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ABSTRACT 

Provision of punctual and reliable services is a major goal in railway 

operations and management. Due to the complexities of railroad 

operations planning, innovative operation management strategies must 

be developed in order to optimize the existing capacity, improve 

profitability and the general level of rail service. Train scheduling is an 

important stage in railway operations planning and is used as the basis 

for railroad organization. In this thesis, the train scheduling problem of  

a single-track line is formulated as a variable-based cumulative flow model so as to minimize 

the total completion time of trains traversing the network. Through the reformulation of the 

physical network infrastructure capacity on a time-space network, the model enables the 

decomposition of the initial complex train scheduling problem into a series of multiple 

single-train optimization sub-problems. The physical network of the entire railway line is 

constructed in NEXTA-Rail Network Editor. A train scheduling package Fast Train, which 

combines a time-dependent shortest path algorithm and a priority rule-based algorithm within 

a Lagrangian relaxation framework is used to solve the proposed model. The model is applied 

in a case study on Kenya’s Mombasa-Nairobi Standard Gauge Railway. The construction of 

the physical network is first done for the current network consisting of 33 stations and then 

with 45 stations for the planned long-term network. The data for this line was obtained from 

the feasibility study reports. In the solution, a maximum of 10000 iterations was allowed after 

which the program terminates. Fast Train tends to converge to better solutions with increasing 

number of Lagrangian iterations and the optimality gap decreases with increasing 
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computational time. The hardest problem comprised 36 trains and was solved in 43 min 18 s, 

with optimality gap of 16.1%, which is within acceptable time for a train scheduling problem. 

The impact of varying the traffic demand by increasing the number of scheduled trains as well 

as opening up the reserved passing stations on this network is discussed. The results obtained 

from this research can be used as a support tool to schedule trains on single-track railway 

networks as well as a planning tool to assess the implications of changes in traffic demand and 

railroad infrastructure. 

 

KEYWORDS: Single-track; Train scheduling; Cumulative flow; Lagrangian Relaxation. 

 

1 INTRODUCTION 

This chapter presents the introduction of the topic under study. Section 1.1 presents the 

background to the problem and section 1.2 presents the motivation behind this topic. Section 

1.3 presents the objective of the research, followed by a scope of the research in Section 1.4 

and finally the rest of this thesis is outlined in Section 1.5. 

 

1.1 BACKGROUND 

Railway transportation is an energy efficient mode of transportation for people and cargo and 

plays an important role in the development of a country’s economy. In many countries, for 

instance China, railway transport has facilitated passenger transportation, large-scale freight 

movement and helped to alleviate highway congestion. Being a sustainable and 

environmentally friendly mode of transportation, many countries are improving and 

expanding their railway networks as an alternative mode of transportation. 

 

In 2013, the government of Kenya embarked on constructing a new Standard Gauge Railway 

network, and hopes to extend it to more than 2985 km by 2040. The 472 km single-track 

section of the network from the Mombasa Port City to the capital Nairobi, which is in line 

with China’s Belt and Road Initiative and the first phase of East Africa Railway Network was 

completed and its operations began in May 2017. The Mombasa- Nairobi SGR is envisaged to 

decongest the Mombasa-Nairobi highway, realize faster and more efficient passenger and 

freight transportation as well as decongest the Mombasa port. Once completed, the planned 

network is expected to achieve efficient and economical rail transport that will spur economic 

growth not only in Kenya but also the East African region in general. To meet the projected 

traffic demand and realize a high- quality rail transport service, transportation and operation 

planners need to use modern decision-making support tools in the planning of railroad 
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operations. 

 

Provision of punctual and reliable services remains one of the major goals in railway 

operation and management. In the planning of railway operations, resources such as railroad 

infrastructure, rolling stock and staff must be allocated accordingly so as to meet the demand 

for rail transport at an appropriate cost. Since railway operations planning is a complex task 

comprising a large solution space, it is separated into several problems that are solved 

sequentially.
[1]

 

 

There are different levels of railway planning process according to the planning horizon, 

i.e. strategic, tactical and operational planning as shown in Figure 1-1. 

 

 

Figure 1-1: Levels of Railway Planning Process. 

 

Strategic planning is long term and concerned with the construction or acquisition of 

sustainable resources that will remain active over a long period. While the tactical planning 

level is related to medium and short-term issues, and generally involves the specification of 

operational policies that are updated over a certain period of time, the operational level is 

concerned with the daily tasks that are performed, taking into consideration the particulars of 

the rail transportation system.
[2]

 

 

Train scheduling is an essential tactical planning tool concerned with dispatching trains on 

the railway corridor under various constraints. The train scheduling problem (TSP) involves 

the development of a plan specifying a physical network route and detailed arrival/departure 

times of every train at each station, while aiming at optimizing certain goals such as to 
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minimize the train travel time.
[3]

 A critical constraint in train scheduling is to avoid any 

possible conflicts between trains which may cause delays, thus influencing the running times, 

dwell times and departing events of trains traversing the network. A train timetable must 

ensure that the expected transport demand is realized according to the requirements of 

passengers, shippers, train operation companies and infrastructure managers. 

 

The train schedule is drawn on a time-distance graph called a train operation diagram and it is 

applied as the basis for railroad organization. If a train strays from its planned time-distance 

path, it might delay subsequent trains or conflict in meeting with or passing other trains 

scheduled on the same railway infrastructure. In such situations, the train timetable must be 

adjusted according to the real-time conditions to minimize the effects of such disruption, 

which is known as rescheduling. These conflicts are quite difficult to deal with for single-track 

railway networks, as trains run from opposite directions and are only allowed to cross or 

overtake each other at stations or sidings. For safe operation, if two trains are involved in a 

conflict, one must wait on the siding or station for the other to cross or pass. Therefore, the 

number of stations or sidings available along a single-track railway network has direct 

implications on the capacity of the line. 

 

Several strategies have been adopted in the recent decades to obtain feasible timetables and 

assist transportation planners to fully optimize the capacity of railway lines. In this thesis, a 

mathematical programming model for the train scheduling problem is proposed to schedule 

trains on the Mombasa-Nairobi single-track line with an objective of minimizing total transit 

time of trains on this network. The model is also used for assessment of the impact of 

increasing traffic demand and adding more passing stations on this line. 

 

1.2 Motivation 

Rail transport is a capital-intensive means of transport and proper management and planning 

is essential to ensure the profitability of railway enterprises in highly competitive transportation 

markets. To increase the market share, it is important for rail service providers must offer 

reliable services and ensure the safety, commercial and environmental sustainability of the 

railway system. With the dynamically changing environment, technological advancement and 

increasing transport demands, railway companies must constantly upgrade the efficiency of 

their operations. Owing to the complications involved in these operations, limited 

possibilities of improving railroad infrastructure, increasing railroad traffic and customer 

demands, developing innovative operation management strategies while making use of the 
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existing capacity is key in improving the level of rail service. Timetabling is an important 

planning stage in railway operation management and has a significant contribution to the 

attraction of travellers and shippers and the general level of rail service. With increase in traffic 

demand on a railway network, problems with safety, punctuality, reliability and service 

frequency begin to arise, hence the need for proper traffic management techniques. 

 

Until recently, train scheduling process was done manually on the premise of the experience 

and expertise of timetable planners. However, as the rail networks become even more 

complex and real-time dispatching operations more complicated, scheduling based on manual 

calculation becomes so time-intensive and ineffective, affecting reliability, punctuality and 

overall service level. Due to the consequent need for improved techniques to solve complex 

scheduling problems, several computer-based methods have been studied and developed. 

Currently, several automated railroad scheduling systems are being used in practice, thanks to 

the recent advancements improvements in the computing power of computers and the 

available optimization techniques. Railway companies can achieve improved quality of the 

train operation diagram, improved service levels and reduced operational costs, while 

optimizing the utilization of the available infrastructure. 

 

Most of the existing timetable optimization techniques are based on mathematical 

programming, simulation and heuristics among other approaches. However, some of these 

methods cannot achieve practically satisfactory results for real world timetabling problems, 

either because they need considerably large amount of running time and memory space to 

find optimal solutions or they cannot guarantee an adequate level of the solution quality. This 

is due to the reason that for real world applications, the design of a train timetable takes into 

account several constraints and the entire problem becomes really hard to solve. In this thesis, 

a Lagrangian relaxation method will be introduced to decompose the original complex train 

scheduling problem into several sub-problems so as to reduce the solution complexity of the 

proposed model, and to obtain feasible solutions of the original problem within reasonable 

computational time. 

 

Due to high initial capital costs, a railway line must be designed as economically as possible 

and still have sufficient capacity to meet the forecast demand.
[4]

 When the Mombasa-Nairobi 

SGR line was constructed, some of the designed passing stations were reserved for future 

construction because the line presently has low traffic demand and therefore train scheduling 

is not a major problem. However, passenger and freight volume on this section is predicted to 
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increase every year and therefore it is essential to study the implications on train scheduling 

that might arise due to increased traffic demand and opening up of the reserved passing 

stations. 

 

1.3 OBJECTIVE 

The main goal of this research is to study the train scheduling problem of a single-track line 

for use as a support tool for decision-making by rail transportation planners and to help in 

railroad operations planning. The problem is formulated as a variable-based cumulative flow 

model with an objective to minimize total completion time of trains traversing the railway 

network, and is solved in an open-source train scheduling package, in which a train-based 

Lagrangian relaxation framework which provides an easy mechanism for decomposition of 

the problem is used to obtain feasible schedules. The study also evaluates the implications of 

the increase in traffic demand and changes in the infrastructure of a single-track railway 

network. 

 

Specific Objectives 

1. To describe the development of a variable-based cumulative flow optimization model for 

single-track railway scheduling problem. 

2. To construct the physical rail network in rail network editor. 

3. To use a suitable software to solve the model by simultaneously optimizing the routes and 

schedule of trains and output feasible solutions. 

4. To investigate the impact of the increase in traffic demand and the addition of more 

passing stations on the average train travel time. 

 

1.4 Scope of the Research 

A train schedule is an important operation planning tool used by dispatchers and decision 

makers to organize trains running on a railway corridor. Train timetables are constructed in 

context of limited resources available on the railway network which must be efficiently 

utilized to meet traffic demands at minimum cost. Under limited resources and capacity of 

railway corridors, and increasing traffic demands, the development of suitable optimization 

techniques for cost efficient scheduling of trains become necessary. An effective timetable 

will have a great influence on transportation planning and management, satisfying customer 

demands, maximizing the company’s profits and creating a stable railway system with a high 

level of service. 

 



www.wjert.org                         ISO 9001: 2015 Certified Journal       

Namu et al.                                     World Journal of Engineering Research and Technology 

  

 

 

 

7 

In this thesis, a suitable model and solution approach for the train scheduling problem on 

Mombasa-Nairobi SGR line is presented. The feasible timetables for the planning years 2020 

and 2025 obtained and the impact of increasing traffic demand and constructing additional 

passing stations evaluated. This can be used directly as a basis for action plan and operations 

planning on the railway line in the corresponding years. In addition, the solution approach to 

this problem can be used interactively in the scheduling of trains even in the entire network 

after completion. 

 

1.5 Thesis Outline 

The remainder of this thesis is organized as follows. Chapter 2 presents a review of the 

literature on the train scheduling problem. The chapter highlights some of the relevant work 

previously done by other researchers on this topic, including the modelling approaches and 

solution techniques. Chapter 3 details the model formulation for the single-track line 

scheduling problem adopted for this research. The solution approach adopted in solving the 

proposed model, including the algorithms is detailed in Chapter 4. In Chapter 5, the case study 

on the Mombasa-Nairobi Railway line is presented, including the solution for the train 

scheduling problem and the results and analysis of the solution. Finally, a conclusion of the 

research findings from the case study and recommendations are presented in Chapter 6. 

 

2 Literature Review 

The chapter presents an overview of information and some previous literature related to this 

study. Section 2.1 first introduces an overview of modeling approaches adopted by other 

researchers for the train scheduling problem, followed by a detailed description of the various 

solution techniques that have been used by other researchers. In Section 2.2, a summary and 

implications related to this problem is presented, including the framework proposed in this 

thesis. 

 

2.1 Train Scheduling Problem Approaches 

Train scheduling is an important issue in railway operations planning and thus it has attracted 

considerable attention. Many studies devoted towards solving railway traffic management 

problems have been done in the recent decades. 

 

An overview of real-time rail traffic management models and algorithms is presented in 

Cacchiani et al.(2014)
[5]

 and Corman and Meng (2014).
[6]

 A recent study by Caimi et al. 

(2017)
[7]

 provides an review of the railway timetable design approaches with a comparison of 
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the different optimization models and solution methods proposed to solve the railway 

timetabling problem. 

 

The train scheduling problem of the single-track railway is considered as a NP-hard 

problem
[8]

 and in complex or large-scale and railway networks, optimal solutions are 

normally unattainable. To meet the computational requirements in real-world applications, 

efficient train scheduling techniques are necessary so as to generate feasible solutions in less 

time. While attempting to solve the TSP, a number of aspects has to be put into consideration. 

Traffic managers need to establish an objective, set preferences on various trains and consider 

several restrictions on railroad infrastructure and traffic parameters such as the position of 

other trains, safety headways, station capacity etc. 

 

The existing literature has adopted various efficient methods such as heuristics, branch and 

bound approaches, LP relaxations and Lagrangian relaxation approach for solving this 

problem. 

 

2.1.1 Mathematical programming 

Mathematical programming continues to be relatively popular approach due to its higher 

effectiveness and computational efficiency. However, regarding large scale or real-world 

problems, mathematical programming methods take a long time to solve and their 

performance is not very satisfactory. These methods are applied in relatively smaller 

problems as it is hard or even impossible for them to find quick solutions in real world time 

timetabling problems.
[9]

 

 

For the train timetabling problem of a single-track line, Szpigel (1973)
[10]

 formulated a 

mixed-integer programming (MIP) model in order to determine the crossing and overtaking 

positions of trains with given and departure times routes and proposed a branch and bound 

solution algorithm for the model. Taking into account the need to minimize delays and yet 

meet traffic demands, Carey (1994a)
[11]

 developed a train routing and scheduling 

mathematical model for complex rail networks with selection of lines, platforms and routes. 

This model was further extended in Carey (1994b)
[12]

 for networks with one-way and two-

way tracks. 

 

To optimize train schedules for a single-track rail corridor, Higgins et al. (1996)
[13]

 developed 

an optimization to minimize train tardiness and operation cost for trains with variable 
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velocities. Depending on the estimate of the minimum train delay for the remaining conflicts 

in a schedule, train priority is determined and used within a branch and bound solution 

procedure to obtain optimal solutions. Further, in Higgins et al. (1997),
[14]

 the solution is 

extended to incorporate heuristic decomposition techniques to solve the model in reasonable 

time and used to determine the number and optimal positioning of passing stations along a 

single-track corridor. Modifying the mathematical formulation presented in Higgins et al. 

(1996)
[13]

 to accommodate a railway network, Karoonsoontawong and Taptana (2017)
[15]

 

considered the train scheduling problem in the application of planning for a single-track 

network. They proposed two branch and bound local-search heuristic algorithms based on the 

respective least lower bound branching rule
[13]

 and least delay time branching rule
[16]

 for the 

solution of the remaining conflicts. 

 

For passenger train timetabling in single and multiple track corridors and different train 

capacities, Ghoseiri et al. (2004)
[17]

 designed a multi-objective model to minimize total 

passenger time and fuel cost. To solve it, they used a two-step solution approach by 

initially using the ε-constraint method to obtain the Pareto frontier, and then adopting the 

distance-based method to seek a feasible solution. 

 

In Zhou and Zhong (2007),
[18]

 a resource-constrained formulation is proposed to minimize total 

train travel time. In their solution, a lower bound rule based on a Lagrangian relaxation is 

employed to dualize station and segment headway capacity constraints, followed by an exact 

lower bound rule for estimating least train delay to resolve meet-pass conflicts on a partial 

timetable, and finally a beam-search heuristic technique is used for constructing tight upper 

bounds. Using a similar model to Zhou and Zhong (2007)
[18]

, Castillo et al. (2009)
[19]

 and 

Castillo et al. (2011)
[20]

 explored the optimization problem of the train schedule, in which user 

preferred departure times are used rather than the actual scheduled departure times. Castillo et 

al. (2009)
[19]

 proposed a three-stage sequential optimization approach in which a combination 

of objective functions is introduced to minimizing relative train travel time, promptly allocate 

trains to circulate and minimize total train dwell times at stations. A bisection rule-based 

algorithm is utilized to ensure that an exact global optimum is attained. To decrease the 

computation time, Castillo et al. (2011)
[20]

 uses a bisection rule based algorithm to obtain a 

sharp upper bound for the objective function, and a strategy to reduce the quantity of binary 

variables to be evaluated. 
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Investigating the robust periodic train scheduling of a single-track railway, Shafia et al. 

(2012)
[21]

 proposed a PESP model by defining the problem as a fuzzy job shop scheduling 

problem. A two-stage heuristic algorithm solution approach based on Simulated Annealing 

(SA) is presented to solve large-scale scheduling problems. A hybrid job shop technique to 

generate more efficient and accurate train schedules is presented in Burdett and Kozan 

(2009).
[22]

 Unique train scheduling characteristics are consolidated into the solution’s 

disjunctive graph representation and then constructive algorithms that use this representation 

are developed. In Abid and Khan (2015a),
[23]

 a formulation for the single- track line train 

scheduling problem is presented based on job-shop scheduling structure, to minimize total 

train travel time. A branch and bound technique with priority rules was used for solving the 

formulated problem in reasonable time. In the solution, an exact lower bound for estimating 

least train delay is used and a cut set dominance rule is applied to reduce the search space. 

Further in Abid and Khan (2015b),
[24]

 this model was extended to minimize total delays and 

operational cost with regards to the position of the sidings. Considering trains running from 

opposite directions along a single-track line, Harbering et al. (2015)
[25]

 proposed a 

formulation which was closely related to minimizing the make-span in a job shop scheduling 

problem consisting of two counter-routes and no pre-emption. A lower bound on the 

objective value was developed to provide a simple solution method. 

 

While most of the existing literature consecutively determines the routes and thereafter 

schedules the trains, there is a definite tendency towards the development of more detailed 

mathematical models and effective solution algorithms that can simultaneously (re)route and 

(re)schedule trains.
[3]

 To simultaneously route and schedule trains on a network, Caimi et al. 

(2010)
[26]

 proposed an ILP formulation and employed the cutting-plane method to generate 

conflict-free train timetables for a microscopic model of the rail infrastructure. Based a 

stochastic, recourse-based programming framework, Meng and Zhou (2011)
[27]

 incorporated 

various probabilistic scenarios into the rolling horizon decision making process for the 

rescheduling of trains following service interruption a single-track line. The model regularly 

optimizes timetables for a fairly long rolling horizon and selects and disseminates a rigid 

meet-pass plan for each rolling horizon. Pellegrini et al. (2014)
[28]

 formulated a MILP model 

for the search for the best route and schedule of the train in the event of real-time rail traffic 

disruption. 
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An IP model reformulated with cumulative flow variables based on the network is presented 

in Meng and Zhou (2014)
[3]

, to simultaneously reroute and reschedule trains on N-track 

networks. Using a similar method, Zhou and Teng (2016)
[9]

 developed an ILP model which 

was restructured as a path-choice model based on a discrete time-space network to 

simultaneously route and schedule passenger trains on unidirectional and bidirectional 

railway networks. 

 

2.1.2 Simulation and Heuristic approaches 

Simulation and heuristic approaches have been extensively applied for the solution of real-

world and large-scale and train scheduling problems in the recent years. This is due to the 

reason that they can usually obtain a satisfactory train timetable rather than the optimal one 

within an acceptable computing time.
[9]

 A discrete event based rail traffic model was 

designed by Dorfman and Medanic (2004)
[29]

 wherein a travel advance strategy (TAS) based 

on local feedback is developed to simulate train movement along the lines of a large-scale 

railway network and can rapidly manage disruptions in the schedule. Based on this travel 

advance strategy, Li et al. (2008)
[30]

 further presented an improved simulation method. The 

ETAS (Effective Travel Advance Strategy) is achieved by the formulation of an algorithm 

which is based on global information of the train. Xu et al. (2014)
[31]

 combined the improved 

TAS with a genetic algorithm so as to obtain an optimal balanced schedule, least train delay 

ratio and optimal velocities for trains on the railway line. Further, in Xu et al. (2018),
[32]

 a 

heuristic method that is based on a simulation method for train movement is introduced to 

search for near-optimal train schedules within an acceptable computational time frame. 

Incorporating train status transition check and operation rules, a train scheduling method 

called the TSTA (Train Status Transition Approach) is then designed based on iterative 

discrete event simulation. 

 

As far as heuristic algorithms are concerned, Carey and Crawford (2007)
[33]

 developed an 

effective heuristic algorithm to help find and resolve conflicts in the draft train schedules in 

complex networks. Alternating a heuristic and a truncated branch and bound technique in a 

tabu-search scheme to compute train timetables in short computation times, Corman et al. 

(2010)
[34]

 addressed the problem of detection and resolution of train conflicts. Mu and 

Dessouky (2011)
[35]

 introduced two optimization-based heuristics based on an insertion 

procedure and a genetic algorithm to solve the train scheduling problem of freight trains on 

complex railway networks, taking into account flexible path of trains. An iterative heuristic for 



Namu et al.                                     World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

12 

the solution the train scheduling problem in the situation of a profoundly congested railway 

node is proposed by Cacchiani et al. (2016).
[36]

 The algorithm is able to provide good 

solutions for real world cases and can as well be used to assess capacity saturation of a 

railway node. 

 

Simulation and heuristic approaches have their shortcomings. Simulation methods generally 

have low global optimization capacity since they mainly simulate train movement process 

with some given rules. Conversely, heuristic methods cannot at all times guarantee good 

solution qualities and may even trap in local optimum upon a limited number of iterations, 

although theoretically they have a global capacity with sufficient iterations.
[9]

 

 

2.1.3 Lagrangian relaxation 

In real-world applications, designing a train timetable takes into consideration several 

constraints and the entire train timetabling problem gets extremely hard to solve. In order to 

alleviate the complexity and difficulty of solving the train scheduling problems of large-scale 

and real-world cases, a good tactic is decomposing the original complex problem into 

several simple problems by either breaking down the larger railway network into multiple 

smaller ones or to decouple the set of interrelated trains into separate trains, then repeatedly 

coordinate the solving of multiple simple sub-problems so as to obtain the final solutions of the 

original problem.
[9]

 However, in train scheduling models under generalized complex 

networks, capacity constraints are really hard to break down into different solution branches. 

There are several studies that have been dedicated to efficient decomposition mechanisms of 

reducing the train scheduling model complexity and heuristic algorithms to generate feasible 

solution in reasonable computational time, e.g. in the train-based decomposition by Lee and 

Chen (2009)
[37]

 Zhou and Teng (2016),
[9]

 and Liu en Dessouky (2017).
[38]

 Some studies have 

employed classical Lagrangian relaxation of the conflicting constraints to break down the 

problem into shortest path problems on time discretized networks. For instance, in Brännlund 

et al. (1998)
[39]

 a Lagrangian relaxation technique has been used to decompose the initial 

scheduling problem into train-based dynamic programs by relaxing the track capacity 

constraints and allotting usage prices for them. 

 

A Lagrangian relaxation-based heuristic algorithm of track capacity constraints is presented 

in Cacchiani et al. (2010)
[40]

 for a timetabling problem with mixed trains. The problem is 

modelled by a means of a time-space graph and using a generalization of the approach 

presented in Caprara et al. (2002)
[8]

 and Caprara et al. (2006).
[41]

 In Meng and Zhou (2014),
[3]
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the complex problem of rerouting and rescheduling trains is simplified by decomposing it into 

single train-based optimization sub-problems using cumulative flow variable and later 

applying an effective time-dependent shortest path algorithm to resolve each sub-problem 

within the framework of a Lagrangian relaxation solution. Similarly, in Zhou and Teng 

(2016)
[9]

 a train-based Lagrangian relaxation approach based on constructing a discretized 

time-space network is proposed to decompose the reformulated train path-choice model. By 

constructing weighted directed graphs, Jiang et al. (2017)
[42]

 decomposed a multi-path 

searching model by introducing Lagrangian multipliers so as to relax the complicated 

constraints so as to solve a multi-periodic train scheduling problem to jointly optimize arrival 

and departure times as well trains operation periods on double- tracked railway network. 

 

2.2 Summary and Implications 

Even though extensive advancement has been made on both integer programming (IP) and 

linear programming (LP) formulations and solution algorithms for the train scheduling 

problem, the existing methods either rely on many heuristic rules to solve the formulated 

models, which could achieve practically satisfactory results but without an adequate 

assessment of the solution quality; or on commercial optimization solvers, which could take a 

considerable amount of running time and memory space to find solutions for real world 

problems to optimality. Many existing studies have shown that is difficult to find optimal 

solutions to the train scheduling problem using general optimization approaches such as 

branch and bound or cutting plane method within an acceptable computing time especially 

for a large real-world rail network. 

 

Some existing literature e.g. Castillo et al. (2011)
[20]

, Carey and Crawford (2007)
[43]

 opted to 

determine the routes of trains and timetables sequentially so as to reduce the difficulty of 

solving the train timetabling problem. On the other hand, several studies consider these two 

components as closely related and prefer to optimize them together, which is a trend in the 

development of effective solution algorithms and CPU computing capabilities. 

 

In this research, a variable-based cumulative flow model for routing and scheduling trains 

simultaneously on a single-track railway network is proposed. For reduction in the model 

solution complexity, a problem decomposition mechanism is adapted on the based on a time-

dependent shortest path algorithm and a train-based Lagrangian relaxation framework, in 

which priority rules are incorporated to generate feasible solutions and guarantee solution 

quality. 
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3 Model Formulation 

This chapter describes the formulation of a mathematical programming model for the single-

track railway train scheduling problem adopted by this research to achieve the objectives 

stated in Section 1.3 of Chapter 1. The chapter introduces the conceptual illustration and 

notations, parameters and variables, followed by an objective function and the constraints 

considered in the formulation. 

 

3.1 The Single-Track Train Scheduling Model Formulation 

A mathematical formulation for the single-track line train scheduling problem is proposed 

based on the reformulation of the physical railway network into a time-space network 

structure. Cumulative flow variables are taken to model the trains temporal and spatial 

occupancy of on railway tracks as well as safety time headways, jointly optimizing the routes 

and passing time at every station along the selected route of each train. This way, the original 

complex TSP is hence decomposed into a sequence of multiple single-train optimization sub-

problems, which are easier to solve. 

 

The network variable-based cumulative flow model framework proposed by Meng and Zhou 

(2014)
[3]

 is adapted. Whereas their model focuses on rerouting and rescheduling of trains 

during perturbations, the formulation presented in this study addresses the tactical scheduling 

problem, since real time traffic management is outside the scope of this research. 

 

3.2 Conceptual Illustration 

In this thesis, a railway network is represented by a set of nodes and links. Nodes represent the 

intersections of station tracks, switch lines or a point where tracks are merging or diverging in 

the physical railway network. A station is viewed as a sub-network comprising of a main 

track and a number of siding tracks corresponding to a set of links. In the proposed model, the 

track is modelled as a link and only one train is allowed on a link any given time. Each link 

connects two nodes and is presumed to be bidirectional, so that trains can traverse the track 

from both directions. The length of a train is taken to be zero for simplicity. Even though the 

model is flexible as regards the spatial granularity, it is proposed for a microscopic network 

view, and the granularity of time taken as one minute for this network. 

 

A simple example of a rail network representation is shown in the Figure 3-1. The single- track 

rail network consists of two stations with 10 nodes connected by bidirectional links. 
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Figure 3-1 Bidirectional rail network with 10 nodes. 

 

Nodes (2, 3, 4, 5) represent station A, and nodes (6, 7, 8, 9) represents station B. With the 

route being modelled as a series of nodes and the track being modelled as a link in the 

proposed model, the station minimum and maximum dwell times can be mapped as 

constraints on train traveling time in the corresponding link(s). For each link, input data such 

as free-flow running time, safety headways and dwell time requirements are given. The 

earliest departure time, origin and destination for each train is also given. 

 

The train scheduling problem for the single-track railway network is defined as follows: 

Assuming a network of railway stations and segments, the problem requires to determine the 

arrival/departure times at every station for a set of trains, f  F from pre-specified origin 

stations to destination stations in a given planning horizon t  1,..., T , where; T represents 

the planning horizon. In order to capture the practical safety operational rules, the network is 

represented as a directed graph G (N, E) , with a set of nodes N and a set of links E. 

 

3.3 General Subscripts, Parameters and Variables 

The general subscripts, parameters and decision variables of the proposed formulation are 

introduced in Tables 3-1, 3-2 and 3-3. 

 

Table 3-1: General Subscripts. 

Symbol Description 

i, j, k Node index, i, j, k ∈N, N is the set of nodes 

e Link index, (i, j), e ∈ E, E is the set of links 

p Route index, p  P , P is the set of all routes on a railway network 

m Link sequence number along a route p, m ≤ np, np is the number of links in route p 

t Scheduling time index, t = 1,…T, T is the planning horizon 

f Train index, f ∈ F, F is the set of trains 
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Table 3-2: Input Parameters. 

Symbol Description 

Ep Set of sequenced links of route p, |Ep| = np 

Pf Set of possible routes on which train f may run, 𝑃𝑓 ⊂ 𝑃 

E f Set of links train f may use, Ef  E 

FTf (𝑖, 𝑗) Free flow running time of train f to traverse link (i, j) 

ESTf Predetermined earliest start time of train f at its origin node 

𝑤𝑚𝑖𝑛(𝑖, 𝑗) 𝑓 Minimum dwell time of train f on link (i, j), (i, j)∈ Ω 

𝑤𝑚𝑎𝑥(𝑖, 𝑗) 𝑓 Maximum dwell time of train f on link (i, j), (i, j)∈ Ω 

g Safety time headway between the occupancy and the arrival of trains 

h Safety time headway between the departure and the release of trains 

of Origin node of train f 

sf Destination node of train f 

E
os

(i) Set of links starting from or ending at node i 

E
o
(i) Set of links starting from node i 

E
s
(i) Set of links ending at node i 

Ω Set of cells that allow dwell time, representing siding tracks in stations 

Cap(i, j,t) 
Flow capacity on link (i, j) at time t, Cap(i, j,t)  0 due to maintenance on link (i, j) 

at time t , otherwise Cap(i, j,t)  1 . 

 

Table 3-3: Decision Variables. 

Symbol Description 

TTf (i, j) Running time of train f on link (i, j) 

xf (i, j) Binary train routing variables, xf (i, j)  1 if train f selects link (i, j), otherwise, 

yf (i, j,t) 
0-1 time-space network binary occupancy variables, yf (i, j,t)  1 = 1 if train f occupies 

link (i, j) at time t; otherwise, y f (i, j, t)  0 . 

af (i, j,t) 
0-1 binary cumulative arrival flow variables, af (i, j,t)  1 if train f has already arrived at 

link (i, j) by time t; otherwise a f (i, j, t)  0 . 

d f (i, j,t) 
0-1 binary cumulative departure flow variables, d f (i, j,t)  1, if train f has already 

departed from link (i, j) by time t; otherwise d f (i, j, t)  0 . 

 

3.4 Objective Function 

The objective function in the model minimizes the total trip completion time of all the trains 

from the origin node to the destination node. 

 

 

3.5 Constraints 

3.5.1 Flow balance constraints 

Constraints (2), (3) and (4) ensure flow balance on the network at the origin node, 
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intermediate nodes, and destination node of train f respectively. 

 

 

3.5.2 Time-space network constraints 

Starting time constraints at origin node 

Constraints (5) and (6) ensure that trains do not depart earlier than pre-determined earliest 

starting time at their origin nodes. 

 

 

Within link transition constraints 

These constraints represent the transition of train f within the link. 

 

 

Link-to-link transition constraints 

Link-to-link transition constraints ensure link-to-link transition by guaranteeing that 

af ( j, k,t)  d f (i, j,t) if the adjacent link (i, j) and link ( j, k) are both used by train f. 

 
 

Mapping constraints between the time-space network and the physical network 

Mapping constraints are imposed to map the variables af (i, j,t) in time-space network to 
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f 

variables xf (i, j) in the physical network, hence describing whether link (i, j) is selected by 

train f to traverse the network from its origin to destination. 

 

 

3.5.3 Running time and dwell time constraints 

Running time constraints 

The running time of train f on link (i, j) can be calculated by the following equation. 

 

 

Minimum running time constraints 

Minimum running constraints impose the required minimum train running time of train f. 

 
 

Minimum and maximum dwell time constraints 

These constraints guarantee minimum and maximum station dwell times by the variables TTf 

(i, j) . In this study, w (i, j) is taken as 1 hour. 

 
 

3.5.4 Safety headway and capacity constraints 

Link occupancy indication constraints 

These constraints link time-space occupancy variables and cumulative arrival/departure 

variables of train f by mapping y f (i, j,t) with a f (i, j,t  g ) and d f (i, j,t  g ) . 

 
 

Link capacity constraints 

Link capacity constraints enforce safety time headways by ensuring that the number of trains 

occupying link (i, j) is not more than the capacity of the respective link. 
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3.5.5 Time-connectivity constraints 

Constraints (15) and (16) represent time connectivity for cumulative flow variables. 

 
 

4 Solution Approach 

This chapter describes the solution approach in FastTrain, an open-source software package 

adopted in the solution of the model proposed in this thesis. Section 4.1 describes the time-

space representation of the physical network. Section 4.2 presents the transformation of 

physical network inflow variables into cumulative flow variables. Section 4.3 describes the 

use of cumulative flow variables to model the safety headways of trains. Section 4.4 

describes the general Lagrangian relaxation framework applied in the solution approach. 

Section 4.5 presents the fundamental label-correcting algorithm used in solving the time-

dependent shortest path problem and finally, Section 4.6 details the priority rule-based 

implementing algorithm for the transformation of the dual solutions into feasible solutions. 

 

4.1 Time-Space Representation of Physical Rail Network 

The train scheduling problem requires that the temporal and spatial train occupancy on the 

physical network infrastructure be precisely modelled with regard to various safety headway 

constraints. The solution approach proposed by Meng and Zhou (2014)
[44]

 is adopted. In the 

train scheduling software package FastTrain, the input physical rail network is transformed 

into a time-space network according to discretized time units and constructed arcs. The 

network G is extended into a time-space network TSG  (V , A) for each train f . Each node I 

in set 𝑁, is extended into a set of vertices (i, t) in the set of space-time network at each 

interval t in the planning horizon, t  1, 2,T . Three types of arcs in the extended space-time 

network are defined so as to take into consideration the feasible transitions allowed in the 

network, i.e., link traveling arcs (some allow dwelling while others do not), link waiting arcs 

at the origin link and dummy arcs at the destination node. Through the different types of arcs, 

the state transition is restricted by setting an infinitely large cost for arcs which are invalid or 

infeasible so that the typical shortest path algorithm is adapted for train path choice. 
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The mapping constraints (9) between the physical network and the time-space network, and 

the flow balance constraints (2) - (4) on each link and the origin/destination nodes are taken 

into account by the network representation. The link occupancy capacity constraints (13) and 

(14) will be considered through the resource costs in the label-correcting algorithm 

discussed in section 4.5. 

 

As illustrated in Figure 4-1, the physical network consisting of 4 nodes and 5 links (on the 

left) is transformed into the link-based time-space network on the right. 

 

 

Figure 4-1: Extended time-space network representation of the physical network.
[44] 

 

A set of binary-based cumulative flow variables af (i, j, t) and d f (i, j, t) is introduced to 

represent link occupancy in the extended space-time network, where; af (i, j,t)  1 if train f has 

already arrived at link (i, j) by time t , and otherwise af (i, j, t)  0. 

d f (i, j, t)  1 if train f has already departed from link (i, j) by time t , and otherwise d f (i, 

j,t)  0 . 

 

4.2 Transformation of Network Inflow Variables into Cumulative Flow Variables 

To model both the temporal and spatial train occupancy on the tracks as well as safety time 

headways between trains, inflow variables are linked to cumulative flow variables. The 

cumulative flow decision variables make it possible for a simultaneous solution approach, 

which enumerates all conceivable routes within the extended space-time network and then 

jointly optimizes both train routes and train arrival/departure times. 

 

A set of network flow variables u f (i, j, t) and u (i, j, t) are taken to represent the route 

selection and corresponding arrival/departure times of train f. These binary network 

inflow variables are linked to the cumulative flow variables by equations (17) and (18). 
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where, u f (i, j,t)  1 represents train f arriving at the upstream node i of link (i, j) at time t, 

uf (i, j,t)  0, otherwise; u
'
 (i, j,t)  1 represents train f departing from the downstream node 

i of link (i, j) at time t 
'
, u

'
 (i, j,t) 0, otherwise. Figure 4-2 depicts an illustration on the 

usage of cumulative arrival/departure variables to describe selection of links and arrival/departure 

times of train f at link (1,2). 

 

 

Figure 4-2: Transformation of inflow variables into cumulative flow variables. 

 

In Figure 4-2 (a) above, train f arrives at link (1, 2) at time t  8 and departs at time t  10 with 

u f (1, 2,8)  1 and u
'
 (1, 2,10)  1. With regard to the cumulative flow variables as shown in 

Figure 4-2 (b), af (1, 2,t)  0 for t  8 and af (1, 2, t)  1, for t  8 ; d f (1, 2, t)  0 for t  10 and 

d f (1, 2, t)  1 for t 10. 

 

Moreover, af (i, j,T )  1 demonstrates that the link (i, j) is used by train f to traverse the 

network, where T represents the planning horizon. 

 

4.3 Modelling Safety Headway by Cumulative Flow Variables 

In order to model the safety headways and spatial train occupancy, shifted cumulative flow 

variables af (i, j,t  g) and d f (i, j,t  h) are introduced to denote if train f starts or ends 

occupying link (i, j) by time t, by considering the minimum safety headway times g and 

h. The spatial occupancy of train f is represented through the equation y f (i, j,t)  af (i, 

j,t  g)  d f (i, j,t  h); where y f (i, j, t) represents a set of 0-1 binary occupancy variables. 

y f (i, j,t)  1, if train f occupies link (i, j) at time t, and otherwise, y f (i, j, t)  0. 
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The planning horizon is discretized and denoted by integer values from time index 1 to T. 

For instance, assuming that g  h  1, the grey rectangular block in Figure 4-3 

corresponds to y f (i, j,t)  1 for t  7 …10, and y f (i, j,t)  0 otherwise; which implies that 

train f occupies link (i, j) from time 7 min to time 10 min. 

 

 
Figure 4-3: Spatial occupancy of link (i, j) by train f. 

 

An illustration of a single-track case is depicted in Figure 4-4. A directed link e from 

station i to j and link e
'
 from station j to i is introduced to let trains run on opposite 

directions. Considering train Cap(i, j,t) using link e and train f 
'
 using link e

'
; since 

links e and e match the same segment, a constraint y f (i, j, t)  y f ' (i, j, t)  1 can be 

utilized to model the safety headway requirement between the two trains. 

 

Specifically, y f (i, j, t)  y f ' (i, j, t)  1 for t between 3 and 8, 10 and 16. Furthermore, 

y f (i, j, t)  y f ' (i, j, t)  0 for t between 0 and 3, 16 and 20, as well as 8 and 10, which 

indicates 2 time units buffer time. 

 

 

Figure 4-4: Two links corresponding to a single-track segment l from station i to j. 
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Based on the variables af (i, j,t), d f (i, j,t) and y f (i, j,t) safety headways g and h, and 

Cap(i, j,t) , the basic safety headway constraints are simply modeled by constraints (13) and 

(14). The additive structure of the capacity usage, which is the left part of constraints can break 

down the initial train scheduling problem into several train-specific sub- problems. This 

mechanism of decomposition is later used within the Lagrangian relaxation framework. 

 

4.4 Lagrangian Relaxation Solution Framework 

In the Lagrangian relaxation framework, capacity constraints of the network are relaxed and 

resource prices updated by Lagrangian multipliers. The original train scheduling problem is 

decoupled into a sequence of train-based sub-problems and a label-correcting based algorithm 

is employed to determine the least time-dependent shortest path and compute the lower 

bound for each train traversing the network. Lagrangian profits for each of the trains are 

computed and then a priority-based heuristic algorithm is applied in the construction of 

feasible solutions and calculate the optimality gap, upon which a termination condition is set. 

If the condition for termination is met, the algorithm then outputs the feasible solution and 

computational results at the current iteration. Otherwise, a sub-gradient method is invoked to 

update Lagrangian multipliers and then moves to the next iteration. 

 

In the LR solution framework depicted in Figure 4-5 below, link capacity constraints are 

considered as hard constraints and relaxed as a penalty term in the objective function. 
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Figure 4-5: Lagrangian relaxation solution framework.  

 

A set of non-negative Lagrangian multipliers i, j,t is introduced, where i, j,t can be construed as 

the cost incurred for utilizing a resource i.e. link (i, j) at time t; and  represents the iteration 

number. The original train scheduling problem is decomposed into train-based sub-problems 

LRf as in equations (20) and (21). 
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where, 

 

 

In a sub-problem with train f, the goal is to find the time-dependent least generalized cost path 

for the train, from its node of origin to destination node. The generalized cost comprises the 

schedule cost and the resource cost. For train f running on the network from the origin to the 

destination nodes, schedule cost denotes the total travel time of train f, while the resource 

cost i.e., the second portion of equation (21) is calculated by summing i, j,t over all 

selected links within their associated time spans. 

 

A label-correcting time-dependent shortest path algorithm is used to solve each sub- problem. 

Upon solving train-based sub-problems, Lagrangian profits for each train are computed and 

the trains are ranked according to decreasing Lagrangian profit values. The Lagrangian profit 

of each train is the ratio of the total free-flow travel time to the total travel time of the train in 

the dual solution. A priority rule-based heuristic algorithm is then used to convert dual 

solutions into feasible solutions. Train priority is determined by the corresponding Lagrangian 

profits. 

 

The optimality gap at the current iteration is computed based on the dual solutions and 

feasible solutions, and the algorithm checks whether the condition for termination is met. 

 

The criterion for termination is set as: if q  Qmax (a pre-determined maximum number of 

iterations) then the algorithm ends. 

 

If the condition for termination is met, the algorithm then outputs feasible solutions along with 

the corresponding quality measures, i.e. optimality gap. Otherwise, the subgradient method is 

invoked to update Lagrangian multipliers and then move to the next iteration. 

 

The subgradient method iteratively adjusts resource prices by setting; 

 

 

Where the superscript q denotes the index of iteration used within the dual updating
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i, j ,t process, while 
q    

and 
q
 denote the link multiplier values and the step size at iteration q, 

respectively. In the optimum search process, the step size parameter is updated as 

 
q 
 1 / (q 1) and after a specific number of iterations, we stop reducing 

q
. 

 

4.5 Time-Dependent Shortest Path Algorithm 

The framework for the label-correcting algorithm for the solution of the time-dependent least 

cost path problem is based on an extended time-space network. 

 

In order to compute min LRf in equation (20), the shortest path problem has to be solved 

     f 

through a link-based network min G  (N, E) . 

 

All resource prices i.e., Lagrangian multipliers are presumed to be 0 and after the label 

correcting process in step 2, each vertex has its least cost label and preceding vertex. Table 4-1 

introduces a list of symbols and the shortest path algorithm is then detailed. 

 

Table 4-1: Notations for the time-dependent shortest path algorithm. 

Symbol Description 

s Origin node, corresponding to o f 

r Destination node, corresponding to s f 

𝛩(𝑖, 𝑡) The corresponding node of vertex (i,t) 

s (j,t) The least cost from vertex (s, ESTf) to vertex ( j,t) 

s (j,t) The preceding least cost vertex (𝑗, 𝑡’), denoted as time-space vertex (i,t) 

𝜎𝑖, 𝑗 Free-flow running time of link (𝑖, 𝑗), corresponding to 𝐹𝑇𝑓(𝑖, 𝑗) 
𝛥𝑖, 𝑗(𝑡) Waiting time of link (𝑖, 𝑗) at time t 

i, j (t,t i, j i, j 

(t)) 

Resource cost of using link (𝑖, 𝑗) from time t to 

t   (t), (t,t  (t))  
t i , j i , j (t) 

i, j i, j i, j i, j i, j t i , j , 

(i,t) Set of outgoing vertexes of vertex 

 

Time-dependent shortest path algorithm 

Input: Networks G and TSG origin node s (i.e., o f), destination node r (i.e., s f), starting 

time t (i.e., ESTf), and resource cost vector  at current iteration. 

Output: The least cost path from s to r, at time t. 

Step 1: Initialization 

Create an empty SE list; Set s ( j,t) ,j  N / s,t  1,...,T;s(s,t)  0,t  1,...,T; 

s(s,t) ,t 1,...,T; insert the source vertex (s,t) into the SE list. 

Step 2: Label updating 

While SE list is not empty do 

Pop up the front vertex from the SE list, denoted by (i,t) 
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For vertex ( j,e
'
) (i,t) , do For t = ESTf to T 

For i, j (t)  wmin(i, j) to wmax (i, j) 

f f 

If ( j,t i, j i, j (t))  r Then 

Set candidate new cost label by 
'
s ( j,t i, j i, j (t)) s (i,t) i, j (t,t i, j i, j (t))  t 

i, j i, j (t) 

Else 

Set candidate new cost label by '
s ( j,t i, j i, j (t)) s (i,t) i, j (t,t i, j i, j (t)) 

End 

If '
s ( j,t i, j i, j (t)) s ( j,t i, j i, j (t)) 

Then 

Set node cost label by '
s ( j,t i, j i, j (t)) s ( j,t i, j i, j (t)) 

Update preceding vertex by setting s ( j,t i, j i, j (t)) to time-space vertex (i,t) 

If vertex ( j,t ') , i.e., vertex (j,t i, j i, j (t)) , has been in the SE list, Then 

Add vertex ( j,t*) to the front of SE list; 

Else 

Add vertex ( j,t) to the back of SE list; 

End 

End // Updating node cost label End // for each link waiting time 

End // for each possible starting time 

End // for each vertex 

Remove vertex (i,t) from the SE list. 

End 

Step 3: Fetch the time-dependent shortest path 

Step 3.1: Find the vertex ( j*,t*) corresponding to destination node r and with the least cost; 

Set vertex ( j*,t*) 

as the current vertex (k,t) ; 

Step 3.2: Backtrack from destination node r to node s; 

While vertex (k,t) is not corresponding to the origin node s; 

(1) Find the preceding vertex (i,t ') of the current vertex (k,t) ; 

(2) Update the preceding vertex (i,t ') as the current (k,t) . 

End 

Step 3.3: Reverse the backward path and output the least cost path from s to r a t; 

Step 3.4: Terminate the algorithm. 

 

4.6 Priority Rule-Based Algorithm 

At each Lagrangian iteration, a feasible solution based on priority rules is constructed to 

achieve a better upper bound estimate of the optimal solution. The priority rule implementing 

algorithm is detailed as below. 

 

Priority rule-based implementing algorithm 

Input: Network G, train set F, origin node of, destination node sf, earliest departure time 

ESTf for each train f. 

Output: The routes and passing times at each station for each train f, and the updated upper 

bound. 
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Step 1: Train priority ranking 

Rank the trains by decreasing values of Lagrangian profits. The Lagrangian profit of each 

train is the ratio of total free-flow travel time divided by total travel time in the dual 

solution. 

Step 2: Schedule trains one by one 

Step 2.1: For the train f* with the highest priority, apply the shortest path algorithm 

introduced in Section 3.2.2 to find its route and passing times at each station; 

Step 2.2: Fix the route and passing times at each station for train f*; record the capacity 

usage of train f* on network G; 

Step 2.3: If all trains have been scheduled, move to Step 3, otherwise, loop back to Step 2.1. 

Step 3: Update and output upper bound 

Step 3.1: Compute the objective value of the heuristic solution obtained by step 2; 

Step 3.2: Update the upper bound using the new objective value; 

Step 3.3: Output the route, passing time at each station, and the new upper bound at the 

current Lagrangian iteration. 

 

5. Case Study on the Mombasa-Nairobi Standard Gauge Railway 

In this chapter, the basic information about the Mombasa-Nairobi SGR line is presented in 

Section 5.1. Section 5.2 presents an overview of stations on this line and information on the 

traffic demand. Transportation organization on this railway line is presented in Section 5.3. 

Section 5.4 describes the procedure for solving the train scheduling problem of this line, 

followed by results and analysis in Section 5.5. 

 

5.1 Mombasa-Nairobi SGR 

The Mombasa-Nairobi line is a single-track standard-gauge railway line connecting the 

Mombasa Port to Nairobi, the capital city of Kenya. The main line is 471.650km and the 

Mombasa Port Relief Line is 4.795km. This section is the Phase 1 of the proposed East 

African Railway Network, and its operations commenced in 2017. The second phase is 

currently under construction to connect Nairobi to Malaba, the border city with Uganda, and 

further extend to the rest of the countries in East Africa. 
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Figure 5-1: Mombasa-Nairobi Standard Gauge Railway. 

 

Built to Chinese ‘Class 1’ standards, the line is designed with automatic inter-station blocking 

system, 25t axle loading, 4000t traction mass and internal combustion traction, with 

electrification conditions reserved. Passenger trains operate at up to 120 km/h while freight 

trains operate up to 80 km/h. For a summary of the technical data of the line, see Appendix A. 

 

5.2 Station Overview 

In the long-term design, a total of 45 stations are set on this line, of which there are 2 district 

stations, (Port Reitz and Nairobi Terminus Station), 8 intermediate stations, (Mombasa 

Terminus, Mariakani, Miasenyi, Voi, Mtito Andei, Kibwezi, Emali and Athi River) and 35 

passing stations. However, since the traffic demand on the line is still low, the current short-

term network comprises a total of 33 stations, and 12 passing stations (Samburu, Taru, 

Wangala, Manyani, Tsavo North, Kenani, Kibwezi South, Kiboko, Arroi Ranch, Konza South, 

Kapiti Plains and Marimbeti) have been reserved to be opened in future. 

 

The stations on this line are transversely arranged. The short-term maximum distance 

between stations is 23.6km (Miasenyi ~ Maungu). The long-term average distance between 

stations on this line is 10.61km and the maximum distance between stations is 13.4km 

(Maungu ~ Ngutini). More details regarding the stations are provided in the Station List in 

Appendix B. 
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Figure 5-2: Stations along the Mombasa-Nairobi SGR. 

 

Stations are distributed to balance the section passing capacity and to satisfy all kinds of 

technical operation requirements. The distribution of district and intermediate stations is 

considered so as to coordinate with the urban or regional planning. They are set around the 

cities and towns along the line with advanced economy and intensive population, and that 

which can form the local economic centers in accordance with urban and regional economic 

development planning. The intermediate stations undertake the passenger and cargo 

transportation business of this line. 

 

Port Reitz Station is the originating station of this line and it undertakes the arrival/departure 

operation of section and non-stop trains of container, fuel oil and petroleum products in 

addition to other bulk supply tariff. A turnaround depot is set to undertake the servicing work 

of freight locomotive of this line and a train inspection and service point is set to undertake 

the train inspection operation of the freight rolling stock of this line. 

 

Mombasa Terminus Station sets one locomotive waiting track to undertake the servicing 

work of passenger locomotive of this line and sets one train inspection and service point to 

undertake the train inspection operation of the passenger rolling stock of this line. 

 

Nairobi Terminus Station is the terminal station of this line and is also the connection station 

of this line and the East Africa Railway. It undertakes the sending and receiving operations of 

non-stop trains of this line and East Africa Railway besides the departure, arrival, breaking-

up and sorting operation of section trains of this line and the East Africa Railway. In addition, 

this station sets one locomotive depot to undertake the servicing work and overhaul operation 



Ashraf.                                            World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

31 

of the locomotives, one train inspection and service point to undertake the train inspection 

operation of the freight rolling stock, one rolling stock depot to undertake the maintenance 

operation of rolling stock of this line and one freight yard to undertake the freight business of 

this station. 

 

The distance between centers of tracks in station has been executed subject to the relevant 

provisions in the current Code for Design of Railway Stations and Terminals (GB50091- 

2006). The routes for receiving-departure tracks are designed as two-way routes, with 

effective length of 880m. 

 

In terms of signaling, all signals adopt multi-lens color-light signaling. High post signal is 

used as starting signal of main line and dwarf signal without indicator is adopted as starting 

signal of receiving-departure track. A route for out-of-gauge freight train is set at all main 

lines in the station, and another receiving-departure track for out-of-gauge freight train has 

been set at intermediate stations besides the main line. In addition to the main lines of Tsavo, 

Makindu and Paranai passing stations, there is another line for out-of- gauge freight train. On 

Port Reitz and Nairobi Terminus district stations, there are another two arrival-departure tracks 

for out-of-gauge freight train in addition to the main lines. 

 

5.3 Traffic Demand and Transportation Organization 

This line provides freight and regional passenger service and uses the transportation 

organization pattern of passenger and cargo on the same line. To satisfy the transportation 

demand of this line, stations are set in main economic strongholds, regions with larger 

railway handling operation volume and regions handling passenger services, while passing 

stations are set to satisfy passing capacity needs and guarantee balanced transportation. 

 

Freight flow of this line is mainly the freight flow of container, fuel oil and petroleum 

products, steel and other large amount of goods dispatched from Port Reitz to Nairobi and 

beyond, including a small amount of regional freight flow produced in the places along the 

line. 

 

To meet the local passenger transport demand, two pairs of passenger trains are operated per 

day in between Mombasa and Nairobi, three pairs per day will be dispatched in 2025 and 4 

pairs per day in 2035. 

 

The pair number of passenger and freight trains on this line is shown in Table 5-1 in 
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accordance with the predicted passenger and freight volume in the year of study. 
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Table 5-1: Pair Number of passenger and freight trains Unit: pairs/day. 

Section 

2020 2025 2035 

Direct 

freight 
Container 

Section 

freight 

District 

local 

train 

Passenger 

train 
Total 

Direct 

freight 
Container 

Section 

freight 

District 

local 

train 

Passenger 

train 
Total 

Direct 

freight 
Container 

Section 

freight 

District 

local 

train 

Passenger 

train 
Total 

Port 

Reitz- 

Mombasa 

Terminus 

Mombasa 

Terminus- 

Athi 

River 

Athi 

River- 

Nairobi 

Terminus 

2.5 4 1 0.5 0 8 4 7 3 0.5 0 14.5 7.5 9 5.5 0.5 0 22.5 

3.5 4 1 0.5 2 11 5 7 4 0.5 3 19.5 10.5 9 5.5 0.5 4 29.5 

2 4 1 0.5 2 9.5 3 7 4 0.5 3 17.5 7 9 5.5 0.5 4 26 
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The train plans for planning years 2020 and 2025 obtained from the Kenya Railways 

Corporation (KRC) feasibility study reports are used to capture the traffic demand on the line 

for the corresponding planning years and used in the determination of the feasible train 

schedules. The passenger and freight flow diagram is shown on Appendix B. 

 

5.4 Solution of the Train Scheduling Problem 

In this section, the formulated model and solution approach proposed is applied in solving the 

train scheduling problem of the Mombasa-Nairobi SGR line. 

 

The physical network was first constructed in NEXTA-Rail Network Editor, with 33 nodes 

corresponding to the stations operational at the current period (short-term) and then with 45 

nodes corresponding to the 45 stations in the long-term. The data for the nodes and links in 

the constructed networks is presented in Appendix B. 

 

The model was then implemented in FastTrain on a 1.61GHz Intel(R) Core(TM) m3- 7Y30 

CPU with 4 GB of RAM. The current and long-term networks were used and different 

number of trains were considered in each case (from 2 to 36) with a planning horizon, T = 

1440 min. The input into the Solution Engine included the train information such as the origin 

and destination nodes, the speed multiplier to define the speed of different trains, intended 

train start time, cost per unit time the train is stopped, cost per unit time the train is running, 

weight of train, length of train and the type of goods. 

 

The program was allowed to terminate after 10000 iterations, before which feasible solutions 

were found in all instances. The solution engine then output results with their corresponding 

quality measures. 

 

5.5 RESULTS AND ANALYSIS 

The output results provided values of the total travel time, total resource price, total trip time, 

computational time, upper bound (UB) and lower bound (LB) values with a corresponding 

optimality gap. The lower bound and upper bound tend to become better with increasing 

number of Lagrangian iterations. Considering the total travel time as the objective value, 

feasible results with the least optimality gap are considered. In the analysis, train schedules 

for the current (short-term) and long-term networks are obtained and compared. 

 

Table 5-2 below shows the total travel times, upper bounds, lower bounds and the 

corresponding optimality gap for different number of trains when scheduled in both the 
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current and the long-term networks. 

 

Table 5-2: Results. 

No. of 

Trains 

Current network (33 stations) Long-term network (45 stations) 

Total 

travel 

time(min) 

Lower 

Bound 

Upper 

Bound 
Op.Gap 

Comp. 

Time(s) 

Total 

Travel 

time 

(min) 

Lower 

Bound 

Upper 

Bound 
Op.Gap 

Comp. 

Time(s) 

2 734 735.40 1019 0.278 1 729 731.00 1026 0.288 0 

4 1616 1554.00 2432 0.361 0 1595 1570.00 2449 0.359 1 

6 2384 2286.00 3325 0.312 0 2334 2308.00 3289 0.298 1 

8 3306 3473.75 4546 0.236 126 3224 3395.50 4497 0.245 39 

10 4260 4501.79 5617 0.195 116 4244 4409.14 5464 0.201 472 

12 4956 5411.69 6545 0.173 114 5013 5263.38 6464 0.186 369 

14 5821 6526.60 7546 0.147 442 5770 6252.32 7616 0.179 624 

16 6674 7520.12 8914 0.156 797 6544 7135.62 8912 0.199 925 

18 7548 8674.63 9963 0.129 334 7614 8202.42 10412 0.212 657 

20 8790 9863.06 11277 0.125 664 8512 9297.23 11463 0.189 862 

22 9617 11112.22 12630 0.12 953 9141 10387.87 12443 0.165 570 

24 10608 12134.01 13902 0.165 781 10557 11515.52 13828 0.199 199 

26 11123 13402.29 15375 0.126 1151 11597 12478.87 14490 0.139 587 

28 - - - -  12106 13604.46 16507 0.176 1062 

30 - - - -  12548 14710.81 16831 0.126 178 

32 - - - -  14434 15920.01 19394 0.179 1137 

34 - - - -  16336 17657.84 20552 0.141 1243 

36 - - - -  16230 18255.66 21766 0.161 2598 

 

5.5.1 Model Performance and Solution Quality 

The solution approach in FastTrain provides better results with the increasing number of 

Lagrangian iterations. The optimality gap, the lower bound and the upper bound values tend 

to converge with increasing computational time. The optimality gap is the relative difference 

between the upper bound value and the lower bound value of the solution, and it is given by 

the equation: Optimality Gap =Upper bound - Lower bound /Upper bound. 

 

Given enough computational time i.e. number of iterations, the solution engine can converge 

towards more accurate solutions. However, in the solution of the problem in this case study, a 

maximum of 10000 iterations is allowed after which the program terminates. The hardest 

problem in the network current with 33 stations comprising 26 trains was solved in 19 min 11 

s with an optimality gap of 12.6%; while the hardest problem in the long-term network with 

45 stations comprised 36 trains and was solved in 43 min 18 s with an optimality gap of 

16.1%, which is within acceptable time for a train scheduling problem. 
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The number of trains scheduled within a given time horizon has an effect on the solution 

quality. In the two networks, the program outputs feasible results after a few iterations and 

does not find better solutions even after 10000 iterations, and this explains why the optimality 

gap for the first 8 trains is above 20%. Figure 5-3 below shows how the optimality gap is 

affected by the traffic demand on both networks. 

 

 

Figure 5-3: Effect of Travel Demand on Optimality Gap. 

 

With an increase in the scheduled number of trains, the optimality gap decreases sharply at 

first and then with more trains, the change is not very significant. For any number of trains 

scheduled, the optimality gap for the long-term network appears to be higher than the one for 

the current network, and the difference tends to increase with an increase in number of trains. 

This is due to increasing number of constraints. 

 

5.5.2 Impact of Traffic Demand and Number of Stations on the Average Train Travel 

Time 

The average time taken by a train to traverse the network is affected by the number of trains 

scheduled in a given time horizon. In the case under consideration, for an increase in number 

of trains scheduled, there is a corresponding increase in the average train travel time. For 

instance, the average train travel time for 6 trains scheduled in the long-term network 

between Mombasa and Nairobi is 6 h 37 min as opposed to 8 h for 34 trains scheduled in the 

same network over the same time horizon. 

 

Figure 5-4 below shows the impact of traffic demand and additional sidings on the average train 

travel time. 
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Figure 5-4: Effect of Traffic Demand on Average Train Travel Time. 

 

As can be noted from Figure 5-4 above, for any given number of trains, the corresponding 

average travel time on the current network is generally higher than corresponding average train 

travel time on the long-term network with more sidings. In addition, for the current network, 

feasible schedules could only be obtained for a maximum of 26 trains in the given time 

horizon, while more trains could be scheduled in the long-term network. 
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Appendix 

Appendix A: Station List 
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Appendix B: Passenger and Freight Flow Diagram 
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Appendix C: Node and Link Information for Current and Long- Term Networks 

Node Information for Current Network 

Station name Node_id x y 

Port Reitz 1 0.015404 -0.03081 

Mombasa 2 2.468671 -0.00341 

Mgadini 3 5.100082 -0.00341 

Mariakani 4 7.529077 -0.74561 

Mwembeni 5 9.958072 -0.2733 

Mgalani 6 13.55658 0.941195 

Mackinon Rd 7 17.46996 2.425581 

Miasenyi 8 19.62907 3.572606 

Maungu 9 23.60992 5.461824 

Ngutini 10 25.90397 4.652159 

Voi 11 28.33297 5.259408 

Ndi 12 31.09932 6.001601 

Mbololo 13 33.46085 5.056992 

Tsavo 14 37.77906 1.75086 

Kyulu 15 42.54709 2.448071 

Kanga 16 47.3601 2.178183 

Mtito Andei 17 50.37385 2.897885 

Ndalasyani 18 53.07273 2.448071 

Ngwata 19 55.68165 1.953276 

Kibwezi 20 58.42552 1.413499 

Kiunduani 21 61.39429 1.818332 

Makindu 22 64.00321 2.448071 

Simba 23 68.68127 3.257736 

Nkusso 24 71.29019 3.662569 

Emali 25 74.21398 4.202345 

Sultan Hamud 26 77.18276 4.02242 

Lesonkoyo 27 82.04075 4.292308 

Enkarau 28 84.87457 4.922048 

Paranai 29 87.43851 4.292308 

Konza 30 92.0716 3.167773 

Lukenya 31 95.98498 2.268146 

Athi River 32 98.50393 1.683388 

Nairobi Terminus 33 103.1595 0.806251 

 

Link Information for Current Network 

Link  

link_id 

from_ to_ length speed_ lane_capacity_  

link_type name node_id node_id (km) limit in_vhc_per_hour 

1 1 1 2 5.2 100 1 1 

2 2 2 3 12 100 1 1 

3 3 3 4 11.8 100 1 1 

4 4 4 5 12.1 100 1 1 

5 5 5 6 20.7 100 1 1 

6 6 6 7 21.8 100 1 1 

7 7 7 8 10.4 100 1 1 
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8 8 8 9 23.6 100 1 1 

9 9 9 10 13.4 100 1 1 

10 10 10 11 11.8 100 1 1 

11 11 11 12 12.7 100 1 1 

12 12 12 13 13.4 100 1 1 

13 13 13 14 21.7 100 1 1 

14 14 14 15 18.9 100 1 1 

15 15 15 16 20.7 100 1 1 

16 16 16 17 10.2 100 1 1 

17 17 17 18 11.7 100 1 1 

18 18 18 19 11.9 100 1 1 

19 19 19 20 19.3 100 1 1 

20 20 20 21 11.3 100 1 1 

21 21 21 22 11.4 100 1 1 

22 22 22 23 21.8 100 1 1 

23 23 23 24 10.4 100 1 1 

24 24 24 25 10 100 1 1 

25 25 25 26 13.2 100 1 1 

26 26 26 27 18.7 100 1 1 

27 27 27 28 10.7 100 1 1 

28 28 28 29 9.7 100 1 1 

29 29 29 30 20.1 100 1 1 

30 30 30 31 18.8 100 1 1 

31 31 31 32 8.6 100 1 1 

32 32 32 33 18.7 100 1 1 

 

Node Information for Long-Term Network 

Station name Node_id x y 

Port Reitz 1 0.015404 -0.03081 

Mombasa Terminus 2 2.468671 -0.00341 

Mgadini 3 5.100082 -0.00341 

Mariakani 4 7.529077 -0.74561 

Mwembeni 5 9.958072 -0.2733 

Samburu 6 12.51921 0.488428 

Mgalani 7 14.84139 1.687677 

Taru 8 17.22898 3.054094 

Mackinnon Road 9 19.55116 4.173392 

Miasenyi 10 22.23312 4.827528 

Wangala 11 24.86057 5.372641 

Maungu 12 27.67335 5.765122 

Ngutini 13 30.61696 5.350836 

Voi 14 33.25531 5.917754 

Ndi 15 35.42486 4.783919 

Mbololo 16 37.67072 3.606475 

Manyani 17 39.54591 2.603467 

Tsavo 18 41.59553 1.709482 

Tsavo North 19 43.66696 0.902714 

Kyulu 20 46.30531 1.469632 
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Kenani 21 49.20531 1.229782 

Kanga 22 51.69103 1.426023 

Mtitio Andei 23 54.26396 1.774895 

Ndalasyani 24 56.35719 1.360609 

Ngwata 25 58.62486 0.946323 

Kibwezi South 26 61.29955 0.553842 

Kibwezi 27 63.84705 0.924519 

Kiunduani 28 67.05231 0.597451 

Makindu 29 69.96322 0.597451 

Kiboko 30 72.90683 0.989932 

Simba 31 75.6869 1.644068 

Nkusso 32 78.43427 2.23279 

Emali 33 81.4433 2.527151 

Sultan Hamud 34 84.1416 2.724755 

Arroi Ranch 35 86.551 3.814981 

Lesonkoyo 36 88.84048 3.61874 

Enkarau 37 91.3589 3.71686 

Paranai 38 93.35401 3.422499 

Konza South 39 95.63259 2.572123 

Konza 40 97.90026 1.917987 

Kapiti Plains 41 100.1025 1.743551 

Lukenya 42 103.0025 1.329265 

Athi River 43 104.9649 0.838664 

Marimbeti 44 106.96 0.249942 

Nairobi Terminus 45 110.089 0.042799 

 

Link Information for Long-Term Network 

Link  

link_id 

from_ to_ length speed_ lane_capacity_  

link_type name node_id node_id (km) limit in_vhc_per_hour 

1 1 1 2 5.2 10 1 1 

2 2 2 3 12 10 1 1 

3 3 3 4 11. 10 1 1 

4 4 4 5 12. 10 1 1 

5 5 5 6 10. 10 1 1 

6 6 6 7 9.9 10 1 1 

7 7 7 8 9.5 10 1 1 

8 8 8 9 12. 10 1 1 

9 9 9 10 10. 10 1 1 

10 10 10 11 13. 10 1 1 

11 11 11 12 10. 10 1 1 

12 12 12 13 13. 10 1 1 

13 13 13 14 11. 10 1 1 

14 14 14 15 12. 10 1 1 

15 15 15 16 13. 10 1 1 

16 16 16 17 11. 10 1 1 

17 17 17 18 10. 10 1 1 

18 18 18 19 7.9 10 1 1 

19 19 19 20 11 10 1 1 
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20 20 20 21 9.4 10 1 1 

21 21 21 22 11. 10 1 1 

22 22 22 23 10. 10 1 1 

23 23 23 24 11. 10 1 1 

24 24 24 25 11. 10 1 1 

25 25 25 26 11. 10 1 1 

26 26 26 27 8 10 1 1 

27 27 27 28 11. 10 1 1 

28 28 28 29 11. 10 1 1 

29 29 29 30 10. 10 1 1 

30 30 30 31 11. 10 1 1 

31 31 31 32 10. 10 1 1 

32 32 32 33 10 10 1 1 

33 33 33 34 13. 10 1 1 

34 34 34 35 9 10 1 1 

35 35 35 36 9.7 10 1 1 

36 36 36 37 10. 10 1 1 

37 37 37 38 9.7 10 1 1 

38 38 38 39 10. 10 1 1 

39 39 39 40 9.3 10 1 1 

40 40 40 41 9.2 10 1 1 

41 41 41 42 9.6 10 1 1 

42 42 42 43 8.6 10 1 1 

43 43 43 44 7.8 10 1 1 

44 44 44 45 10. 10 1 1 

 

6 CONCLUSION 

In this thesis, the train scheduling problem was formulated as a variable-based cumulative flow 

model for simultaneous routing and scheduling trains on a single-track railway network, and 

applied on the Mombasa-Nairobi Railway line as a case study. By the use of a vector of 

cumulative flow variables to reformulate the network infrastructure capacity, the model 

allowed the decomposition of the initial complex train scheduling problem into a sequence of 

multiple single-train sub-problems in order to optimize the routes and passing time of at 

every station along the selected route of each train. 

 

The physical railway network of the section under study was first constructed in NEXTA-

Rail Network Editor, with 33 nodes corresponding to the stations operational at the current 

period (short-term) and then with 45 nodes corresponding to the 45 stations in the long-term. 

An open-source software FastTrain, which combines a Lagrangian relaxation framework with 

an effective time-dependent shortest path algorithm and a priority rule-based implementing 

algorithm was used in the solution of the variable-based cumulative flow model, outputting 

feasible solutions with corresponding quality measures within reasonable time. The hardest 
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problem comprising 36 trains was solved in 43 min 18 s, with optimality gap of 16.1%, which 

is within acceptable time range for a train scheduling problem. 

 

The model presented in this study can be used as a reliable train scheduling tool for medium 

to large-scale networks as well as a support tool for railroad infrastructure and operations 

planning. It could also be used to assess the impact on the train schedule due to increase in 

traffic demand or constructing more passing stations. In the current network constructed with 

33 stations, the average train travel time is generally higher than in the long-term network 

with 45 stations. The average train travel time also increases with increasing traffic demand 

in both networks. 

 

In the current network, optimal schedules could only be obtained for a maximum of 26 trains 

while the long-term network with more passing stations could take 36 trains. The forecast 

demand for year 2025 is 33 trains per day, which implies that the current short- term network 

could not support the demand and hence some passing stations should be opened up before 

2025. According to the feasibility study report, the traffic demand in the year 2035 is 51 trains 

per day, and therefore a capacity bottleneck is likely to occur in the long-term period. 

 

The results obtained from this research can be used to inform decision-making on operations 

and infrastructure planning by transportation planners on this line. In future, a more detailed 

study on the train scheduling problem for the entire network upon completion can be carried 

out, as well as research on the ways to increase the capacity of this line. 
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