crystals.
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(2) The ratio of the inverse effective screening length k ) to Fermi wave number kgp i)

sn(sp
at 0 K, Rgn(spy (N™), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rgqczy and N (or T), with increasing T (or
2
decreasing N), one obtains: (i) for &, = J% ~ 1.8138, while the numerical results of the

Seebeck coefficient Sgrjor; present a same minimum (SET[OT])mm(z —~1.563 x 1074 E)
those of the figure of merit ZTgryor; Show a same maximum (ZTgror))max. = 1, (ii) for
En(py = 1, the numerical results of Sgrior), ZTeror), the Mott figure of merit ZTgrior Mot

the first Van-Cong coefficient VC1gr (o), and the Thomson coefficient Tsgrjor), present the

same results: —1.322 x 10‘% , 0.715, 3.290, 1.105 x 1G‘4E, and 1.657 x 1G‘4E,

2
respectively, and finally (iii) for &,y = ﬂ? ~ 1.8138, ZTgrjoTmort = 1, as those given in

our recent work [1]. It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (&,¢p) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

_ 9SeT[0T) DeroT (N.raga)x.T) (Vz) kg IxL

kg V) ke _ [3xL i
< % VC2g1iom) (N, rge2), %, T) FEt S s | —» according,

q
in this work, to:

D N.rgra).%T ZT x|1-ZT .
erjor)(N.raca) )X 2 ¢ ZIET[OTMott [ ET[OT]Mott] (V), being
uerpor) (N.rdca)xT) [1+ ZTET0TMOt]

VC2grior (N, raga), x, T) = —

DET[OT]

reduced to: , VClgrror) and VC2grpor, determined respectively in Equations (24,

HET[OT]
27, 28). This can be a new result.

(5) Finally, for given [N, r4ca),%, T], all the numerical results of [og (E), ko (E), £20(E), and
o (E)], given in the OP, and those of [og(E), kg(E), £2g(E), and =« (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogror)(N,r4(a), %, T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the

n*(p*) — InAs;_, [P,, Sb,] —crystalline alloys at any temperature T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n*(p*) — InAs,_, [P,, Sb,] —crystalline alloys, at T=0 K % 3 we
denote : the donor (acceptor) d(a)-radius by rgcs), the corresponding intrinsic one by:
Tao(ao) = Fasam)» respectively, the effective averaged numbers of equivalent conduction
(valence)-bands by: gy , the unperturbed reduced effective electron (hole) mass in

conduction (valence) bands by m.,(x)/m,, m, being the free electron mass, the relative

me (x)Xmy (%)

carrier mass by: m;(x) = — 0 Fme(x)
C v

< mgy (x), for given x , the unperturbed relative static

dielectric constant by: £,(x), and the intrinsic band gap by: Ez,(x), as those given in the

Following Table 1.

Table 1: In the Imas,_, [P,.Sb,]—crystalline alloys, the different values of energy-band-

structure parameters, for a given X, are given in the following.™

In the InAs;_yPy-crystalline alloy, in Which rgo(ae)=Tasm=0-118 (0.144) nm, we have®:
gew)(¥) =1 X x+ 1x(1 — %) = 1, mgy (x)/m, = 0.077 (0.5) X x +0.09 (0.3) X (1 —x),
£o(x) = 125 X x + 14.55 X (1 — ), Ego(x) = 1.424 X x + 0.43 X (1 — ).

In the InAs;_, Sby-crystalline alloy, in Which rao(aq)=rasam=0.118 (0.144) nm, we have®:
g =1xx+1x(1-x) =1 ,
mccv)(x)/mo =0.1(0.4) Xxx+0.09 (0.3) X (1 —x), g,(x) =168x x+ 1455 x (1 —x),

Ego(x) = 0.23 X x + 0.43 X (1 — x).

Here, the effective carrier mass m;(p} (x) is equal to m(y)(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:

13600 X [my ) (X) /mo]
[£0 ()] mev,

Edo(ao)(x)

Edo(ao) (%) = and then, the isothermal bulk modulus, by:

Bdo{an} (X) = (

N
?}X(rdo(am)
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Our Static Dielectric Constant Law [m;(p} (%) = mey (x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(rq .y, x), developed as follows.

At rg(a) = T'dean), the needed boundary conditions are found to be, for the impurity-atom

volume V= (4m/3) x (rd(a}f, Vio(ao) = (41/3) X (rdo(m}f, for the pressure p, p, = 0,
and for the deformation potential energy (or the strain energy) «, a, = 0. Further, the two

important equations, used to determine the @ -variation, A « = a —a, = «, are defined by :

dp_ B _da . dda, B . . _
v and p=—, giving rise to : l:W(CW =5 Then, by an integration, one gets:

[Ac(rqca), K)]n ® Byo(ao) (X) X (V- Vdo(ao) ) X In
3 3
V= Td(ay . Td(ay -~
(Vdo(aoj.) Edo{ao} () X [(rdo(aoj) 1} X In (rdo(aoj.) = 0.

Furthermore, we also showed that, as rqga) > Tao(ao) (Td(a) < Tdo(ao)), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gp)(Taca) x), and
the effective donor (acceptor)-ionization energy Ed[a}(rd{a): x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : 4 [Aa(rgca), x)]

n(p)’
g0 )’
Egno(gpo} (rd{a};x) - Ego(x) = Ed{a} (rd{a}; X)— Edo{ao} (x) = Edo{ao} (x) X l(E(:d(a“J) -
1| = A
for T'd(a) = I'do(ao) and for T'd(a) = I'do(ao)
£q(x) 2
Egno(gpo} (rd{a};x) - Ego(x) = Ed{a} (rd{a}; X)— Edo{ao} (x) = Edo{ao} (x) X l(E(:d(a“J) -

1] = — [ﬂa(rd[a},x)]n(p)

Therefore, one obtains the expressions for relative dielectric constant e(rq(ay,x) and energy

band gap Egn(gp) (raca), %), as:
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£0(x)

(i)-fOI‘ I'd(a) = I'do(ao) since E(I‘d{a),}i): | SED(}{), bEing a new

|1+[( Tdca) )3—1}<1n( Td(a) )
_“| T'dogao) T'do(ao)

E(I‘d(a}, X)-Ia.W,

aeay \°
Egno[gpo} (I‘d.[a},}{) - Ego(x) = Ed(a} (rd{a}: K) - Edo{ao} (X) = Edo{ao} (X) x [(ﬂ) - 1} x

Tdo(ao)

Tdca) 3

n (—C : ) =0,
Tdorao

(1a)

according to the increase in both Egngp) (Taca) %) and Egcay(tacay, ), With increasing raca

and for a given x, and

£g(x)

(ii)-for rgca) = rapan) » SiNCE £(rgea),x) = = > g,(x), with a

.3 .3
(o) -1 el

Taran )2 Fares %3
condition, given by: [(ﬂ) — 1] X In (i) <1, being a new &(rya), X)-law,

Tdoao T'do(ao)

3
r §]
Egno(gpo} (I‘d[a},}{) - Ego(x) - Ed(a} (rd{a)l X) - Edo{ao} (X) - _Edo(ao} (}i) X [(ﬁ) -

Tdoraoy
1] X In (2 )3 <0

T'do(ao)

: (1b)

Corresponding to the decrease in both Egyo(epo) (Faca), x) @nd Eqea) (raca), x), With decreasing

rqca) and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new &(rga), X)-law.

Furthermore, the effective Bohr radius agngp) (raca),x) is defined by:

_ e(rqea)¥)xn® —g E(rdgay.X)
agn(p) (Ta(a),X) = My gy ()Xmexq? 053 x 107" cm X mp ) (%)’ )

Generalized Mott Criterium in the MIT [m}i(p) (x) = Mgy (%)

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepnvpp) (Taca)y, X), was given by the Mott’s criterium, with an empirical parameter,

1,2,3].
Mn[p)i as [ ].
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1
Neon(eop) (Faca) %) /3 X agn(ep) (Fagay, ) = Mngpy, Mp = 0.25, 3

depending thus on our new &(ry,), X)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz
(WS) radius rgp(sp),m» in the Mott’s criterium, being characteristic of interactions, by :

2

1/3 1
Tsn[sp‘,l,M[:N'rd(El)’X) = (ﬁ) .

=1.1723 x 10° x &)”3 x

My, o) (%) ¥,

(4)

- 1
2gn(8p) (Td(a)}X) 2(Td(a)pX)

being equal to, in particular, at N= Nepneenp) (Taga), X)
rsn{sp},M(NCDH{CDp)(rd{a)JK)J rd{a),x): 2.4813963, for any (rg(a),x)-values. Then, from Eq.

(4), one also has:

1

1 3 \z 1
Nepneenp) (Tagay X) 2 aga(ep) (Tac) X) = (;)3 X S raraoes = 0-25 = (WS)uq) = My, 5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using My, = 0.25, according to the empirical Heisenberg parameter
Hppy = 0.47137, as those given in our previous work®), we have also showed that
Nconcepp) 1S Just the density of electrons (holes) localized in the exponential conduction
(valence)-band  tail ,Ngpipp . With a precision of the order of

2.91 x 1077 ,respectively [l

It shoud be noted that the values of My, and #, ) could be chosen so that those of

N¢pnceppy and NESE(CDP} are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rga),x) = N — Nepnvpp) (Taca),x)= N7, for a presentation simplicity. (6)

In summary, as observed in our previous paper [3], for a given x and an increasing rqa,

e(raca),x) decreases, while Egnoggpo)(Taca), ), Nepnvop) (Faca),X) and Nénaccop) Ta(a) ¥
increase, affecting strongly all the optical, electrical, and thermoelectric coefficients, as those

observed in following Sections.

PHYSICAL MODEL
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In the n*(p*) — InAs,_, [P,, Sh,] —crystalline alloys, the reduced effective Wigner-Seitz
(WS) radius ren(spy, Characteristic of interactions, being given in Eg. (4), in which N is
replaced by N*,is now defined by:

_ Kengep)

¥ X Tsn(sp) (NH) =

_ (38cw)\ M3 1
<1, FSH(SP}(N’ rd(a}’x) - (MN”) % agn(ep)(Tda) X

1

)3 is the Fermi wave,

, being

IEN(Ep)

3 N*

proportional to N* ™3 Here, y = (4/9m)*/3, Ken(epy(N¥) = (

gc(v)

g(v) being the effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length kg, .,y to Fermi wave number
Kgn(kp) IS defined by:

ksni Ken(
Rsn(sp] (NH) = Sn\SE) _ Fn‘FE) =R

ke K1 snWS(spWs) + [RsnTF(spTF] - RanS(spWS]]E_rsnEsP) <1, (7)
Fu(Fp) snisp)

being valid at any N*.
Here, these ratios, Rqnte(sprr) and Repws spws), can be determined as follows.

First, for N > Ngpnwpp) (faga),x) , according to the Thomas-Fermi (TF)-

approximation, the ratio Rgprgsprr) (N”) is reduced to

- KsnTr(spTF) kF_'r{(Fp“u 4¥Tsn(sp)
R (N*) = L= — L= L ], 8
snTF(spTF) kenerp) ksr}TF(SpTF) n (8)

1/6

being proportional to N*

Secondly, for N << Nepnnpp) (Tacay), according to the Wigner-Seitz (WS)-approximation,

the ratio Rgpwsesnws) IS respectively reduced to

P ) d[rZ, o X EcEM™)
Resipps(N') = "S5 = 0.5 x (2, — y ongmr et (%)

Where Eg(N*) is the majority-carrier correlation energy (CE), being determined by:
0.87353 +(2[1—1n(2)])

—0.87553 0.0908+Tgp 5 P
0.0908+Tsn(sp) 1+0.03847728 xréif(?s%?.ga?ﬁ

Xln(rsn(spj}_ﬂ.ﬂggzss

Ecg(N°) =

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

1 1 ||2“X'EaNl: )]
kEI’l[Fp“l Mn(p) 1 kEI’l[F’[J‘l . | Bc(w) ~1/2
L ) = < =B =R < 1, N =*—xqg’k , (9b
agnsp) Erno(Fpo)  Angp)  Kensp) sn(sp) nn(p}( ) e(raca)) 4" Xsn(sp) (9b)
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h? Xk%n(ij (N7)

2xm o (X)Xmg

Which gives: A,e)(N*) = Ernopo (V) Efno(rpo) (N*) = -
n(p)

Nn(p) (N)

BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by!?:

1 1
* i~ SG{x} 3 Eo(x} 3
.ﬂlEgn(gp};N(N ,rd{a);x) =~ ay +—3(1"cl(aj.41") X Nf + a; X m X Nra, X (2.5'3'3 X
3 1 1 1
_ gglx) [* My (c) : g(x) |2 2
[ Eez (FSHESP})] % rsn(Sp}) Tag X [E(Td[aj,x)} % 1Jm;1(pj(—'4} XNy +2a, % [S(rd[ajxj} XN+

3
—_— 1 .
2a: X [ f00) r x N, N, = N

e(ragayx) ~ 9.999%x107cm—%’

(10a)

Here, a;=3.8x10"3(eV) , a,=6.5X%x10"%(eV)
a, = 5.597 x 1073(eV), and a5 = 8.1 X 107*(eV).

, a3 =285x1073%eV)

Therefore, at T=0 K and N* = 0, and for any rq.,y, one gets: AE = 0, according to the

gn(gp)
metal-insulator transition (MIT).

Secondly, one has:

AE gy (gp7(T) = 0.20251 X ([1 + (ﬁ)mmrm - 1). (10b)
FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p" — InAs;_, [Py, Sb,] —crystalline alloys, in order to obtain the same one, as given in the
nt —InAs,_, [P,, Sh,] — crystalline alloys, according to the reduced Fermi energy

Epngrpy (N.rdg@)xT)
kgT

Eeneep) + &np)(NoTaa), %, T) = > 0(< 0) , obtained respectively in the

degenerate (non-degenerate) case.

For any (N,rqa(a),%x,T), the reduced Fermi energy &) (N,r4ca),x T) Or the Fermi energy
Egn(rp) (N, Taca), %, T), Obtained in our previous paper®, obtained with a precision of the

order of 2.11 x 1074, is found to be given by:
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£ () = Ernrpy () _ Gu)+AuPFu) _ v(u)
nE)\ = et T 1+au® T ww)!

A = 0.0005372 and B = 4.82842262, (11)

- . . N*
Where u is the reduced electron density, u(N,rqe),xT) = Ne@0
2 2z
s (x) k 2z 2z _4 _B
Nc(v} (T, X) = ch(\,} % (%I;M)Z (cm_3) , F(u) — aus (]_ +bu"z 4+ cu 3) 3’
2/3 3
a— [3\;’_/4] / —— (“) — 523739855 (“) , and G(u) =~ Ln(u) + 272 X u x e79u;

1920

d = 23/2 ,L_—i] > 0.

V27 16

So, in the non-degenerate case (u << 1), one has: Egygpy (1) = kg T X G(u) =~ kgT X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u >> 1),

2

2 _4 _8\"z  h*xk A (N®
one gets: Eppepy(u > 1) = kT X F(u) = kgT X aus (1 +bu"z+ cu 3) # o JOXKenEp) (V)

Zan(p (x)xmgp
asu — oo, the limiting degenerate condition. In other words, &) = FI:FP' is accurate,
and it also verifies the correct limiting conditions.

In particular, as T—-0K , since u!—=0 , Egq (11) is reduced to:

%X kg nerpy (N7)
ZXm;ll:pj (X}Xmo

Egno(rpo)(N™) = , being proportional to (N*)?/2, and also equal to 0 at N* = 0,

according to the MIT and noting that EFnD(FpD}(mr(x)) > Efno(Fpo) (mc(v}(x)) since

m, (x) < my (x) for given x.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of &) (N, rq(a),x, T).!

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E) =(1+e¥")7" |
Y = (E — Egncep))/ (kg T).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works™ %is found to be given by:

af af 1 e¥
{EP)pppr = G (EFH{FP}) X Epn(pp} = j EP x ( QE) dE, T E kgT X (1+e¥)?’
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Further, one notes that, at 0 K, —— = 8(E — Epno(epo) )» 8(E — Esno(epoy ) being the Dirac

delta (8)-function. Therefore, G, (EFHD(FPD}) = 1.

Then, at low T, by a variable change y = (E — Egp(gp))/(kgT), One has:

_ -p w eV P. _ P B
G (EFHEFP}) =1+ EFn(Fp} X J—m (1+eY)2 X (kBTY + EFHEFP}) dy =1+ Zuzl,z,...cp X

(kgT)B X E_P

Fn(Fp) X IB

)

Where CB =p(p—1)..(p—B+1)/B! andthe integral I is given by:

© yBxeV -
jm(‘i:j)z = f_mmdy, vanishing for old values of B. Then, for even

values of B = 2n, with n=1, 2, ..., one obtains:
B o anxey
zjﬂ (1+eﬂ’)2
Now, using an identity(1 +e¥)™2 = X2, (—1)5*'s x ¥~ 3 variable change: sy = —
the Gamma function: fﬂmtzne_tdt =T(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: {(2n) = 2*"~1nt??|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I, = (22" — 2) x ™" x |B,,|. So, from above Eq. of (EP)gppr, We get in

the degenerate case the following ratio:

(EP) p p(p—l]...(p—2n+1j n__
(EFn(Fp]) - EFn::JF 1+ E (zn)! x (22 2) X IB2n| x Y p}l(y) (12)
kgT . kg T T
Where y = ———— = — 2 noting th (y=——=")= n
ey En(p)(N".T)  Epngrpy(N"T)’ oting that Gp_l(y Epnerp) Eu(pj.) 1, and as

T=0K, Gp>1(y— 0) = 1.

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G,.4 (v = EL)’ due to the Fermi-Dirac distribution function,
n(p)

are used to determine the electrical-and-thermoelectric coefficients.

Ga2 () G2(y) Gs/2 () Gz (y) G7/2 () Ge(y) Ggy2 )

(1+5+35) (1+%) (143 -30) ary (13030 (v + ) (10375
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OPTICAL-AND-ELECTRICAL PROPERTIES
Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition

[m;(p) = my (K)[mc{v} (X)]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — InAs;_, [P, Sb,] —crystalline alloys, in order to obtain the same one, as given

in the n* — InAs;_, [P, Sb,] —crystalline alloys, according to the reduced Fermi energy

Epngep)(N.rda)%T)
kgT

Eeneep) + &np)(NoTaa), %, T) = > 0(< 0) , obtained respectively in the

degenerate (non-degenerate) case, giving: Egno(gpo) = Ern(rp) (N, Ta(a), %, T = 0).

Then, in the n*(p*) — InAs;_, [P,, Sb,] —crystalline alloys, and for the temperature T(K),
One has:

(1) in the electrical phenomenon (EP), the reduced band gap is defined by:

EgnZ(ng} = Ec(v} - Evo(co} = Egni{gpi} - "E‘Egn(gp}:N(N$) - ﬂEgn{gp}:T(T)l (13)

where Egpi(gpi) IS the intrinsic bang gap, AEgpgp) (N) and AE,y,.p) (T) are respectively the

reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),
and

(i) in the optical phenomenon (OP), the photon energy is defined by: E = Aw, and the optical
band gap by: Egni(gp1) = Egna(gp2) + Een(rp)-

Therefore, for E = E the effective photon energy E* is found to be given by:

gni{gp1)
E" = E — Egni(gp1) = E — (Egna(gp2) + En(ep)) 2 0. (14)

From above Equations, the (OP — E-OP)-transition means that:
E" = [E — Egni(gpn)]: 9iven in the OP, in which E = [Ezn1(gp1) + Ernepyl, is reduced in the

E-OP, in which E = [Egni(gp1) + Eensp)] and my(x) are now replaced by
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E = [Egna(gp2) + Een(epy] aNd me(yy (%), 101 E” = E — Egna(ap2) = Een(ep). and reciprocally,

noting that Epn(pp}(mr(x)) > Egn(ep) (mc(v} (x)) since m,(x) < mgy(x), for given x. (15)

Eq. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into
conduction  (valence)-bands, observed in the n*(p*)— type degenerate
InAs;_ [Py, Sh,] — crystalline alloys, Egygy), are well defined, noting that at this
discontinuous (OP — E-0P)-transition: EFn(Fp}(mr(};)) > Egn(ep) (mc(v}(x)), according to

the discontinuous case.

Optical Coefficients

The optical properties for any medium, defined in the OP and E-OP, respectively, according
to:  [mpp =mE[mewy(®)]] , can be described by the  complex
refraction: Ngg; = nopg) — ikorg) » o) and kg being the refraction index and the
extinction coefficient, the complex dielectric function: Eog) = £1001g) — i220125), Where
i = —1, and Eopg; = Nogg . Further, if denoting the normal-incidence reflectance and the

optical absorption by Rog) and o(g g, and the joint density of states by:

. 3/2 2
_ 1 (Pp® E—Egna(gp1) .
]Dosn(p}o[m (E) = 2m? X ( i X E—[Egm[gp:lj.+Epn(ij.—EFno(_'Fpoj|] % EFHD(FPD}, and

rq® x|v(E)|?

n({E)*cEXEfree space

Fopg (E) = , one gets!?:

E X £20125)(E)  2E X ko (E)

%oy (E) = JDOSyp00E) (E) X Forg (E) = henom (E) hc

_ 41‘[00 [E] (E)
Chg[E] (E) X Efree space’

X £20128)(E)  2E X xorg) (E)
hCI‘LO[E] (E) N fic

E
Korg (E) = JDOSy(py0(g (E) X Forg (E) =

- 41'[00 [E] (E)
CNo[E] (E) X Efree space

2
[HD[E]—1] +KD[E]2

£10125] (E) = noge)” — *oig)” » 201261 (E) = 2opgnopg » and - Rogey (B) = 77 "I s

(16)

It should be noted that, such the above joint density of states yeilds: (i) as E = Egp1(gp1) (T),
JDOS,(pyorg (E) =0 : and (i) as E— o ,
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. 3/2
1 2my oy (%) . L.
JDOSyp)0rE] (E) = 7= X (—r;ff—) X /Efno(epo) - FUIher, eqqq space 1S the permittivity

of the free space, -q is the charge of the electron, \VO[E] (E)| is the matrix elements of the

velocity operator between valence (conduction)-and-conduction (valence) bands, and the

refraction index nqg; is found to be defined by*:

4  BpiE+Cyi

i=1 E2-B4E+Cj = gy (rd{a})a as E — oo, (17)

ngE)(E, Ta(a)) = Nw(Ta) +2

Now, the optical [electrical] conductivity oq g can be defined and expressed in terms of the

2 2
kinetic energy of the electron (hole), E, = 5 XK , k being the wave number, as:

Xm;ll:p':l (x}xmo

1/2
_ q’xk k Ex ‘b . 2
oorg) (k) = —— X T—— X [k x ﬂBn(Bp)] X (nnm) , Which is thus proportional to Ei~.
Then we obtain: (E?) = G,(y = =Ty x E2 and
. . FDDEF = \b2l¥y = F— Fn(Fp) ]

2
GZ(};) = (1 +%) = Gz(N, rd{a}yx; T) 1 Wlth 3" E%{[ﬂ ’ En{p} - En(p}(N:rd(a}:}{; T) for a

presentation simplicity.

Therefore, from above equations (16, 17), if denoting the function H(N, rg¢a),x, T) by:
H(N, raqa), %, T) =

SN o [Kemgrgy (N (racep )] X _[Angy (%) =
mx[ Fn(Fp) X agn(gp)\Td(a)X)] X [An(p) =
G2 (N, raga), %, T)

Epno(rpo)(N7)
Nn(p)(N™)

Where Rgnspy (N7) = % being proportional to EEHD(FPD}, then, our optical [electrical]

conductivity model can thus be assumed to be as:

g (N, raca), % T, E)

2
q
— Txh X H(N;rd{a)yx-! T) ,
E—E 1
y [ gni(gpl) I ( - ) and Og (N, raca) X T, E)
E— [Egnlfgpl} + Epn(rp) — EFHD(FPDJ] ofm x cm
2
q
= — 5 X H(N,1a@),%, T)

2
X l gn2(gp2) l ( ) 5)
E— [EEHZ(EPZ} + Epneep) — EFHO(FPO}] ohm X cm
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z
Where % = 7.7480735 X 1075 ohm™1.

It should be noted here that:

(I) Og [E](E = Egnl{gpl} [Egnz{gpz}]) =0 ) and
2

oog) (E = @) = % X H(N, rd(a},x,T) = Constant for given (N, rd(a},x,T) — physical

conditions, and

(i) as T= 0K and N* = 0 [or Egno(epo) (N")] = 0, according to:H(N, Td(a), X, T) =0, and
for a given E, [E — Egnicgpn)] = [E— Egnicgpp]=Constant, then from Equations (16-18),
Ng[E] (E): Constant, OQ[E] (E) =0, KO[E] (E) =0, €10[1E] (E) = (I’lm)z = Constant ,

£20p28](E) = 0, and g (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.?

Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [go(E), ¥o(E), £20(E), and o (E)], and to the electro-optical
phenomenon ([E-OP]) as: [og(E), kg(E), €2 5(E), and o (E)],

Iv(E)I2 8mZh ken(rp)(N7)
- 5 - X RFn(ij(NH} X [Kencep) (N") X agnap) (Faca) %) | X G2(N, raca), %, T),
(2my)2 X/ Mn(p) sn(sp)

(19a)

Ko (E) = 2q° X H(N,rqca %, T) % | =~ Egn1(gpy) I and
0 n(E)xefree spaceXE +hd(a) S _E—[Egm(gpﬂ+EFn(ij|—EFno(Fpo)]_

kg (E) = 20° x H(N, rqca), %, T) X - E”Bgna(gp2) I (19b)
E n(E)%efree space XE »Td(a) % _E—[Egnzt:gpz)"'EFn[ij—Emo[Fpoj]_ ’

Which gives: k[kg] (E = Egnigp1)[Egna(epzy]) = 0, and k[kg](E — o) — 0, as those given
in Ref.[?,

2
—2 —hg ent’
£20 (E) - - X H(NJ T'd(a), % T) X [E—[ e :| and

Efree space XE Eeni(gp1) YEFn(rp —EFno(Fpoju]

2
2 —Bg epz)
£2E (E) = L X H(NJ rd":ﬂ)r X, T) X [E—[ = nz(gp) ]:| ’ (19C)

Efree space XE Egnz(gp2) YErn(Fp)~EFno(Fpo)
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Which gives: 50251 (E = Egn1(gp1) [Egna(gpz)]) = 0, and Ec,or (E = ) = 0, as those given

in Ref.? and

4 2

%o (E) = 2 X H(N, ra(2),%,T)
hcn(E) X Egree space
2
£~ Egnitepy l (cm™) and

E— [Egnl{gpl} + Een(ep) — EFnO(Fpo}]

g (B) = ——C S H(Nraea,nT) X 5~ Egna(epn " (em )
E  hen(E)Xefree space »rda)y E_[Egnz [gpz)+EFn(ij_EFno(Fpoj|] !

(19d)
Which gives: o [e](E = Egni(gp1) [Egnzgpz]) = 0 , and

aq?

Xo [%g](E - ) = RCos XEfroe space

X H(N,rgqca), %, T) = Constant, as those given in Ref. [2].
Using the (OP - [E-OP]) transition, given in Eq. (15), at E = Egn1(ap1) + En(ep), the optical
conductivity, ogr, given in Eg. (18), in which my,(x) = m,(x) is now replaced by
my) (x), has a same form with that of the electrical conductivity, ogr, given in our recent

work [1], for such the (OP — [E-OP])- transition. So, from Equations (18, 19b, 19c¢, 19d), and

for E = Egn1(ap1) [Ean2(gp2)] + Een(ep) ONES Obtains respectively, as:

2
q2 E ) 1
Gor (N, Td(a), % T,E) = " H(N, T'd(a), % T) X ( Fn(Fp ) ( )

Epno(Fpo) ohmxcm

having the same form with that of oz (N, rgc,),x, T) [1], as:

(2
oer (N1, % T.E) = 5 X H(N.ra . T) X ( — ) (Srmem)

Efno(Fpo) ohmxcm
(20a)
(N T E) 2q2 X H(N T) x ( EFnCFpal )2 and
.I{ r r Jx‘] r - B r Jx, 4
oT d(a) n(E)xefree spaceX (Egn1(gp1) +EFn(rp)) d(a) Erno(Fpo)
2
K (N rg x T E) = 29* ) H(N rg X T) X Ern(Fp)
ET\ 'Y Td(a)s s 4y n(E)Xgfrea SI:IaCEX{EgnzchJZI"'EFn(pp:J std(a)s & Erno(rpo)
(20b)
2
£201(N,Ta(a), % T,E) = ‘0 X H(N,rga), %, T) ><( S ) and
free space *(Egn1(gp1)tErn(rp)) Efno(Fpo)
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4q2

£free space X(Egnz(gpz) TEFn(Fp))

2
x H(N, ra(a), %, T) X (E“‘i)

Erno(Fpo)

EEET(NJ Tq(a), % T, E) =
(20c)
2

4q
hen(E)Xefree space

2
XoT (N, Ta(a) X T,E) = X H(N, rd(a},x,T) X (M) (em™1) and

EFno(Fpo)

z E i 2
Xgr (N, Taca), %, T,E) = 9 X H(N, rd(a},x,T) X (FH—EFP) (cm™1). (20d)

fhen(E) X efree space Erno(Fpo)

One notes here that (i) the electrical conductivity og(N, racs),x, T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eq. (15), at this discontinuous (OP - [E-OP])- transition,

given in the discontinuous case: EFn{Fp)(mr(X))>Epn(pp) (mc(v}(x)) , since

m,(x) < m.)(x) for given x, corresponding to: oor(m;(x)) > ogr (mc(v}(x)). In our

recent work™, all the electrical-and-thermoelectric properties were investigated for this

discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
(N,rd(a},x,T) -physical conditions, are reported in the following Table 3, in which

noting that H(N, rac.), %, T) is a constant for given (N, 4., %, T)-physical conductions

Table 3: As noted above, H(N,rg), %, T) is a constant for given (N,r4c),x, T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given as

follows.
EineV oo (E) ko (E) £20(E) %o (E)
Egni(gp1) 0 0 0 0
[Egni(ep1) + Eencep)] Oot Kot €20T XoT
2

E— o a x;[ —Constant 0 0

2
4B ,Constant
ficn g X Efree space
E |n eV GE(E) KE(E) EZE(E) OCE (E)
Egna(gp2) 0 0 0 0
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[Egnz(gp2) + Eencep] OET KET €2ET XeT
z
E— o d X; —Constant 0 0
2
B, Constant

ficngg X Efree space

Therefore, for given [N, r4ca),%, T], all the numerical results of [ (E), ko(E), £20(E), and
oo (E)], due to the OP and those of [og(E), xg(E), £2£(E), and «g (E)], due to the E-OP,
being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to

explain all their corresponding past-or-future experimental results.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m}, ,,; = my) (x)[m, (x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by

w
cmxK

otherior)(N. T4, xT)  in , and the Lorenz number L  Dby:

2 2
L=1x (%‘3) = 24429637 (Vo) = 2.4429637 X 107° (V2 XK™2) , then the well-

known Wiedemann-Frank law states that the ratio, T‘Eﬂ due to the (E-OP and OP)
ET[OT]

transition, respectively, is proportional to the temperature T(K), as:

T N.rdra).X
Th.ET[OT](N.T'd(a).X T) — LxT. (21)
oeroT] (N.rda) % T)

Further, the resistivity is found to be given by:
PeTroT](N, Faga), X, T) = 1/0g1i01 (N, Taca), X, T) , noting again that

N* = N — Nepn(nop) (Taa), X)-

In Eqg. (20), one notes that at T= 0 K, ogr[or)(N, Ta(a), X, T = OK) is proportional to ESHD(FPO},
or to (N*)%.Thus, from Eq. (21), one has: ogr[o1)(N = Nepn(npp),Taa), % T = 0K) = 0 and

also orh g1[oT) (N = Nepn(npp): Taa), X, T = 0K) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients
The relaxation time tgrjor; is related to ogror; bY'™:

XN Ee Therefore, the mobility pgror

TET[OT) (N,rq (a)% T) = OET[OT] (N, Td(a). % T) x

is given by:
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= * qQxT (N.raa)x.T)
HET[OT] (N, I‘d(a},x,T) = !J'ET'[CIT'](N er{a};T) — ET[OT] (a _

m;ll:p'ﬁ (X})( Mg
)

oeror) (Norda)xT) (sz

QXN /8crv)) Vs

(22)

Here, at T= OK, pgron(N",rae,T) is thus proportional to (N*)1/3, since
ogriori(N*,raca), T = 0K) is proportional to (N®)*3 Thus
TET[OT) (NH =0, rd(a},T = C'K) =0 and HET[OT] (NH =0, I‘d(a},T = OK) =0atN"=0 , at

which the MIT occurs.

Then, the Hall factor is defined by:

_ (terjom®lFoDE _ _Ga(¥) y = T _ kg T and
 [tterorprope]” (6200177 T Engp) (NTqayxT)  Epngep) (NTaa)=xT)'

THET[OT] (N, rq(a), % T)
therefore, the Hall mobility yields:

. 2
HHET[OT] (N; Td(a), % T) = HET[OT] (N; Fd(a), % T) X I'HET[OT] (N*,T) ( % ) (23)

Noting that, at T=0K, since ruprior)(N,ra@),xT) =1 , one therefore gets:

tueTior] (N, Taca), X% T) = Meror (N, raca).x T).

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as [X!:

D N.raaxT N® dE v kgxT dEnepy(w) 3xL dEngp (u)
erjor)(N.raa)xT) N Fn(HFIJ,I — kpxT (u En(p) ) = 2L xTx (u Sn(p) ) ’
HET[OT‘](Nsrd(a)aX-Tj q dN q du T du

kg . 3xL

q - 1_[2: (24)

where Dgrioty (N, rd(a),x,T) is the diffusion coefficient, &, (u) is defined in Eq. (11), and
the mobility pgriory(N,raca),x T) is determined in Eq. (22). Then, by differentiating this

dEngp; (w)
du

function &, (u) with respect to u, one thus obtains . Therefore, Eq. (17) can also be

rewritten as:

Derjon (Nra@xT) _ kpxT v (w)xw(w)-v(wxw’ ()
uerpor) (N.rdca)xT) q w2 (u)
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Where W'(u) = ABuB? and
4 8

Vi =ul+2 2e_du(1 — du) + 2AuB~IF() (1 + &) + 2 K PuEr2eu 31 Ope remarks

1+bu 3+cu 3

that: (i) as u—0, one has: W2 ~1 and u[V' XW -V XxW']~1, and therefore:

Dppy(u) | kgxT
u q

u[V' x W—-VxW]= gauzﬁAZqu, and therefore, in this highly degenerate case and at

, and (i) as wu—o , one has: W?=A%u?’® and

T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

DET[GT](N rdga)X T)
MET[OT](N T'd(a). xT)

EFHD(FPD}(N )/q. In other words, Eq. (24) verifies the correct limiting
conditions.
Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

‘1- EI
bu 342cu” 3
Derpor)(N.raga) = T) L2 5 EFno(Fpoufu} ( B e )

~ = X |1 + X
LLET[om(Ner(ajv-"‘vT) 3 i1+hu S4cu 3

2,#3

Where a = [3_\;_!4] _1 (11) and c _ 623739855 (ﬂ)

1920

Thermoelectric Coefficients

Here, as noted above, Efn(ep) (Mr (X)) > Epnep) (mc@,} (x)) or
Enepy (M (X)) > &gy (mc(v} (x)) for a given T, since m,(x) < mgq)(x) for given x,
corresponding to: oot (mr(x)) > OgT (mC{V) (x)).

Then, from Eq. (20a), obtained for ogro1)(N, raca), %, T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrjo), is found to be given by:

a]nGET[OT] _ -n? _ kg _ Olnogror(Enp)
SET[OT] (N Td(a), X T) = >< >< kgT dE E=Efn(rp) B X q 9%n(p)

Then, using Eqg. (11), for the degenerate case, &,,) =0, one gets, by putting

— y?
FSbET[OT] (NJ rd(a}, X, T) =1|1— 77““ ’
3xGo y:—)
En(pj
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_ —n? kg _, 2FspeT[OT](N"T) 3xL 2XEn(p)
SET[OT] (N, rd{ﬂ}! X, T) =—X—X - . = A== axE = _ZNE X
3 En[p; L 1s ngg; )
b
J ZTET[OT]MO1t (V) . om?
| ] <0, ZT, = —
1+ ZTeTjoT]Mott \K ETIOTIMOt ™ 5xzim)
(25)
according to:
BXEn( :Iz

dSgrpoT) _ (3%L % 2 % p -1 faxu % 2 ZTET[OT‘]McttX[l— ZTET[O'I‘]Motr]
— — = | D e——— N .

9%n(p) ? 2 ? [1+ ZTET[0TMOt]

3 -
(1+—Lif§ : )

Here, one notes that: (i) as §,(p) — +9 or &,y — +0, one has a same limiting value of

2
Ser[om]" Serpor — —0, (ii) at &y = E ~ 1.8138, since‘5"(_)\5:71[1‘;Tj = 0, one therefore gets:

a minimum ( Sgrpom) . = —VL =~ —1.563 x 107* (E) and (iii) at Z,,) = 1 one obtains:

min.

Seriom = —1.322 x 107 (3),

Further, the figure of merit, ZT, is found to be defined by:

SZxogxT &7 4X ZTET[OT]Mott
2 _ [0T] . (26)

ZTgT[0T) (N, rq2), % T) = Kk L [1+ ZTerormonl

. a a ..
Here, one notes that (i) ZZETOTY _ 5, SETIOT 9 SETOOT] Sgror; < 0, (ii) at

IEn(p) L 9&n(p)
N L . d( ZTeT[0T]) _ . i =
En(p) = — 1.8138, since T =0, one gets: a maximum (ZTET[UT])maX. =1

,and ZTgrjommoce = 1, and (iii) at &,y =1, one obtains: ZTgrper; = 0.715 and

z

T
ZTET[OT]MOtt - ? =~ 329{)

Finally, the first Van-Cong coefficient, VC1gr o1y, can be defined by:

VCLerion(N,ra, % T) = —N* x S0 (1) = N* x 2700 - 0, 27)
_ 2

being equal to O for &np) = J; ,

and the second Van-Cong coefficient, VC2gr[o7y, as:

VC2grion (N, raca), X, T) = T X VClgror (V) (28)
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the Thomson coefficient, Ts, by:

_ d SgTioT) (V 9 SeToT] _, 9n(p)
TSET[OT] (N, I'q(a) X, T) =T x % (E) =Tx aEnnEp‘l ] X anTIJ , (29)
. 2
being equal to O for §up) = oY
and the Peltier coefficient, Ptgrjor), as:

PterioT] (N; I'd(a), X T) =T X Sgrjor) (V). (30)

One notes here that for given physical conditions N (or T) and for the decreasing &, ), since
VC1grior (N, taca), % T) and Tsgrrory (N, raca), %, T) are expressed in terms of % and

ds 2
%, one haS [VC]'ET[UT]JTSET[OT]] < 0 fOI’ En(p} = J; ' [VC]_ET[OT],TSET[OT]] =0 fOI’

P

2 .
En[p):\];y and [ VClgrior), Tseriom)] > 0 forgngy < |5, stating also that for

2

=

Snip) = 5+

(i) Spriom; . determined in Eq. (25), thus presents a same minimum
_ v

(Serrom),,, = VL ~-1563x107* (E)

(i) ZTgrpor) , determined in Eqg. (26), therefore presents a same maximum:

(ZTET[OT])MX =1, since the variations of  ZTgpor; are expressed in terms of
[VC1gr[om), Tserio)] X SetjoT), SeToT] < 0

Furthermore, it is interesting to remark that the VC2grpo)-coefficient is related to our
generalized Einstein relation (24) by:

kg _  9SgT[OT) DET[OT‘](Ner[a‘uKT) (Vz) kg 3IxL
— x VC2 N, rgr.%T) = — X . — ), 2= =, 31
q ET[OT]( d(@ ) IEnip) HET[O'I‘](N:rd(a}-"CJT) K/ g 2 (31)

according, in this work, with the use of our Eq. (25), to:

_ DET[oﬂ(Nard(a‘yKT) ZTET[OT]Mcttx[l— ZTET[OT]Motr]
vC2 N T)=— X 2 X V).
ET[OT]( rTd(a) % ) netior) (N.raca) xT) [1+ ZTeriomMott] V)
Of course, our relation (31) is reduced to; —=X°T VClgrory and VC2grpor. being
WET[OT]

determined respectively by Equations (24, 27, 28). This may be a new result.
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CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*(p*) —InAs;_, [P, Sb,] —crystallinealloys, 0 =x<1 , X being the
concentration, the optical coefficients, and the electrical-and-thermoelectric laws, relations,
and various coefficients, being enhanced by:

(i) our static dielectric constant law, £(rg(a), ), rqca) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(i) our accurate Fermi energy, Egn(gp), given in Eq. (11) and accurate with a precision of the

order of 2.11 x 10~* [9], affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,
(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally
(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated, basing on our physical model, and Fermi-Dirac distribution
function, as those given in our recent works.™ 2
It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate InAs-crystal. ¥ Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Neppcpp), defined by the

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

Népaccop): being obtained with a precision of the order of 2.91 x 1077 , respectively, as

given in our recent works.®! Therefore, the effective electron (hole)-density can be defined
as: N*= N —Ncpn(cop) = N — NGpreppy N being the total impurity density, as that

observed in the compensated crystals.

(2) The ratio of the inverse effective screening length k y to Fermi wave number kgpip)

sn(sp
at 0 K, Rgp(spy (N7), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rgcz) and N (or T), with increasing T (or

2
decreasing N), one obtains: (i) for &np) = J% =~ 1.8138, while the numerical results of the
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Seebeck coefficient Sgrior) present a same minimum (Sgrpor)) . (z ~1.563 x 1074 E)

those of the figure of merit ZTgryor; Show a same maximum (ZTgror))max. = 1, (ii) for
&n(p) = 1, the numerical results of Sgrior), ZTgrer), the Mott figure of merit ZTgriorimott:

the first Van-Cong coefficient VC1gr(or;, and the Thomson coefficient Tsgrjor), Present the

same results: —1.322 X 10‘% , 0.715, 3.290, 1.105 x 1G‘4E, and 1.657 x 1G‘4E,
2

respectively, and finally (iii) for &up) = Jg ~ 1.8138, ZTgror)mort = 1, @S those given in

our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (&,p) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

as D N.orgrgyxT) /ve k IxL .
_ 8Semom  Perion (N1 j(E)’ —= |—%, according,

95n(p) HET[OT] (Nraca)xT) q

k
EB X VC2grio1) (N, Ta(a), %, T)

in this work, to:

Derjor)(N.rdca)xT) % 2 % ZTgriomMottX[1- ZTeromMott] (V), being

VC2gri0m (N: Td(a), % T) =~ neTiom (N.rd(a)xT) [1+ ZTerrommott]

DET[OT)
LET[OT]

reduced to: , VClgrpery and VC2gy(or), determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N, r4ca),%, T], all the numerical results of [o4 (E), ko (E), £20(E), and
o (E)], given in the OP, and those of [og(E), kg(E), £2g(E), and <« (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogror)(N,r4(a), %, T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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