Oríginal Article

World Journal of Engineering Research and Technology



**WJERT** 

www.wjert.org

SJIF Impact Factor: 7.029



# OPTICAL COEFFICIENTS IN THE N(P)-TYPE DEGENERATE GaP(1x) Sb(x)-CRYSTALLINE ALLOY, DUE TO THE NEW STATIC DIELECTRIC CONSTANT-LAW AND THE GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION (18)

# Prof. Dr. Huynh Van Cong\*

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 16/10/2024

Article Revised on 05/11/2024

Article Accepted on 25/11/2024



\*Corresponding Author Prof. Dr. Huynh Van Cong Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

# ABTRACT

In the n(p)-type  $\mathbf{GaP_{1-x}Sb_x}$ - crystalline alloy, with  $0 \le x \le 1$ , basing on our two recent works<sup>[1,2]</sup>, for a given x, and with an increasing  $\mathbf{r}_{d(a)}$ , the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius  $\mathbf{r}_{d(a)}$ , concentration x, and temperature T. Those results have been affected by (i) the important new  $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect,  $\varepsilon$  decreases ( $\searrow$ ) with an increasing ( $\nearrow$ )  $\mathbf{r}_{d(a)}$ , and then by (ii) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), N<sub>CDn(NDp)</sub>( $\mathbf{r}_{d(a)}, \mathbf{x}$ ), as observed in Equations (8c, 9a). Furthermore, we also showed that N<sub>CDn(NDp</sub>) is just the density of

carriers localized in exponential band tails, with a precision of the order of  $2.92 \times 10^{-7}$ , as that given in Table 4 of Ref.<sup>[1]</sup>, according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by:  $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$ , as defined in Eq. (9d). In summary, due to the new  $\epsilon(r_{d(a)}, x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands N\*(N,  $r_{d(a)}, x$ ), for a given x, and with an increasing  $r_{d(a)}$ , the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T),

and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

**KEYWORS:**  $GaP_{1-x}Sb_x$ - crystalline alloy; impurity-size effect; Mott critical impurity density in the MIT, optical coefficients.

#### **INTRODUCTION**

Here, basing on our two recent works<sup>[1,2]</sup> and also other ones<sup>[3-8]</sup>, all the optical coefficients given in the n(p)-type  $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaP_{1-x}Sb_x}$  - crystalline alloy, with  $0 \le x \le 1$ , are investigated, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius  $\mathbf{r}_{d(\mathbf{a})}$ , concentration x, and temperature T.

Then, for a given x, and with an increasing  $r_{d(a)}$ , the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

#### ENERGY BAND STUCTURE PARAMETERS

First of all, in the  $n^+(p^+) - p(n) X(x)$ - crystalline alloy at T=0 K, we denote the donor (acceptor) d(a)-radius by  $r_{d(a)}$ , and also the intrinsic one by:  $r_{do(ao)} = r_{P(Ga)} = 0.110$  nm (0.126 nm).

# A. Effect of x- concentration

Here, the intrinsic energy-band-structure parameters<sup>[1]</sup>, are expressed as functions of x, are given in the following.

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by:

$$m_{c(v)}(x)/m_{o} = 0.047 (0.3) \times x + 0.13(0.5) \times (1 - x)$$
 (1)

(ii)-The unperturbed relative static dielectric constant of the intrinsic of the single crystalline X- alloy is found to be defined by:

$$\varepsilon_{o}(x) = 15.69 \times x + 11.1 \times (1 - x).$$
<sup>(2)</sup>

(iii)-Finally, the unperturbed band gap at 0 K is found to be given by:

$$E_{ao}(x) = 0.81 \times x + 1.796 \times (1 - x). \tag{3}$$

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values as:

$$E_{do(ao)}(x) = \frac{13600 \times [m_{C(v)}(x)/m_0]}{[\epsilon_0(x)]^2} \text{ meV},$$
(4)

and then, the isothermal bulk modulus, by:

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{3}\right) \times \left(r_{do(ao)}\right)^3}.$$
(5)

#### B. Effect of Impurity $r_{d(a)}$ -size, with a given x

Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant  $\epsilon(r_{d(a)}, x)$ , developed as follows.

At  $r_{d(a)} = r_{do(ao)}$ , the needed boundary conditions are found to be, for the impurity-atom volume  $V = (4\pi/3) \times (r_{d(a)})^3$ ,  $V_{do(ao)} = (4\pi/3) \times (r_{do(ao)})^3$ , for the pressure p,  $p_o = 0$ , and for the deformation potential energy (or the strain energy)  $\sigma$ ,  $\sigma_o = 0$ . Further, the two important equations<sup>[1,7]</sup>, used to determine the  $\sigma$ -variation,  $\Delta\sigma \equiv \sigma - \sigma_o = \sigma$ , are defined by:  $\frac{dp}{dv} = \frac{B}{v}$  and  $p = \frac{d\sigma}{dv}$ . giving:  $\frac{d}{dv}(\frac{d\sigma}{dv}) = \frac{B}{v}$ . Then, by an integration, one gets:

$$\left[ \Delta \sigma(r_{d(a)}, x) \right]_{n(p)} = B_{do(ao)}(x) \qquad \times (V - V_{do(ao)}) \times \qquad \ln r_{do(ao)}(x) = 0$$

$$\left(\frac{v}{v_{do(ao)}}\right) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0.$$
(6)

Furthermore, we also shown that, as  $r_{d(a)} > r_{do(ao)} (r_{d(a)} < r_{do(ao)})$ , the compression (dilatation) gives rise to the increase (the decrease) in the energy gap  $E_{gn(gp)}(r_{d(a)}, x)$ , and the effective donor (acceptor)-ionization energy  $E_{d(a)}(r_{d(a)}, x)$  in absolute values, obtained in the effective Bohr model, which is represented respectively by:  $\pm [\Delta\sigma(r_{d(a)}, x)]_{n(p)}$ ,

$$\begin{split} E_{gno(gpo)}(\mathbf{r}_{d(a)}, \mathbf{x}) - E_{go}(\mathbf{x}) &= E_{d(a)}(\mathbf{r}_{d(a)}, \mathbf{x}) - E_{do(ao)}(\mathbf{x}) = E_{do(ao)}(\mathbf{x}) \times \left[ \left( \frac{\varepsilon_0(\mathbf{x})}{\varepsilon(\mathbf{r}_{d(a)})} \right)^2 - 1 \right] \\ &= + \left[ \Delta \sigma(\mathbf{r}_{d(a)}, \mathbf{x}) \right]_{n(p)} \end{split}$$

 $\text{for } r_{d(a)} \geq r_{do(ao)} \text{, and for } r_{d(a)} \leq r_{do(ao)} \text{,}$ 

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[ \left( \frac{\varepsilon_0(x)}{\varepsilon(r_{d(a)})} \right)^2 - 1 \right] = -\left[ \Delta \sigma(r_{d(a)}, x) \right]_{n(p)}$$
(7)

www.wjert.org

#### ISO 9001: 2015 Certified Journal

328

Therefore, from Equations (6) and (7), one obtains the expressions for relative dielectric constant  $\epsilon(r_{d(a)}, x)$  and energy band gap  $E_{gn(gp)}(r_{d(a)}, x)$ , as:

(i)-for 
$$r_{d(a)} \ge r_{do(ao)}$$
, since  $\epsilon(r_{d(a)}, x) = \frac{\epsilon_0(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \le \epsilon_0(x)$ , being a new

 $\varepsilon(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, \mathbf{x})$ -law,

$$\begin{split} E_{gno(gpo)}\big(r_{d(a)}, x\big) - E_{go}(x) &= E_{d(a)}\big(r_{d(a)}, x\big) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \\ &\ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0, \end{split}$$

$$(8a)$$

according to the increase in both  $E_{gn(gp)}(r_{d(a)}, x)$  and  $E_{d(a)}(r_{d(a)}, x)$ , with increasing  $r_{d(a)}$  and for a given x, and

(ii)-for 
$$r_{d(a)} \leq r_{do(ao)}$$
, since  $\epsilon(r_{d(a)}, x) = \frac{\epsilon_0(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \geq \epsilon_o(x)$ , with a condition, given by:  $\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 < 1$ , being a **new**  $\epsilon(\mathbf{r}_{d(a)}, x)$ -law,  
 $E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = -E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3$ 

$$\leq 0,$$
(8b)

corresponding to the decrease in both  $E_{gn(gp)}(r_{d(a)}, x)$  and  $E_{d(a)}(r_{d(a)}, x)$ , with decreasing  $r_{d(a)}$  and for a given x; therefore, the effective Bohr radius  $a_{Bn(Bp)}(r_{d(a)}, x)$  is defined by:

$$a_{Bn(Bp)}(r_{d(a)},x) \equiv \frac{\epsilon(r_{d(a)},x) \times \hbar^2}{m_{c(v)}(x) \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)},x)}{m_{c(v)}(x)/m_0}.$$
(8c)

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the metal-insulator transition (**MIT**) at T=0 K,  $N_{CDn(NDp)}(r_{d(a)}, x)$ , was given by the Mott's criterium, with an empirical parameter,  $M_{n(p)}$ , as:

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = M_{n(p)}, M_{n(p)} = 0.25,$$
(9a)

depending thus on our new  $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (**WS**) radius  $r_{sn(sp)}$ , characteristic of interactions, by:

$$r_{sn(sp)}(N, r_{d(a)}, x) \equiv \left(\frac{3}{4\pi N}\right)^{1/3} \times \frac{1}{a_{Bn(Bp)}(r_{d(a)}, x)} = 1.1723 \times 10^8 \times \left(\frac{1}{N}\right)^{1/3} \times \frac{m_{C(V)}(x)/m_0}{\epsilon(r_{d(a)}, x)},$$
(9b)

being equal to, in particular, at  $N=N_{CDn(CDp)}(r_{d(a)}, x)$ :  $r_{sn(sp)}(N_{CDn(CDp)}(r_{d(a)}, x), r_{d(a)}, x)=$ 2.4814, for any  $(r_{d(a)}, x)$ -values. So, from Eq. (9b), one also has:

$$N_{CDn(CDp)}(r_{d(a)},x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)},x) = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}} \times \frac{1}{2.4814} = 0.25 = (WS)_{n(p)} = M_{n(p)}.$$
 (9c)

Thus, the above Equations (9a, 9b, 9c) confirm our new  $\epsilon(r_{d(a)}, x)$ -law, given in Equations (8a, 8b).

Furthermore, by using  $M_{n(p)} = 0.25$ , according to the empirical Heisenberg parameter  $\mathcal{H}_{n(p)} = 0.47137$ , as those given in Equations (8, 15) of the Ref.<sup>[1]</sup>, we have also showed that  $N_{CDn(CDp)}$  is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail, with a precision of the order of  $2.92 \times 10^{-7}$ . Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined, as that given in compensated materials, by:

$$N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x).$$
(9d)

#### C. Effect of temperature T, with given x and $r_{d(a)}$

Here, the intrinsic band gap  $E_{gni(gpi)}(r_{d(a)}, x, T)$  at any T is given by:

$$E_{gni(gpi)}(r_{d(a)}, x, T) \text{ in } eV = E_{gno(gpo)}(r_{d(a)}, x) - 10^{-4} \times T^{2} \times \left\{ \frac{5.405 \times x}{T + 204 \text{ K}} + \frac{7.205 \times (1-x)}{T + 94 \text{ K}} \right\},$$
(10)

suggesting that, for given x and  $r_{d(a)}$ ,  $E_{gni(gpi)}$  decreases with an increasing T.

Then, in the following, for the study of optical phenomena, one denote the conduction (valence)-band density of states by  $N_{c(v)}(T, x)$  as:

$$N_{c(v)}(T,x) = 2 \times g_{c(v)}(x) \times \left(\frac{m_{\Gamma(x) \times k_{B}T}}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} (cm^{-3}), \ g_{v}(x) \equiv 1 \times x + 1 \times (1-x) = 1,$$
(11)

where  $m_r(x)/m_o$  is the reduced effective mass  $m_r(x)/m_o$ , defined by :  $m_r(x) \equiv [m_c(x) \times m_v(x)]/[m_c(x) + m_v(x)].$ 

#### D. Heavy Doping Effect, with given T, x and $r_{d(a)}$

Here, as given in our previous works<sup>[1,2]</sup>, the Fermi energy  $E_{Fn}(-E_{Fp})$ , and the band gap narrowing are reported in the following.

First, the reduced Fermi energy  $\eta_{n(p)}$  or the Fermi energy  $E_{Fn}(-E_{Fp})$ , obtained for any T and any effective d(a)-density,  $N^*(N, r_{d(a)}, x) = N^*$ , defined in Eq. (9d), for a simplicity of presentation, being investigated in our previous paper<sup>[8]</sup>, with a precision of the order of  $2.11 \times 10^{-4}$ , is found to be given by:

$$\eta_{n(p)}(u) \equiv \frac{E_{Fn}(u)}{k_B T} \left( \frac{-E_{Fp}(u)}{k_B T} \right) = \frac{G(u) + A u^B F(u)}{1 + A u^B}, A = 0.0005372 \text{ and } B = 4.82842262,$$
(12)

where u is the reduced electron density,  $u(N, r_{d(a)}, x, T) \equiv \frac{N^*}{N_{C(v)}(T,x)}$ ,  $F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}$ ,  $a = \left[(3\sqrt{\pi}/4) \times u\right]^{2/3}$ ,  $b = \frac{1}{8} \left(\frac{\pi}{a}\right)^2$ ,  $c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4$ , and  $G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du}$ ;  $d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{3}{16}\right] > 0$ . Therefore, from Eq. (12), the Fermi energies are expressed as functions of variables : N,  $r_{d(a)}$ , x, and T.

Here, one notes that: (i) as  $u \gg 1$ , according to the HD [d(a)-X(x)- alloy] ER-case, or to the degenerate case, Eq. (12) is reduced to the function F(u), and in particular at T=0 and as  $N^* = 0$ , according to the metal-insulator transition (**MIT**), one has: + $E_{Fn}(-E_{Fp}) = \frac{\hbar^2}{2 \times m_r(x)} \times (3\pi^2 N^*)^{2/3} = 0$ , and (ii)  $\frac{E_{Fn}(u\ll 1)}{k_BT} (\frac{-E_{Fp}(u\ll 1)}{k_BT}) \ll -1$ , to the LD [a(d)-X(x)- alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function G(u), noting that the notations: **HD**(**LD**) and **ER**(**BR**) denote the heavily doped (lightly doped)-cases and emitter (base)-regions, respectively.

Now, in Eq. (9b), in which one replaces  $m_{c(v)}(x)$  by  $m_r(x)$ , the effective Wigner-Seitz radius becomes as:

$$r_{sn(sp)}(N, r_{d(a)}, x) = 1.1723 \times 10^8 \times \left(\frac{g_{c(v)}(x)}{N^*}\right)^{1/3} \times \frac{m_r(x)}{\varepsilon(r_{d(a)}, x)},$$
(13a)

the correlation energy of an effective electron gas,  $E_{cn(cp)}(N, r_{d(a)}, x)$ , is given as:

$$E_{cn(cp)}(N, r_{d(a)}, x) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67378876}}.$$
 (13b)

Then, taking into account various spin-polarized chemical potential-energy contributions such as: exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy, and finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, the band gap narrowings are given in the following.

In the n-type HD X(x)- alloy, the BGN is found to be given by:

$$\begin{split} \Delta E_{gno}(N, r_d, x) &\simeq a_1 \times \frac{\varepsilon_0(x)}{\varepsilon(r_d, x)} \times N_r^{1/3} + a_2 \times \frac{\varepsilon_0(x)}{\varepsilon(r_d, x)} \times N_r^{\frac{2}{3}} \times (2.503 \times [-E_{cn}(r_{sn}) \times r_{sn}]) + \\ a_3 \times \left[\frac{\varepsilon_0(x)}{\varepsilon(r_d, x)}\right]^{5/4} \times \sqrt{\frac{m_v}{m_r}} \times N_r^{1/4} + a_4 \times \sqrt{\frac{\varepsilon_0(x)}{\varepsilon(r_d, x)}} \times N_r^{1/2} \times 2 + a_5 \times \left[\frac{\varepsilon_0(x)}{\varepsilon(r_d, x)}\right]^{\frac{2}{3}} \times N_r^{\frac{1}{6}} \\ N_r \equiv \left(\frac{N^*}{N_{CDn}(r_d, x)}\right), \\ \Delta E_{gn}(N, r_d, x) = \Delta E_{gno}(N, r_d, x) \times \{0.75 \times x + 2.2 \times (1 - x)\}, \end{split}$$
(14n)

 $\begin{array}{ll} \mbox{where} & a_1 = 3.8 \times 10^{-3} (eV) \ , & a_2 = 6.5 \times 10^{-4} (eV) \ , & a_3 = 2.8 \times 10^{-3} (eV) \\ a_4 = 5.597 \times 10^{-3} (eV) \mbox{ and } a_5 = 8.1 \times 10^{-4} (eV), \mbox{ and in the p-type HD X(x)- alloy, as:} \\ \Delta E_{gpo}(N,r_a,x) \simeq a_1 \times \frac{\epsilon_0(x)}{\epsilon(r_a,x)} \times N_r^{1/3} + a_2 \times \frac{\epsilon_0(x)}{\epsilon(r_a,x)} \times N_r^{\frac{1}{3}} \times \left(2.503 \times [-E_{cp}(r_{sp}) \times r_{sp}]\right) + \\ a_3 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_a,x)}\right]^{5/4} \times \sqrt{\frac{m_c}{m_r}} \times N_r^{1/4} + 2a_4 \times \sqrt{\frac{\epsilon_0(x)}{\epsilon(r_a,x)}} \times N_r^{1/2} + a_5 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_a,x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}} \\ N_r \equiv \left(\frac{N^*}{N_{CDD}(r_a,x)}\right), \end{array}$ 

$$\Delta E_{gp}(N, r_a, x) = \Delta E_{gpo}(N, r_a, x) \times \{15 \times x + 18 \times (1 - x)\},$$
(14p)

where  $a_1 = 3.15 \times 10^{-3} (eV)$ ,  $a_2 = 5.41 \times 10^{-4} (eV)$ ,  $a_3 = 2.32 \times 10^{-3} (eV)$ ,  $a_4 = 4.12 \times 10^{-3} (eV)$  and  $a_5 = 9.8 \times 10^{-5} (eV)$ .

One also remarks that, as  $N^* = 0$ , according to the MIT,  $\Delta E_{gn(gp)}(N, r_{d(a)}, x) = 0$ .

#### **OPTICAL BAND GAP**

Here, the optical band gap is found to be defined by:

$$E_{gn1(gp1)}(N, r_{d(a)}, x, T) \equiv E_{gni(gpi)}(r_{d(a)}, x, T) - \Delta E_{gn(gp)}(N, r_{d(a)}, x) + (-)E_{Fn(Fp)}(N, r_{d(a)}, x, T),$$
(15)

where  $E_{gin(gip)}$ ,  $[+E_{Fn}, -E_{Fp}] \ge 0$ , and  $\Delta E_{gn(gp)}$  are respectively determined in Equations [10, 12, 14n(p)], respectively. So, as noted above, at the MIT, Eq. (15) thus becomes:  $E_{gn1(gp1)}(r_{d(a)}, x) = E_{gno(gpo)}(r_{d(a)}, x)$ , according to:  $N = N_{CDn(NDp)}(r_{d(a)}, x)$ .

#### **OPTICAL COEFFICIENTS**

The optical properties of any medium can be described by the complex refraction index N and the complex dielectric function  $\varepsilon$ ,  $\mathbb{N} \equiv n - i\kappa$  and  $\varepsilon \equiv \varepsilon_1 - i\varepsilon_2$ , where  $i^2 = -1$  and  $\varepsilon \equiv \mathbb{N}^2$ . Therefore, the real and imaginary parts of  $\varepsilon$  denoted by  $\varepsilon_1$  and  $\varepsilon_2$  can thus be expressed in terms of the refraction index n and the extinction coefficient  $\kappa$  as:  $\varepsilon_1 \equiv n^2 - \kappa^2$  and  $\varepsilon_2 \equiv 2n\kappa$ . One notes that the optical absorption coefficient  $\alpha$  is related to  $\varepsilon_2$ , n,  $\kappa$ , and the optical conductivity  $\sigma_0$ , by<sup>[2]</sup>

$$\begin{aligned} \alpha(E, N, r_{d(a)}, x, T) &\equiv \frac{\hbar q^2 \times |v(E)|^2}{n(E) \times \epsilon_{free \ space} \times cE} \times J(E^*) = \frac{E \times \epsilon_2(E)}{\hbar cn(E)} \equiv \frac{2E \times \kappa(E)}{\hbar c} \equiv \frac{4\pi \sigma_0(E)}{cn(E) \times \epsilon_{free \ space}}, \\ \epsilon_1 &\equiv n^2 - \kappa^2 \ \text{and} \ \epsilon_2 \equiv 2n\kappa, \end{aligned}$$
(16)

where, since  $\mathbf{E} \equiv \hbar \omega$  is the photon energy, the effective photon energy:  $\mathbf{E}^* = \mathbf{E} - \mathbf{E}_{gn1(gp1)}(\mathbf{N}, \mathbf{r}_{d(a)}, \mathbf{x}, \mathbf{T})$  is thus defined as the reduced photon energy.

Here, -q,  $\hbar$ , |v(E)|,  $\omega$ ,  $\varepsilon_{\text{free space}}$ , c and J(E<sup>\*</sup>) respectively represent: the electron charge, Dirac's constant, matrix elements of the velocity operator between valence (conduction)-andconduction (valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if the three functions such as:  $|v(E)|^2$ , J(E<sup>\*</sup>) and n(E) are known, then the other optical dispersion functions as those given in Eq. (16) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be expressed in terms of  $\kappa(E)$  and n(E) as:

$$R(E, N, r_{d(a)}, x, T) = \frac{[n(E)-1]^2 + \kappa(E)^2}{[n(E)+1]^2 + \kappa(E)^2}.$$
(17)

From Equations (16, 17), if the two optical functions,  $\varepsilon_1$  and  $\varepsilon_2$ , (or n and  $\kappa$ ), are both known, the other ones defined above can thus be determined, noting also that:  $E_{gn1(gp1)}(N, r_{d(a)}, x, T) = E_{gn1(gp1)}$ , for a presentation simplicity.

Then, one has:

-at low values of 
$$E \gtrsim E_{gn1(gp1)}$$
,  
 $J_{n(p)}(E, N, r_{d(a)}, x, T) = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^{a - (1/2)}}{E_{gn1(gp1)}^{a - 1}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times (E - E_{gn1(gp1)})^{1/2}$ , for a=1, (18)

and at large values of  $E > E_{gn1(gp1)}$ ,

$$J_{n(p)}(E, N, r_{d(a)}, x, T) = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^{a - (1/2)}}{E_{gn1(gp1)}^{a - 1}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^2}{E_{gn1(gp1)}^{3/2}}, \text{ for } a = 5/2.$$
(19)

Further, one notes that, as  $E \to \infty$ , Forouhi and Bloomer (FB)<sup>[4]</sup> claimed that  $\kappa(E \to \infty) \to a$  constant, while the  $\kappa(E)$  -expressions, proposed by Van Cong<sup>[2]</sup> quickly go to 0 as  $E^{-3}$ , and consequently, their numerical results of the optical functions such as:  $\sigma_0(E)$  and  $\alpha(E)$ , given in Eq. (16), both go to 0 as  $E^{-2}$ .

Now, an improved Forouhi-Bloomer parameterization model (FB-PM), used to determine the expressions of the optical coefficients in the degenerate  $n^+(p^+) - p(n) X(x)$ - crystalline alloy, is now proposed as follows. Then, if denoting the functions G(E) and F(E) and by:  $G(E) \equiv \sum_{i=1}^{4} \frac{A_i}{E^2 - B_i E + C_i} \text{ and } F(E) \equiv \sum_{i=1}^{4} \frac{A_i}{E^2 \times (1 + 10^{-4} \times \frac{E}{6}) - B_i E + C_i}, \text{ we propose:}$   $\kappa(E, N, r_{d(a)}, x, T) = G(E) \times E_{gni(gpi)}^{3/2} \times (E^* \equiv E - E_{gn1(gp1)})^{1/2}, \text{ for } E_{gni(gpi)} \leq E \leq 2.3 \text{ eV},$   $= F(E) \times (E^* \equiv E - E_{gn1(gp1)})^2, \text{ for } E \geq 2.3 \text{ eV},$ (20)

being equal to 0 for  $E^* = 0$  (or for  $E = E_{gn1(gp1)}$ ), and also going to 0 as  $E^{-1}$  as  $E \to \infty$ , and further,

$$n(E, N, r_{d(a)}, x, T) = n_{\infty}(r_{d(a)}, x) + \sum_{i=1}^{4} \frac{x_i(E_{gn1(gp1)}) \times E + Y_i(E_{gn1(gp1)})}{E^2 - B_i E + C_i}.$$
(21)

going to a constant as  $E \to \infty$ , since  $n(E \to \infty, r_{d(a)}, x) \to n_{\infty}(r_{d(a)}, x) = \sqrt{\epsilon(r_{d(a)}, x)} \times \frac{\omega_T}{\omega_L}$ ,  $\omega_T = 5.1 \times 10^{13} \text{ s}^{-1} [5] \text{ and } \omega_L = 8.9755 \times 10^{13} \text{ s}^{-1}$ .

Here, the other parameters are determined by:  

$$X_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[ -\frac{B_i^2}{2} + E_{gn1(gp1)}B_i - E_{gn1(gp1)}^2 + C_i \right]$$
,  
 $Y_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[ \frac{B_i \times (E_{gn1(gp1)}^2 + C_i)}{2} - 2E_{gn1(gp1)}C_i \right]$ ,  $Q_i = \frac{\sqrt{4C_i - B_i^2}}{2}$ , where, for i=(1, 2, 3, and 4),  $A_i = 1.154 \times A_{i(FB)} = 4.7314 \times 10^{-4}$ , 0.2314, 0.1118 and 0.0116 ,  
 $B_i \equiv B_{i(FB)} = 5.871$ , 6.154, 9.679 and 13.232, and  $C_i \equiv C_{i(FB)} = 8.619$ , 9.784, 23.803, and 44.119.

Then, as noted above, if the two optical functions, n and  $\kappa$ , are both known, the other ones defined in Equations (16, 17) can also be determined.

#### NUMERICAL RESULTS

Now, some numerical results of those optical functions are investigated in the n(p)-type  $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaP}_{1-\mathbf{x}}\mathbf{Sb}_{\mathbf{x}}$ - crystalline alloy, as follows.

#### A. Metal-insulator transition (MIT)-case

As discussed above, the physical conditions used for the MIT are found to be given by: T=0K,  $N^* = 0$  or  $N = N_{CDn(CDp)}$ , giving rise to:  $E_{gn1(gp1)}(N^* = 0, r_{d(a)}, x, T = 0) = E_{gn1(gp1)}(r_{d(a)}, x) = E_{gno(gpo)}(r_{d(a)}, x)$ .

Then, in this MIT-case, if  $E = E_{gn1(gp1)}(r_{d(a)}, x) = E_{gn0(gp0)}(r_{d(a)}, x)$ , which can be defined as the critical photon energy:  $E \equiv E_{CPE}(r_{d(a)}, x)$ , one obtains:  $\kappa_{MIT}(r_{d(a)}, x) = 0$  from Eq. (20), and from Eq. (16):  $\epsilon_{2(MIT)}(r_{d(a)}, x) = 0$ ,  $\sigma_{0(MIT)}(r_{d(a)}, x) = 0$  and  $\alpha_{MIT}(r_{d(a)}, x) = 0$ , and the other functions such as :  $n_{MIT}(r_{d(a)}, x)$  from Eq. (21), and  $\epsilon_{1(MIT)}(r_{d(a)}, x)$  and  $R_{MIT}(r_{d(a)}, x)$  from Eq. (16) decrease with increasing  $r_{d(a)}$  and  $E_{CPE}$ , as those investigated in Table 1 in Appendix 1.

#### **B.** Optical coefficients, obtained as $E \rightarrow \infty$

the choice (21),any Τ, the real In Eq. at of refraction index:  $n(E \to \infty, \mathbf{r}_{d(a)}, x, T) = n_{\infty}(\mathbf{r}_{d(a)}, x) = \sqrt{\epsilon(\mathbf{r}_{d(a)}, x)} \times \frac{\omega_T}{\omega_L}, \quad \omega_T = 5.1 \times 10^{13} \, s^{-1}$  <sup>[5]</sup> and  $\omega_L = 8.9755 \times 10^{13} \, s^{-1}$ , was obtained from the Lyddane-Sachs-Teller relation<sup>[5]</sup>, from which T(L) represent the transverse (longitudinal) optical phonon modes. Then, from Equations (16, 17, 20), from such the asymptotic behavior ( $E \rightarrow \infty$ ), we obtain:  $\kappa_{\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x) \to 0 \text{ and } \varepsilon_{2,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x) \to 0, \text{ as } E^{-1}, \text{ so that } \varepsilon_{1,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x), \sigma_{0,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x),$  $\alpha_{\infty}(\mathbf{r}_{d(a)}, \mathbf{x})$  and  $R_{\infty}(\mathbf{r}_{d(a)}, \mathbf{x})$  go to their appropriate limiting constants, as those investigated in Table 2 in Appendix 1, in which T=0K and N =  $N_{CDn(CDp)}$ .

# C. Variations of some optical coefficients, obtained in P(B)-X(x)-system, as functions of E

In the P(B)-X(x)-system, at T=0K and N = N<sub>CDn(CDp</sub>)( $r_{P(B)}$ , x), our numerical results of n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$  are obtained from Equations (21, 20, 16), respectively, and expressed as functions of  $E [\geq E_{CPE}(r_{d(a)}, x)]$  and for given x, as those reported in Tables 3n and 3p in Appendix 1.

#### D. Variations of various optical coefficients, as functions of N

In the X(x)-system, at E=3.2 eV and T=20 K, for given  $r_{d(a)}$  and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of  $\eta_{n(p)}$  (>> 1, degenerate case),  $E_{gn1(gp1)}$ , n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$ , obtained as functions of N, being represented by the arrows:  $\nearrow$  and  $\searrow$ , as those tabulated in Tables 4n and 4p in Appendix 1.

#### E. Variations of various optical coefficients as functions of T

In the X(x)-system, at E=3.2 eV and N =  $10^{20}$  cm<sup>-3</sup>, for given  $r_{d(a)}$  and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of  $\eta_{n(p)}$  ( $\gg$  1, degenerate case),  $E_{gn1(gp1)}$ , n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$ , obtained as functions of T, being represented by the arrows:  $\nearrow$  and  $\searrow$ , as those tabulated in Tables 5n and 5p in Appendix 1.

#### **CONCLUDING REMARKS**

In the n(p)-type  $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaP_{1-x}Sb_{x^{-}}}$  crystalline alloy, by basing on our two recent works<sup>[1,2]</sup>, for a given x, and with an increasing  $\mathbf{r}_{d(a)}$ , the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius  $\mathbf{r}_{d(a)}$ , concentration x, and temperature T.

Those results have been affected by (i) the important new  $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect,  $\varepsilon$  decreases ( $\searrow$ ) with an increasing ( $\nearrow$ )  $\mathbf{r}_{d(a)}$ , and then by (ii) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT),  $N_{\text{CDn}(\text{NDp})}(\mathbf{r}_{d(a)}, \mathbf{x})$ , as observed in Equations (8c, 9a).

Further, we also showed that  $N_{CDn(NDp)}$  is just the density of carriers localized in exponential band tails, with a precision of the order of **2**. **92** × **10**<sup>-7</sup>, as that given in Table 4 of Ref.<sup>[1]</sup>, according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by:  $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$ , as defined in Eq. (9d).

In summary, due to the new  $\varepsilon(r_{d(a)}, x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands N<sup>\*</sup>(N,  $r_{d(a)}, x$ ), for a given x, and with an increasing  $r_{d(a)}$ , the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

#### REFERENCES

- Van Cong, H. New critical impurity density in MIT, obtained in various n(p)-type degenerate InP<sub>1-x</sub>As<sub>x</sub>(Sb<sub>x</sub>), GaAs<sub>1-x</sub>Te<sub>x</sub>(Sb<sub>x</sub>, P<sub>x</sub>), CdS<sub>1-x</sub>Te<sub>x</sub>(Se<sub>x</sub>) – crystalline alloys, being just that of carriers localized in exponential band tails. WJERT, 2024; 10(4): 05-23.
- Van Cong, H. Optical coefficients in the n(p)-type degenerate GaAs<sub>1-x</sub>Te<sub>x</sub>- crystalline alloy, due to the new static dielectric constant-law and the generalized Mott criterium in the metal-insulator transition (1). WJERT, 2024; 10(10): 122-147.
- Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. American Journal of Modern Physics, 2018; 7: 136-165.
- Forouhi A. R. & Bloomer I. Optical properties of crystalline semiconductors and dielectrics. Phys. Rev., 1988; 38: 1865-1874.
- Aspnes, D.E. & Studna, A. A. Dielectric functions and optical parameters of Si, Se, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B, 1983; 27: 985-1009.
- 6. Van Cong, H. et al. Optical bandgap in various impurity-Si systems from the metalinsulator transition study. Physica B, 2014; 436: 130-139.
- Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State Communications, 1984; 49: 697-699.
- 8. Van Cong, H. & Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., 1993; 73: 1545-1546.

#### **APPENDIX 1**

**Table 1.** In the MIT-case, T=0K, N=N<sub>CDn(p)</sub>( $r_{d(a)}$ , x), and the critical photon energy  $E_{CPE} = E = E_{gno(gpo)}(r_{d(a)}, x)$ , if  $E = E_{gn1(gp1)}(r_{d(a)}, x) = E_{CPE}(r_{d(a)}, x)$ , the numerical results of optical functions such as :  $n_{MIT}(r_{d(a)}, x)$ , obtained from Eq. (21), and those of other ones:  $\epsilon_{1(MIT)}(r_{d(a)}, x)$  and  $R_{MIT}(r_{d(a)}, x)$ , from Eq. (16), decrease ( $\searrow$ ) with increasing ( $\nearrow$ )  $r_{d(a)}$  and  $E_{CPE}$ .

| Donor                          |       | Р      | As     | Sb     | Sn    |  |
|--------------------------------|-------|--------|--------|--------|-------|--|
| <b>r</b> <sub>d</sub> (nm) [4] | 7     | 0.110  | 0.118  | 0.136  | 0.140 |  |
| At <b>x=0</b> ,                |       |        |        |        |       |  |
| E <sub>CPE</sub> in meV        | 7     | 1796   | 1796.7 | 1804   | 1807  |  |
| n <sub>MIT</sub>               | 7     | 3.078  | 3.055  | 2.872  | 2.820 |  |
| ε <sub>1(MIT)</sub>            | 2     | 9.47   | 9.33   | 8.25   | 7.95  |  |
| R <sub>MIT</sub>               | 2     | 0.260  | 0.257  | 0.234  | 0.227 |  |
| At <b>x=0.5</b> ,              |       |        |        |        |       |  |
| E <sub>CPE</sub> in meV        | 7     | 1303   | 1303.3 | 1306.8 | 1308  |  |
| n <sub>MIT</sub>               | 7     | 3.572  | 3.547  | 3.350  | 3.293 |  |
| $\varepsilon_{1(MIT)}$         | 7     | 12.76  | 12.58  | 11.21  | 10.84 |  |
| R <sub>MIT</sub>               | 7     | 0.316  | 0.314  | 0.292  | 0.285 |  |
| At <b>x=1</b> ,                |       |        |        |        |       |  |
| E <sub>CPE</sub> in meV        | 7     | 810    | 810.1  | 811.5  | 812   |  |
| n <sub>MIT</sub>               | 2     | 4.050  | 4.023  | 3.810  | 3.750 |  |
| $\varepsilon_{1(MIT)}$         | 7     | 16.40  | 16.19  | 14.52  | 14.06 |  |
| R <sub>MIT</sub>               | 7     | 0.365  | 0.362  | 0.341  | 0.335 |  |
| Acceptor                       |       | В      | Ga     | In     | Cd    |  |
| r <sub>a</sub> (nm)            | 7     | 0.088  | 0.126  | 0.144  | 0.148 |  |
| At <b>x=0</b> ,                |       |        |        |        |       |  |
| E <sub>CPE</sub> in meV        | 7     | 1756.8 | 1796   | 1807   | 1812  |  |
| n <sub>MIT</sub>               | 7     | 3.789  | 3.078  | 2.988  | 2.948 |  |
| $\varepsilon_{1(MIT)}$         | 2     | 14.36  | 9.47   | 8.93   | 8.69  |  |
| R <sub>MIT</sub>               | 7     | 0.339  | 0.260  | 0.248  | 0.243 |  |
| At <b>x=0.5</b> ,              |       |        |        |        |       |  |
| E <sub>CPE</sub> in m          | neV 🥕 | 1281.5 | 1303   | 1309   | 1312  |  |
| n <sub>MIT</sub>               | 7     | 4.340  | 3.572  | 3.477  | 3.434 |  |
| $\varepsilon_{1(MIT)}$         | 7     | 18.83  | 12.76  | 12.09  | 11.79 |  |
| R <sub>MIT</sub>               | 7     | 0.391  | 0.316  | 0.306  | 0.301 |  |
| At v-1                         |       |        |        |        |       |  |

| E <sub>CPE</sub> in meV | 7 | 798.2 | 810   | 813   | 815   |
|-------------------------|---|-------|-------|-------|-------|
| n <sub>MIT</sub>        | 7 | 4.874 | 4.050 | 3.949 | 3.904 |
| $\varepsilon_{1(MIT)}$  | 7 | 23.75 | 16.40 | 15.60 | 15.24 |
| R <sub>MIT</sub>        | 2 | 0.435 | 0.365 | 0.355 | 0.351 |

**Table 2.** Here, at T=0K and N=N<sub>CDn(p)</sub>( $r_{d(a)}, x$ ), and as  $E \to \infty$ , the numerical results of  $n_{\infty}(r_{d(a)}, x)$ ,  $\varepsilon_{1,\infty}(r_{d(a)}, x)$ ,  $\sigma_{0,\infty}(r_{d(a)}, x)$ ,  $\alpha_{\infty}(r_{d(a)}, x)$  and  $R_{\infty}(r_{d(a)}, x)$  go to their appropriate limiting constants.

| Donor                                                  |                 | Р      | As     | Sb    | Sn    |  |
|--------------------------------------------------------|-----------------|--------|--------|-------|-------|--|
| At <b>x=0</b> ,                                        |                 |        |        |       |       |  |
| n∞ ∖                                                   |                 | 1.893  | 1.870  | 1.692 | 1.642 |  |
| ε <sub>1,∞</sub>                                       |                 | 3.584  | 3.498  | 2.863 | 2.695 |  |
| $\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times cm}$ | 2               | 8.638  | 8.535  | 7.721 | 7.491 |  |
| $\propto_{\infty}$ in (10 <sup>9</sup> × c             | $(m^{-1}) = 2.$ | 1602   |        |       |       |  |
| R <sub>∞</sub>                                         | ,               | 0.095  | 0.092  | 0.066 | 0.059 |  |
| At <b>x=0.5</b> ,                                      |                 |        |        |       |       |  |
| n∞ ∖                                                   |                 | 2.080  | 2.055  | 1.860 | 1.803 |  |
| ε <sub>1,∞</sub>                                       |                 | 4.325  | 4.222  | 3.455 | 3.252 |  |
| $\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times cm}$ | 7               | 9.489  | 9.376  | 8.482 | 8.229 |  |
| $\alpha_{\infty}$ in (10 <sup>9</sup> × a              | $m^{-1}) = 2.$  | 1602   |        |       |       |  |
| R <sub>∞</sub>                                         |                 | 0.123  | 0.119  | 0.090 | 0.082 |  |
| A = 1                                                  |                 |        |        |       |       |  |
| At <b>X=1</b> ,                                        |                 | 0.051  | 0.004  | 2.012 | 1.052 |  |
| n <sub>co</sub> >                                      |                 | 2.251  | 2.224  | 2.012 | 1.952 |  |
| ε <sub>1,∞</sub> <sup>1</sup>                          |                 | 5.066  | 4.945  | 4.047 | 3.810 |  |
| $\sigma_{0,\infty}$ in $\frac{10}{\Omega \times cm}$   | v<br>V          | 10.270 | 10.147 | 9.180 | 8.906 |  |
| $\propto_{\infty}$ in (10 <sup>9</sup> × a             | $(m^{-1}) = 2.$ | 1602   |        |       |       |  |
| R <sub>∞</sub>                                         |                 | 0.148  | 0.144  | 0.113 | 0.104 |  |
| Acceptor                                               |                 | В      | Ga     | In    | Cd    |  |
| At <b>x=0</b> ,                                        |                 |        |        |       |       |  |
| n <sub>∞</sub> ∖                                       |                 | 2.580  | 1.893  | 1.810 | 1.773 |  |
| ε <sub>1,∞</sub> ∖                                     | u l             | 6.655  | 3.584  | 3.275 | 3.144 |  |
| $\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times cm}$ | 2               | 11.77  | 8.64   | 8.26  | 8.09  |  |
| $\propto_{\infty}$ in (10 <sup>9</sup> × c             | $m^{-1}) = 2.5$ | 1602   |        |       |       |  |
| R <sub>∞</sub>                                         |                 | 0.195  | 0.095  | 0.083 | 0.078 |  |
| At <b>x=0.5</b> ,                                      |                 |        |        |       |       |  |
| n∞ ↘                                                   |                 | 2.834  | 2.080  | 1.988 | 1.948 |  |

| ε <sub>1,∞</sub>                     | 7                                     | 8.031 | 4.325 | 3.952 | 3.794 |
|--------------------------------------|---------------------------------------|-------|-------|-------|-------|
| $\sigma_{0,\infty}$ in $\frac{1}{2}$ | $\frac{10^5}{1 \times cm}$ $\searrow$ | 12.93 | 9.489 | 9.071 | 8.888 |
| ∝ <sub>∞</sub> in (1                 | $0^9 \times cm^{-1}) = 2.$            | 1602  |       |       |       |
| R∞                                   | 7                                     | 0.229 | 0.123 | 0.109 | 0.103 |
| At <b>x=1</b> ,                      |                                       |       |       |       |       |
| $n_{\infty}$                         | 5                                     | 3.067 | 2.251 | 2.152 | 2.108 |
| $\varepsilon_{1,\infty}$             | 2                                     | 9.407 | 5.066 | 4.629 | 4.444 |
| $\sigma_{0,\infty}$ in $\frac{1}{2}$ | $\frac{10^5}{1 \times cm}$            | 13.99 | 10.27 | 9.818 | 9.619 |
| ∝ <sub>∞</sub> in (1                 | $0^9 \times cm^{-1}) = 2.$            | 1602  |       |       |       |
| R∞                                   | 7                                     | 0.258 | 0.148 | 0.133 | 0.127 |

**Table 3n.** In the P-X(x)-system, and at T=0K and N = N<sub>CDn</sub>( $\mathbf{r}_{p}$ , x), according to the MIT, our numerical results of n,  $\kappa$ ,  $\varepsilon_{1}$  and  $\varepsilon_{2}$  are obtained from Equations (21, 20, 16), respectively, and expressed as functions of  $E [\geq E_{CPE}(\mathbf{r}_{p}, x)]$  and x, noting that (i)  $\kappa = 0$  and  $\varepsilon_{2} = 0$  at  $E = E_{CPE}(\mathbf{r}_{p}, x)$ , and  $\kappa \to 0$  and  $\varepsilon_{2} \to 0$  as  $E \to \infty$ .

| E in eV                  | n      | κ     | ε1      | $\varepsilon_2$ |
|--------------------------|--------|-------|---------|-----------------|
| At x=0,                  |        |       |         |                 |
| $E_{CPE} = 1.796$        | 3.0783 | 0     | 9.4760  | 0               |
| 2                        | 3.221  | 0.186 | 10.341  | 1.198           |
| 2.5                      | 3.749  | 0.188 | 14.019  | 1.407           |
| 3                        | 3.935  | 1.191 | 14.067  | 9.371           |
| 3.5                      | 3.403  | 1.512 | 9.298   | 10.292          |
| 4                        | 3.535  | 1.470 | 10.334  | 10.395          |
| 4.5                      | 3.848  | 2.379 | 9.148   | 18.312          |
| 5                        | 2.376  | 3.431 | -6.128  | 16.310          |
| 5.5                      | 1.304  | 2.481 | -4.458  | 6.471           |
| 6                        | 1.385  | 1.884 | -1.631  | 5.219           |
|                          |        |       |         |                 |
| 10 <sup>22</sup>         | 1.8931 | 0     | 3.5838  | 0               |
| At x=0.5,                |        |       |         |                 |
| E <sub>CPE</sub> =1.3030 | 3.5720 | 0     | 12.7594 | 0               |
| 2                        | 4.189  | 0.212 | 17.507  | 1.780           |
| 2.5                      | 4.988  | 0.542 | 24.589  | 5.412           |
| 3                        | 4.841  | 2.365 | 17.840  | 22.903          |
| 3.5                      | 3.716  | 2.513 | 7.495   | 18.682          |
| 4                        | 3.880  | 2.202 | 10.206  | 17.085          |
| 4.5                      | 4.285  | 3.326 | 7.300   | 28.504          |
| 5                        | 2.283  | 4.569 | -15.662 | 20.862          |
| 5.5                      | 0.946  | 3.186 | -9.256  | 6.026           |
|                          |        |       |         |                 |

Cong.

| 6                       | 1.115       | 2.352 | -4.287  | 5.246  |  |
|-------------------------|-------------|-------|---------|--------|--|
|                         | • • • • • • | 0     |         | 0      |  |
| 1022                    | 2.0796      | 0     | 4.3248  | 0      |  |
| At x=1,                 |             |       |         |        |  |
| E <sub>CPE</sub> =0.81  | 4.0503      | 0     | 16.4053 | 0      |  |
| 2                       | 5.326       | 0.136 | 28.346  | 1.449  |  |
| 2.5                     | 6.440       | 1.081 | 40.302  | 13.926 |  |
| 3                       | 5.767       | 3.940 | 17.742  | 45.443 |  |
| 3.5                     | 3.891       | 3.768 | 0.941   | 29.320 |  |
| 4                       | 4.118       | 3.080 | 7.467   | 25.366 |  |
| 4.5                     | 4.646       | 4.431 | 1.950   | 41.168 |  |
| 5                       | 2.046       | 5.868 | -30.252 | 24.020 |  |
| 5.5                     | 0.427       | 3.978 | -15.645 | 3.401  |  |
| 6                       | 0.711       | 2.871 | -7.739  | 4.085  |  |
|                         |             |       |         |        |  |
| <b>10</b> <sup>22</sup> | 2.2507      | 0     | 5.0658  | 0      |  |
| E in eV                 | n           | κ     | ε1      | ε2     |  |

**Table 3p.** In the B-X(x)-system, and at T=0K and N = N<sub>CDp</sub>( $\mathbf{r}_B, \mathbf{x}$ ), according to the MIT, our numerical results of n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$  are obtained from Equations (21, 20, 16), respectively, and expressed as functions of  $E [\geq E_{CPE}(\mathbf{r}_B, \mathbf{x})]$  and x, noting that (i)  $\kappa = 0$  and  $\varepsilon_2 = 0$  at  $E = E_{CPE}(\mathbf{r}_B, \mathbf{x})$ , and  $\kappa \to 0$  and  $\varepsilon_2 \to 0$  as  $E \to \infty$ .

| E in eV                  | n      | κ     | $\varepsilon_1$ | ε2     |
|--------------------------|--------|-------|-----------------|--------|
| At x=0,                  |        |       |                 |        |
| E <sub>CPE</sub> =1.7568 | 3.7893 | 0     | 14.3590         | 0      |
| 2                        | 3.963  | 0.196 | 15.668          | 1.557  |
| 2.5                      | 4.511  | 0.209 | 20.304          | 1.886  |
| 3                        | 4.677  | 1.269 | 20.267          | 11.876 |
| 3.5                      | 4.105  | 1.582 | 14.344          | 12.989 |
| 4                        | 4.237  | 1.523 | 15.636          | 12.908 |
| 4.5                      | 4.557  | 2.449 | 14.969          | 22.317 |
| 5                        | 3.045  | 3.516 | -3.087          | 21.416 |
| 5.5                      | 1.952  | 2.535 | -2.610          | 9.896  |
| 6                        | 2.040  | 1.919 | 0.477           | 7.830  |
|                          |        |       |                 |        |
| <b>10</b> <sup>22</sup>  | 2.5797 | 0     | 6.6548          | 0      |
| At x=0.5,                |        |       |                 |        |
| E <sub>CPE</sub> =1.2815 | 4.3397 | 0     | 18.8329         | 0      |
| 2                        | 4.982  | 0.210 | 24.777          | 2.096  |
| 2.5                      | 5.794  | 0.562 | 33.251          | 6.514  |

| Cong.                    |        |       | World Journ | nal of Engin | eering Research and Technology |
|--------------------------|--------|-------|-------------|--------------|--------------------------------|
|                          |        |       |             |              |                                |
| 3                        | 5.627  | 2.426 | 25.784      | 27.304       |                                |
| 3.5                      | 4.473  | 2.563 | 13.443      | 22.930       |                                |
| 4                        | 4.640  | 2.237 | 16.516      | 20.755       |                                |
| 4.5                      | 5.049  | 3.371 | 14.128      | 34.038       |                                |
| 5                        | 3.022  | 4.622 | -12.231     | 27.938       |                                |
| 5.5                      | 1.673  | 3.219 | -7.562      | 10.769       |                                |
| 6                        | 1.847  | 2.373 | -2.222      | 8.767        |                                |
|                          |        |       |             |              |                                |
| 10 <sup>22</sup>         | 2.8339 | 0     | 8.0308      | 0            |                                |
| At x=1,                  |        |       |             |              |                                |
| E <sub>CPE</sub> =0.7982 | 4.8740 | 0     | 23.7557     | 0            |                                |
| 2                        | 6.167  | 0.134 | 38.019      | 1.650        |                                |
| 2.5                      | 7.289  | 1.096 | 51.934      | 15.984       |                                |
| 3                        | 6.602  | 3.982 | 27.731      | 52.581       |                                |
| 3.5                      | 4.706  | 3.801 | 7.696       | 35.772       |                                |
| 4                        | 4.934  | 3.103 | 14.720      | 30.623       |                                |
| 4.5                      | 5.466  | 4.459 | 9.991       | 48.745       |                                |
| 5                        | 2.851  | 5.901 | -26.697     | 33.657       |                                |
| 5.5                      | 1.225  | 3.998 | -14.485     | 9.800        |                                |
| 6                        | 1.512  | 2.884 | -6.032      | 8.725        |                                |
|                          |        |       |             |              |                                |
| <b>10</b> <sup>22</sup>  | 3.0670 | 0     | 9.4067      | 0            |                                |
| E in eV                  | n      | κ     | ε           | ε2           |                                |

**Table 4n.** In the X(x)-system, at E=3.2 eV and T=20 K, for given  $r_d$  and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of  $\eta_n \gg 1$ , degenerate case),  $E_{gn1}$ , n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$ , obtained as functions of N, being represented by the arrows:  $\nearrow$  and  $\searrow$ , noting that both  $\eta_n$  and  $E_{gn1}$  increase with increasing N.

| N (10 <sup>18</sup> cm <sup>-</sup> | <sup>-3</sup> ) ↗ 15 | 26      | 60     | 100    |  |  |
|-------------------------------------|----------------------|---------|--------|--------|--|--|
|                                     |                      | x=0     |        |        |  |  |
| For $\mathbf{r_d} = \mathbf{r_p}$ , | ,                    |         |        |        |  |  |
| $\eta_n\gg 1$                       | ▶ 123.7              | 179     | 313    | 441    |  |  |
| E <sub>gn1</sub> in eV              | ▶ 1.692              | 1.700   | 1.746  | 1.811  |  |  |
| n                                   | > 3.875              | 3.868   | 3.822  | 3.758  |  |  |
| κ                                   | ▶ 1.685              | 1.669   | 1.567  | 1.430  |  |  |
| ε                                   | ▶ 12.1749            | 12.1746 | 12.155 | 12.079 |  |  |
| ε2                                  | > 13.0618            | 12.9087 | 11.982 | 10.751 |  |  |

| For $\mathbf{r_d} = \mathbf{r_{Sb}}$                              | ,       |                |        |                    |                 |
|-------------------------------------------------------------------|---------|----------------|--------|--------------------|-----------------|
| $\eta_n\gg 1$                                                     | 7       | 122.8          | 178.4  | 313                | 440.7           |
| Egn1 in eV                                                        | ~       | 1.740          | 1.762  | 1.839              | 1.930           |
| n                                                                 | 7       | 3.627          | 3.606  | 3.530              | 3.438           |
| κ                                                                 | 2       | 1.579          | 1.533  | 1.374              | 1.196           |
| $\varepsilon_1$                                                   | 7       | 10.661         | 10.652 | 10.573             | 10.391          |
| $\varepsilon_2$                                                   | 7       | 11.456         | 11.059 | 9.700              | 8.225           |
|                                                                   |         |                |        |                    |                 |
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}\mathbf{n}}$ | ı,      |                |        |                    |                 |
| $\eta_n\gg 1$                                                     | 7       | 122.5          | 178.1  | 312.8              | 440.5           |
| Egn1 in eV                                                        | 7       | 1.752          | 1.777  | 1.861              | 1.958           |
| n                                                                 | 7       | 3.565          | 3.541  | 3.457              | 3.359           |
| κ                                                                 | 7       | 1.554          | 1.501  | 1.330              | 1.144           |
| ε                                                                 | 7       | 10.295         | 10.283 | 10.185             | 9.976           |
| $\varepsilon_2$                                                   | 7       | 11.080         | 10.634 | 9.196              | 7.685           |
|                                                                   |         |                |        |                    |                 |
|                                                                   |         |                | x=0.5  |                    |                 |
| For $\mathbf{r}_1 = \mathbf{r}_2$                                 |         |                |        |                    |                 |
| $n \gg 1$                                                         | 7       | 177            | 256    | <i>11</i> <b>7</b> | 620             |
| F in aV                                                           | ~       | 1 1 5 4        | 1 1/8  | 1 107              | 1 273           |
| Egn1 III ev                                                       |         | 1.134          | 1.140  | 1.197              | 1.275           |
| n                                                                 | 2       | 4.565          | 4.562  | 4.520              | 4.452           |
| κ                                                                 | 7       | 3.130          | 3.120  | 2.975              | 2.752           |
| ε <sub>1</sub>                                                    | ~       | 11.045         | 11.080 | 11.580             | 12.249          |
| ε <sub>2</sub>                                                    | 7       | 28.577         | 28.474 | 26.897             | 24.505          |
| For $\mathbf{r}_1 = \mathbf{r}_2$                                 |         |                |        |                    |                 |
| -⊶-a •sb                                                          | "<br>"  | 177            | 255.8  | 447                | 628.6           |
| E <sub>m1</sub> in eV                                             | ,<br>7  | 1.216          | 1.242  | 1.339              | 1.458           |
| -gn1 - 0 -                                                        | · ·     | 4 202          | 4 250  | 4 170              | 4.062           |
| II<br>V                                                           | ``<br>` | 4.282          | 4.209  | 4.1/2              | 4.063           |
| r.                                                                | צ       | 2.911<br>0 878 | 2.842  | 2.307<br>10.817    | 2.250<br>11 447 |
| °1                                                                |         | 7.028          | 24 212 | 10.017             | 11.447          |
| °2                                                                | لا      | 24.981         | 24.212 | 21.419             | 16.290          |
| For $\mathbf{r}_{d} = \mathbf{r}_{c_{r}}$                         | 1,      |                |        |                    |                 |
| u -sn<br>η <sub>n</sub> ≫1                                        | ~ ~     | 176.9          | 255.7  | 447                | 628.5           |
| <br>E <sub>gn1</sub> in eV                                        | 7       | 1.233          | 1.264  | 1.372              | 1.500           |
| n                                                                 | 7       | 4.212          | 4.184  | 4.086              | 3.968           |
| ĸ                                                                 | ~       | 2.868          | 2.779  | 2.476              | 2.141           |
| ε1                                                                | 7       | 9.514          | 9.787  | 10.568             | 11.161          |
| -                                                                 | -       |                |        |                    | =               |

| ε2                                                                | > 24.161     | 23.258 | 20.238   | 16.992 |
|-------------------------------------------------------------------|--------------|--------|----------|--------|
| x=1                                                               |              |        |          |        |
| For $\mathbf{r_d} = \mathbf{r_p}$ ,                               |              |        |          |        |
| $\eta_n\gg 1$                                                     | ↗ 316.5      | 456.8  | 797.7    | 1121.4 |
| E <sub>gn1</sub> in eV                                            | ↗ 0.601      | 0.671  | 0.808    | 0.985  |
| n                                                                 | > 5.152      | 5.129  | 5.020    | 4.873  |
| κ                                                                 | ▶ 4.855      | 4.740  | 4.242    | 3.636  |
| ε1                                                                | ▶ 2.978      | 3.835  | 7.205    | 10.526 |
| ε <sub>2</sub>                                                    | > 50.029     | 48.619 | 42.585   | 35.444 |
|                                                                   |              |        |          |        |
| For $\mathbf{r_d} = \mathbf{r_{Sb}}$                              | ),           |        |          |        |
| $\eta_n\gg 1$                                                     | ↗ 316.5      | 456.8  | 797.7    | 1121.4 |
| Egn1 in eV                                                        | ▶ 0.759      | 0.827  | 1.046    | 1.294  |
| n                                                                 | ▶ 4.820      | 4.765  | 4.583    | 4.366  |
| κ                                                                 | ▶ 4.418      | 4.173  | 3.438    | 2.693  |
| ε                                                                 | ↗ 3.721      | 5.291  | 9.179    | 11.808 |
| $\varepsilon_2$                                                   | ▶ 42.589     | 39.772 | 31.513   | 23.513 |
|                                                                   |              |        |          |        |
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}\mathbf{n}}$ | 1,           |        |          |        |
| $\eta_n\gg 1$                                                     | > 316.5      | 456.7  | 797.7    | 1121.4 |
| E <sub>gn1</sub> in eV                                            | ▶ 0.786      | 0.863  | 1.102    | 1.366  |
| n                                                                 | <b>4.738</b> | 4.676  | 4.475    | 4.241  |
| κ                                                                 | <b>4.319</b> | 4.047  | 3.264    | 2.494  |
| $\varepsilon_1$                                                   | ▶ 3.797      | 5.484  | 9.375    | 11.765 |
| $\varepsilon_2$                                                   | ↘ 40.933     | 37.844 | 29.213   | 21.155 |
| N (1018                                                           | -3) 7 15     | 26     | <u> </u> | 100    |
| IN (10 <sup>10</sup> cm                                           | ~) / 15      | 26     | 60       | 100    |

**Table 4p.** In the X(x)-system, at E=3.2 eV and T=20 K, for given  $r_d$  and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of  $\eta_p$  ( $\gg$  1, degenerate case),  $E_{gp1}$ , n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$ , obtained as functions of N, being represented by the arrows:  $\nearrow$  and  $\searrow$ , noting that both  $\eta_p$  and  $E_{gp1}$  increase with increasing N.



# World Journal of Engineering Research and Technology

| n $\searrow$ 3.867       3.865       3.807       3.726 $\kappa$ $\searrow$ 1.668       1.663       1.534       1.365 $\epsilon_2$ $\searrow$ 12.1745       12.1743       12.142       12.023 $\epsilon_2$ $\searrow$ 12.399       12.855       11.680       10.173         For $\mathbf{r_a} = \mathbf{r_{ac}}$ $\eta_p \gg 1$ $?$ 3.7       116       269       404 $\mathbf{E}_{gp1}$ in $\mathcal{V}$ 1.726       1.723       1.791       1.882       n $?$ $?$ n       ?       3.759       3.762 $\checkmark$ 3.604 $\varkappa$ $\varkappa$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$ $?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Egp1 in eV                                                        | 7      | 1.700   | 1.702   | 1.761  | 1.843  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------|---------|---------|--------|--------|--|
| $\kappa$ $\sim$ 1.663       1.534       1.365 $\epsilon_1$ $\sim$ 12.1745       12.1743       12.422       12.023 $\epsilon_2$ $\sim$ 12.899       12.855       11.680       10.173 $r_2$ $\sim$ 1.726       1.723       1.791       1.882 $n$ $\wedge$ $?$ 1.726       1.723       1.791       1.882 $n$ $\wedge$ $?$ 1.610       1.618 $\sim$ 1.471       1.287 $\epsilon_1$ $\wedge$ 1.5335       11.534 $\vee$ 1.300 $\epsilon_2$ $?$ $?$ $?$ $r_4$ $?$ 1.610       1.618 $\vee$ $1.300$ $\epsilon_2$ $.9278$ For $\mathbf{r_a} = \mathbf{r_{cd}}$ $\cdot$ $12.107$ $12.172$ $\vee$ $.899$ $9.278$ Fage 1 $\wedge$ $1.2.003$ $1.2.76$ $.1303$ $1.899$ $1.616$ $.551$ $\kappa$ $\wedge$ $1.562$ $1.599$ $1.446$ $1.256$ $$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n                                                                 | 7      | 3.867   | 3.865   | 3.807  | 3.726  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | κ                                                                 | 7      | 1.668   | 1.663   | 1.534  | 1.365  |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\varepsilon_1$                                                   | 7      | 12.1745 | 12.1743 | 12.142 | 12.023 |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ε2                                                                | 7      | 12.899  | 12.855  | 11.680 | 10.173 |  |
| $ \begin{array}{c c c c c c c } r_{\mathbf{p}} \gg 1 & ? & 37 & 116 & 269 & 404 \\ \hline F_{\mathbf{p}p1} in eV & ? & 1.726 & 1.723 & 1.791 & 1.882 \\ \hline n & ? & 3.759 & 3.762 & 3.694 & 3.604 \\ \hline \kappa & ? & 1.610 & 1.618 & 1.471 & 1.287 \\ \hline \epsilon_1 & ? & 11.5335 & 11.5344 & 11.485 & 11.330 \\ \hline \epsilon_2 & ? & 12.107 & 12.172 & 10.869 & 9.278 \\ \hline \hline r_{\mathbf{a}} = \mathbf{r_{Cd}} & & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{I}\mathbf{n}}$ | ,      |         |         |        |        |  |
| $ \begin{split} & \mathbf{F}_{\mathbf{p} 2} \text{ in } \mathbf{eV} \stackrel{>}{\longrightarrow} 1.726 & 1.723 & 1.791 & 1.882 \\ & \mathbf{n} & \stackrel{>}{\longrightarrow} 3.759 & 3.752 & 3.694 & 3.604 \\ & \kappa & \stackrel{>}{\swarrow} & 1.610 & 1.618 & 1.471 & 1.287 \\ & \mathbf{e}_1 & \stackrel{>}{\longrightarrow} 1 & 1.5335 & 11.5344 & 11.485 & 11.330 \\ & \mathbf{e}_2 & \stackrel{>}{\nearrow} & 12.107 & 12.172 & 10.869 & 9.278 \\ \hline & \mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}}. \\ & \mathbf{r}_{\mathbf{p}} \gg 1 & \stackrel{>}{\nearrow} & 17 & 106 & 262 & 399 \\ & \mathbf{F}_{\mathbf{p} 2} \text{ in } \mathbf{eV} \stackrel{>}{\nearrow} & 1.748 & 1.731 & 1.803 & 1.898 \\ & \mathbf{n} & \stackrel{>}{\checkmark} & 3.700 & 3.717 & 3.646 & 3.551 \\ & \kappa & \stackrel{>}{\checkmark} & 1.562 & 1.599 & 1.446 & 1.256 \\ & \mathbf{e}_1 & \stackrel{>}{\checkmark} & 11.2503 & 11.2576 & 11.201 & 11.031 \\ & \mathbf{e}_2 & \stackrel{>}{\checkmark} & 11.558 & 11.890 & 10.542 & 8.918 \\ \hline & \mathbf{r}_{\mathbf{e}}. \\ \hline & \mathbf{r}_{\mathbf{e}} = \mathbf{r}_{\mathbf{G}}. \\ & \mathbf{r}_{\mathbf{p}} \gg 1 & \stackrel{>}{\nearrow} & 154.7 & 237.4 & 433.3 & 617 \\ & \mathbf{F}_{\mathbf{p} p} = \mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{G}}. \\ & \mathbf{n} & \stackrel{>}{\searrow} & 4.575 & 4.572 & 4.521 & 4.441 \\ & \kappa & \stackrel{>}{\searrow} & 3.165 & 3.154 & 2.977 & 2.717 \\ & \mathbf{e}_1 & \stackrel{>}{\checkmark} & 10.916 & 1.09575 & 11.574 & 12.341 \\ & \mathbf{e}_2 & \stackrel{>}{\searrow} & 1.0516 & 1.0975 & 11.574 & 12.341 \\ & \mathbf{e}_2 & \stackrel{>}{\searrow} & 28.960 & 28.838 & 26.916 & 24.138 \\ \hline & \mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{m}}. \\ & \mathbf{n}_p \gg 1 & \stackrel{>}{\nearrow} & 147.3 & 231.5 & 428.9 & 613.4 \\ & \mathbf{E}_{\mathbf{p} 1}  \mathbf{n}  \mathcal{V} & 1.161 & 1.172 & 1.248 & 1.353 \\ & \mathbf{n} & \stackrel{>}{\searrow} & 4.460 & 4.450 & 4.383 & 4.289 \\ & \kappa & \stackrel{>}{\searrow} & 3.082 & 3.049 & 2.824 & 2.529 \\ & \mathbf{e}_1 & \stackrel{>}{\checkmark} & 10.3914 & 10.5098 & 11.236 \\ & \mathbf{e}_2 & \stackrel{>}{\searrow} & 27.492 & 27.135 & 24.753 & 21.692 \\ \hline \end{aligned}$ | $\eta_{p}\gg 1$                                                   | 7      | 37      | 116     | 269    | 404    |  |
| n $?$ $3.759$ $3.762 > 3.694$ $3.604$ $\kappa$ $?$ $1.610$ $1.618 > 1.471$ $1.287$ $\epsilon_1$ $?$ $11.5335$ $11.534 > 11.485$ $11.330$ $\epsilon_2$ $?$ $12.107$ $12.172 > 10.869$ $9.278$ For $\mathbf{r_a} = \mathbf{r_{Gc}}$ Tree tree to the second sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | E <sub>gp1</sub> in eV                                            | ~      | 1.726   | 1.723   | 1.791  | 1.882  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                                                 | 7      | 3.759   | 3.762   | 3.694  | 3.604  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | κ                                                                 | 7      | 1.610   | 1.618 🔰 | 1.471  | 1.287  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\varepsilon_1$                                                   | 7      | 11.5335 | 11.5344 | 11.485 | 11.330 |  |
| For $\mathbf{r_a} = \mathbf{r_{cd}}$ ,<br>$\eta_p \geqslant 1$ $?$ 17 106 262 399<br>$\mathbf{E_{gp1} in eV}$ $?$ 1.748 1.731 1.803 1.898<br>n $?$ 3.700 3.717 $\searrow$ 3.646 3.551<br>$\kappa$ $?$ 1.562 1.599 $\searrow$ 1.446 1.256<br>$\epsilon_1$ $?$ 11.2503 11.2576 $\Hugentering 11.031$<br>$\epsilon_2$ $?$ 11.558 11.890 $\image$ 10.542 8.918<br><b>x=0.5</b><br>For $\mathbf{r_a} = \mathbf{r_{ca}}$ ,<br>$\eta_p \geqslant 1$ $?$ 154.7 237.4 433.3 617<br>$\mathbf{E_{gp1} in eV}$ $?$ 1.134 1.137 1.196 1.285<br>n $\searrow$ 4.575 4.572 4.521 4.4411<br>$\kappa$ $\bigotimes$ 3.165 3.154 2.977 2.717<br>$\epsilon_1$ $?$ 10.916 10.9575 11.574 12.341<br>$\epsilon_2$ $\searrow$ 28.960 28.838 26.916 24.138<br>For $\mathbf{r_a} = \mathbf{r_{in}}$ ,<br>$\eta_p \geqslant 1$ $?$ 147.3 231.5 428.9 613.4<br>$\mathbf{E_{gp1} in eV}$ $?$ 1.161 1.172 1.248 1.353<br>n $\searrow$ 4.460 4.450 4.383 4.289<br>$\kappa$ $\bigotimes$ 3.082 3.049 2.824 2.529<br>$\epsilon_1$ $?$ 10.914 10.5098 11.236 11.998<br>$\epsilon_2$ $\searrow$ 27.492 27.135 24.753 21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\varepsilon_2$                                                   | 7      | 12.107  | 12.172  | 10.869 | 9.278  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{C}\mathbf{d}}$ | <br>1, |         |         |        |        |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\eta_{p}\gg 1$                                                   | 7      | 17      | 106     | 262    | 399    |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Egp1 in eV                                                        | 7      | 1.748   | 1.731   | 1.803  | 1.898  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n                                                                 | 7      | 3.700   | 3.717   | 3.646  | 3.551  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | κ                                                                 | 7      | 1.562   | 1.599 🔰 | 1.446  | 1.256  |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ε1                                                                | 7      | 11.2503 | 11.2576 | 11.201 | 11.031 |  |
| x=0.5         For $\mathbf{r_a} = \mathbf{r_{Ga}}$ , $\eta_p \gg 1$ $\nearrow$ 154.7       237.4       433.3       617 $\mathbf{E_{gp1}}$ in eV $\checkmark$ 1.134       1.137       1.196       1.285         n $\checkmark$ 4.575       4.572       4.521       4.441 $\kappa$ $\checkmark$ 3.165       3.154       2.977       2.717 $\varepsilon_1$ $\checkmark$ 10.916       10.9575       11.574       12.341 $\varepsilon_2$ $\checkmark$ 28.960       28.838       26.916       24.138         Trans.         For $\mathbf{r_a} = \mathbf{r_{In}}$ , $\eta_p \gg 1$ $\checkmark$ 147.3       231.5       428.9       613.4 $\mathbf{E_{gp1}}$ in eV $\checkmark$ 1.161       1.172       1.248       1.353         n $\checkmark$ 4.460       4.450       4.383       4.289 $\kappa$ $\checkmark$ 3.082       3.049       2.824       2.529 $\varepsilon_1$ $\checkmark$ 10.3914       10.5098       11.236       11.998 $\varepsilon_2$ $\checkmark$ 27.492       27.135       24.753       21.692 <td>ε2</td> <td>7</td> <td>11.558</td> <td>11.890</td> <td>10.542</td> <td>8.918</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ε2                                                                | 7      | 11.558  | 11.890  | 10.542 | 8.918  |  |
| For $\mathbf{r_a} = \mathbf{r_{Ga}}$ ,<br>$\eta_p \gg 1$ $\nearrow$ 154.7 237.4 433.3 617<br>$\mathbf{E_{gp1}}$ in eV $\nearrow$ 1.134 1.137 1.196 1.285<br>n $\checkmark$ 4.575 4.572 4.521 4.441<br>$\kappa$ $\checkmark$ 3.165 3.154 2.977 2.717<br>$\varepsilon_1$ $\nearrow$ 10.916 10.9575 11.574 12.341<br>$\varepsilon_2$ $\checkmark$ 28.960 28.838 26.916 24.138<br>For $\mathbf{r_a} = \mathbf{r_{In}}$ ,<br>$\eta_p \gg 1$ $\nearrow$ 147.3 231.5 428.9 613.4<br>$\mathbf{E_{gp1}}$ in eV $\nearrow$ 1.161 1.172 1.248 1.353<br>n $\checkmark$ 4.460 4.450 4.383 4.289<br>$\kappa$ $\checkmark$ 3.082 3.049 2.824 2.529<br>$\varepsilon_1$ $\nearrow$ 10.3914 10.5098 11.236 11.998<br>$\varepsilon_2$ $\checkmark$ 27.492 27.135 24.753 21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x=0.5                                                             |        |         |         |        |        |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}\mathbf{a}}$ | a,     |         |         |        |        |  |
| $E_{gp1}$ in eV $\checkmark$ 1.134       1.137       1.196       1.285         n $\checkmark$ 4.575       4.572       4.521       4.441 $\kappa$ $\checkmark$ 3.165       3.154       2.977       2.717 $\varepsilon_1$ $\nearrow$ 10.916       10.9575       11.574       12.341 $\varepsilon_2$ $\checkmark$ 28.960       28.838       26.916       24.138         There $r_{a} = r_{m}$ ,         There $r_{a} = r_{m}$ ,         The data of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\eta_p\gg 1$                                                     | 7      | 154.7   | 237.4   | 433.3  | 617    |  |
| n       > 4.575       4.572       4.521       4.441 $\kappa$ > 3.165       3.154       2.977       2.717 $\varepsilon_1$ > 10.916       10.9575       11.574       12.341 $\varepsilon_2$ > 28.960       28.838       26.916       24.138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E <sub>gp1</sub> in eV                                            | 7      | 1.134   | 1.137   | 1.196  | 1.285  |  |
| $\kappa$ $\searrow$ $3.165$ $3.154$ $2.977$ $2.717$ $\varepsilon_1$ $\nearrow$ $10.916$ $10.9575$ $11.574$ $12.341$ $\varepsilon_2$ $\searrow$ $28.960$ $28.838$ $26.916$ $24.138$ Tor $\mathbf{r_a} = \mathbf{r_{In}}$ ,         For $\mathbf{r_a} = \mathbf{r_{In}}$ , $\eta_p \gg 1$ $\nearrow$ $147.3$ $231.5$ $428.9$ $613.4$ $\mathbf{E_{gp1}}$ in eV $\checkmark$ $1.161$ $1.172$ $1.248$ $1.353$ n $\checkmark$ $4.460$ $4.450$ $4.383$ $4.289$ $\kappa$ $\checkmark$ $3.082$ $3.049$ $2.824$ $2.529$ $\varepsilon_1$ $\varepsilon_1$ $\checkmark$ $10.3914$ $10.5098$ $11.236$ $11.998$ $\varepsilon_2$ $\searrow$ $27.492$ $27.135$ $24.753$ $21.692$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                 | 7      | 4.575   | 4.572   | 4.521  | 4.441  |  |
| $\varepsilon_1$ $\nearrow$ 10.916       10.9575       11.574       12.341 $\varepsilon_2$ $\checkmark$ 28.960       28.838       26.916       24.138         For $\mathbf{r_a} = \mathbf{r_{In}}$ , $\eta_p \gg 1$ $\checkmark$ 147.3       231.5       428.9       613.4 $\mathbf{E_{gp1}}$ in eV $\checkmark$ 1.161       1.172       1.248       1.353         n $\checkmark$ 4.460       4.450       4.383       4.289 $\kappa$ $\checkmark$ 3.082       3.049       2.824       2.529 $\varepsilon_1$ $\checkmark$ 10.3914       10.5098       11.236       11.998 $\varepsilon_2$ $\checkmark$ 27.135       24.753       21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | κ                                                                 | 7      | 3.165   | 3.154   | 2.977  | 2.717  |  |
| $\varepsilon_2$ $\searrow$ 28.960       28.838       26.916       24.138         For $\mathbf{r_a} = \mathbf{r_{In}}$ , $\eta_p \gg 1$ $\nearrow$ 147.3       231.5       428.9       613.4 $\mathbf{E_{gp1}}$ in eV $\checkmark$ 1.161       1.172       1.248       1.353         n $\checkmark$ 4.460       4.450       4.383       4.289 $\kappa$ $\checkmark$ 3.082       3.049       2.824       2.529 $\varepsilon_1$ $\checkmark$ 10.3914       10.5098       11.236       11.998 $\varepsilon_2$ $\checkmark$ 27.492       27.135       24.753       21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ε                                                                 | 7      | 10.916  | 10.9575 | 11.574 | 12.341 |  |
| For $\mathbf{r_a} = \mathbf{r_{In}}$ ,<br>$\eta_p \gg 1 \qquad \nearrow 147.3 \qquad 231.5 \qquad 428.9 \qquad 613.4$<br>$\mathbf{E_{gp1} in eV} \qquad \nearrow 1.161 \qquad 1.172 \qquad 1.248 \qquad 1.353$<br>n $\searrow 4.460 \qquad 4.450 \qquad 4.383 \qquad 4.289$<br>$\kappa \qquad \searrow 3.082 \qquad 3.049 \qquad 2.824 \qquad 2.529$<br>$\varepsilon_1 \qquad \nearrow 10.3914 \qquad 10.5098  11.236 \qquad 11.998$<br>$\varepsilon_2 \qquad \searrow 27.492 \qquad 27.135 \qquad 24.753 \qquad 21.692$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ε2                                                                | 7      | 28.960  | 28.838  | 26.916 | 24.138 |  |
| $ η_p ≫ 1 $<br>$ P_{gp1} in eV $<br>$ P_{1.161 $<br>$ P_{1.248 $<br>$ P_{1.353 $<br>$ P_{1.33914 $<br>$ P_{1.236 $<br>$ P_{1.998 $<br>$ P_{2.824 $<br>$ P_{2.824 $<br>$ P_{2.529 $<br>$ P_{1.35 $<br>$ P_{1.355 $<br>$ P_{1.355 $<br>$ P_{1.355 $<br>$ P_{1.692 $                                      | For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{I}\mathbf{n}}$ | ,<br>, |         |         |        |        |  |
| $E_{gp1}$ in eV $\nearrow$ 1.161       1.172       1.248       1.353         n $\checkmark$ 4.460       4.450       4.383       4.289 $\kappa$ $\checkmark$ 3.082       3.049       2.824       2.529 $\varepsilon_1$ $\nearrow$ 10.3914       10.5098       11.236       11.998 $\varepsilon_2$ $\checkmark$ 27.492       27.135       24.753       21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\eta_p\gg 1$                                                     | 7      | 147.3   | 231.5   | 428.9  | 613.4  |  |
| n       > 4.460       4.450       4.383       4.289 $\kappa$ > 3.082       3.049       2.824       2.529 $\varepsilon_1$ > 10.3914       10.5098       11.236       11.998 $\varepsilon_2$ > 27.492       27.135       24.753       21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Egp1 in eV                                                        | 7      | 1.161   | 1.172   | 1.248  | 1.353  |  |
| $\kappa$ > 3.082       3.049       2.824       2.529 $\varepsilon_1$ > 10.3914       10.5098       11.236       11.998 $\varepsilon_2$ > 27.492       27.135       24.753       21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n                                                                 | 7      | 4.460   | 4.450   | 4.383  | 4.289  |  |
| $ε_1$<br>$rac{1}{2}$<br>$rac{1}{2}$<br>27.492<br>27.135<br>24.753<br>21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | κ                                                                 | 2      | 3.082   | 3.049   | 2.824  | 2.529  |  |
| $\varepsilon_2$ > 27.492 27.135 24.753 21.692                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ε                                                                 | 7      | 10.3914 | 10.5098 | 11.236 | 11.998 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ε2                                                                | 2      | 27.492  | 27.135  | 24.753 | 21.692 |  |

| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{Cd}}$ | ļ,                                          |         |         |        |        |
|----------------------------------------------------------|---------------------------------------------|---------|---------|--------|--------|
| $\eta_p\gg 1$                                            | 7                                           | 147.1   | 228.2   | 426.5  | 611.3  |
| Egp1 in eV                                               | 7                                           | 1.172   | 1.187   | 1.270  | 1.382  |
| n                                                        | 7                                           | 4.409   | 4.397   | 4.323  | 4.222  |
| κ                                                        | 2                                           | 3.047   | 3.005   | 2.760  | 2.451  |
| ε                                                        | 7                                           | 10.1573 | 10.3045 | 11.068 | 11.820 |
| ε2                                                       | 7                                           | 26.875  | 26.427  | 23.866 | 20.700 |
|                                                          |                                             |         | x=1     |        |        |
| For $\mathbf{r} = \mathbf{r}$                            |                                             |         |         |        |        |
| $r_a = I_{Ga}$<br>$n \gg 1$                              | ı,<br>, , , , , , , , , , , , , , , , , , , | 306.2   | 448 2   | 791 2  | 1115.9 |
| 'lp ~ 1                                                  | 7                                           | 0.582   | 0.007   | 0.741  | 0.010  |
| Egp1 in ev                                               | /                                           | 0.582   | 0.607   | 0.741  | 0.919  |
| n                                                        | 7                                           | 5.198   | 5.178   | 5.074  | 4.928  |
| κ                                                        | 7                                           | 5.080   | 4.982   | 4.484  | 3.856  |
| ε                                                        | 7                                           | 1.206   | 1.991   | 5.639  | 9.423  |
| ε2                                                       | 7                                           | 52.817  | 51.601  | 45.499 | 38.005 |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{In}}$ | ,                                           |         |         |        |        |
| $\eta_p\gg 1$                                            | 7                                           | 302.9   | 445.5   | 789.2  | 1114.2 |
| E <sub>gp1</sub> in eV                                   | 7                                           | 0.628   | 0.668   | 0.833  | 1.039  |
| n                                                        | 7                                           | 5.063   | 5.032   | 4.900  | 4.729  |
| κ                                                        | 7                                           | 4.905   | 4.753   | 4.154  | 3.462  |
| ε                                                        | 7                                           | 1.581   | 2.728   | 6.760  | 10.376 |
| ε2                                                       | 7                                           | 49.673  | 47.843  | 40.711 | 32.740 |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{Cd}$          | <br>I,                                      |         |         |        |        |
| $\eta_p\gg 1$                                            | 7                                           | 301.1   | 444.0   | 788.1  | 1113.3 |
| E <sub>gp1</sub> in eV                                   | 7                                           | 0.647   | 0.693   | 0.872  | 1.090  |
| n                                                        | 7                                           | 5.005   | 4.969   | 4.825  | 4.642  |
| κ                                                        | 2                                           | 4.832   | 4.658   | 4.018  | 3.301  |
| ε                                                        | 7                                           | 1.703   | 2.986   | 7.136  | 10.647 |
| ε2                                                       | 7                                           | 48.366  | 46.293  | 38.772 | 30.647 |
| N (10 <sup>18</sup> cm <sup>-</sup>                      | ·3) 7                                       | 15      | 26      | 60     | 100    |
|                                                          | 11                                          |         | 20      | 00     | 100    |

**Table 5n.** In the X(x)-system, at E=3.2 eV and N =  $10^{20}$  cm<sup>-3</sup>, for given r<sub>d</sub> and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of  $\eta_n \gg 1$ , degenerate case),  $E_{gn1}$ , n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$ , obtained as functions of T, being represented by the arrows:  $\nearrow$  and  $\searrow$ , noting that both  $\eta_n$  and  $E_{gn1}$  decrease with increasing T.

| T in K                                                    | 7        | 20     | 50     | 100     | 300    |
|-----------------------------------------------------------|----------|--------|--------|---------|--------|
| I III K                                                   |          | 20     | 50     | 100     | 300    |
|                                                           |          |        | x=0    |         |        |
| For $\mathbf{r}_{\mathbf{i}} = \mathbf{r}_{\mathbf{r}}$   |          |        |        |         |        |
| n_≫1                                                      | ,<br>、   | 441    | 176    | 88      | 29     |
| E <sub></sub> in eV                                       | 2        | 1.811  | 1.801  | 1.776   | 1.648  |
| -gn1                                                      | 7        | 2 759  | 2 769  | 2 702   | 2 017  |
|                                                           | 7        | 1 420  | 1.451  | 1 502   | 1 795  |
| ĸ                                                         | ~        | 12.070 | 12.004 | 12.126  | 12 160 |
| ε <sub>1</sub>                                            | 7        | 12.079 | 12.094 | 11.120  | 12.100 |
| ε <sub>2</sub>                                            |          | 10.731 | 10.955 | 11.398  | 13.980 |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{a}}$   |          |        |        |         |        |
| u *su<br>n_≫1                                             | <i>"</i> | 440 7  | 176 3  | 88-1    | 29 3   |
| E jn eV                                                   | 1        | 1 930  | 1 920  | 1 895   | 1 767  |
| Egn1 III C V                                              |          | 2 420  | 2.440  | 2 472   | 2 (01  |
| n                                                         |          | 5.438  | 3.448  | 5.473   | 3.601  |
| κ                                                         |          | 1.196  | 1.215  | 1.262   | 1.522  |
| $\varepsilon_1$                                           | ~        | 10.391 | 10.415 | 10.470  | 10.649 |
| ε2                                                        | 1        | 8.225  | 8.380  | 8.769   | 10.964 |
| For $\mathbf{r}_{*} = \mathbf{r}_{-}$                     |          |        |        |         |        |
| $r \rightarrow 1$                                         | ı,       | 440.5  | 176.2  | 88.00   | 20 34  |
| In // I                                                   | ×<br>、   | 1 059  | 1 0.2  | 1 0 2 2 | 1 705  |
| Egn1 III ev                                               | لا       | 1.938  | 1.940  | 1.925   | 1./93  |
| n                                                         | 7        | 3.359  | 3.369  | 3.394   | 3.523  |
| κ                                                         | 7        | 1.144  | 1.162  | 1.209   | 1.463  |
| ε                                                         | ~        | 9.976  | 10.002 | 10.062  | 10.269 |
| ε2                                                        | 7        | 7.685  | 7.833  | 8.206   | 10.310 |
|                                                           |          |        |        |         |        |
| A-0.J                                                     |          |        |        |         |        |
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{p}}$ , | ,        |        |        |         |        |
| $\eta_n\gg 1$                                             | 2        | 628.7  | 251.5  | 127.7   | 41.9   |
| E <sub>gn1</sub> in eV                                    | 2        | 1.273  | 1.266  | 1.247   | 1.144  |
| -<br>n                                                    | 7        | 4.452  | 4.459  | 4.475   | 4.566  |
| ĸ                                                         | 7        | 2.752  | 2.772  | 2.826   | 3.134  |
| E1                                                        | 2        | 12.249 | 12.192 | 12.040  | 11.031 |
| ~1                                                        | -        | 12.247 | 12.172 | 12.040  | 11.031 |

# Cong.

# World Journal of Engineering Research and Technology

| ε2                                                                   | 7          | 24.505 | 24.724 | 25.295 | 28.620 |
|----------------------------------------------------------------------|------------|--------|--------|--------|--------|
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{SI}}$             | b,         |        |        |        |        |
| $\eta_n \gg 1$                                                       | 2          | 628.6  | 251.4  | 125.7  | 41.88  |
| E <sub>gn1</sub> in eV                                               | 7          | 1.458  | 1.450  | 1.432  | 1.328  |
| n                                                                    | 7          | 4.063  | 4.070  | 4.087  | 4.182  |
| κ                                                                    | 7          | 2.250  | 2.269  | 2.318  | 2.597  |
| ε <sub>1</sub>                                                       | 7          | 11.447 | 11.417 | 11.335 | 10.744 |
| ε2                                                                   | 7          | 18.290 | 18.472 | 18.946 | 21.721 |
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}_{\mathbf{I}}}$ | n,         |        |        |        |        |
| η <sub>n</sub> ≫1                                                    | 5          | 628.5  | 251.4  | 125.7  | 41.88  |
| E <sub>gn1</sub> in eV                                               | 7          | 1.500  | 1.493  | 1.475  | 1.371  |
| n                                                                    | 7          | 3.968  | 3.975  | 3.992  | 4.087  |
| κ                                                                    | 7          | 2.141  | 2.159  | 2.206  | 2.479  |
| ε <sub>1</sub>                                                       | 2          | 11.161 | 11.137 | 11.068 | 10.561 |
| ε2                                                                   | 7          | 16.992 | 17.165 | 17.618 | 20.269 |
| <br>x=1                                                              |            |        |        |        |        |
| For $\mathbf{r}_{d} = \mathbf{r}_{p}$                                | ,          |        |        |        |        |
| n,≫1                                                                 | ,<br>      | 1121.4 | 448.6  | 224.3  | 74.7   |
| E <sub>en1</sub> in eV                                               | 2          | 0.985  | 0.981  | 0.968  | 0.889  |
| n                                                                    | 7          | 4 873  | 4 877  | 4 887  | 4 953  |
| ĸ                                                                    | 7          | 3 636  | 3 651  | 3 692  | 3 958  |
| т<br>84                                                              | ĺ.         | 10.526 | 10 458 | 10.258 | 8,869  |
| ε <sub>2</sub>                                                       | 7          | 35.444 | 35.610 | 36.090 | 39.210 |
|                                                                      |            |        |        |        |        |
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{SI}}$             | <b>b</b> , |        |        |        |        |
| $\eta_n\gg 1$                                                        | 7          | 1121.4 | 448.5  | 224.3  | 74.7   |
| Egn1 in eV                                                           | 7          | 1.294  | 1.290  | 1.277  | 1.198  |
| n                                                                    | 7          | 4.366  | 4.370  | 4.381  | 4.451  |
| κ                                                                    | 7          | 2.693  | 2.705  | 2.741  | 2.970  |
| ε <sub>1</sub>                                                       | 7          | 11.808 | 11.776 | 11.681 | 10.988 |
| ε2                                                                   | 7          | 23.513 | 23.642 | 24.014 | 26.444 |
| For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}_{\mathbf{l}}}$ | n,         |        |        |        |        |
| $\eta_n\gg 1$                                                        | 2          | 1121.4 | 448.5  | 224.3  | 74.7   |
| E <sub>gn1</sub> in eV                                               | 7          | 1.366  | 1.361  | 1.349  | 1.270  |
|                                                                      |            |        |        |        |        |

| κ              | ↗ 2.494  | 4 2.506  | 2.540  | 2.761  |
|----------------|----------|----------|--------|--------|
| ε              | ↘ 11.765 | 5 11.739 | 11.663 | 11.101 |
| ε <sub>2</sub> | ▶ 21.155 | 5 21.275 | 21.623 | 23.901 |
| T in K         | ▶ 20     | 50       | 100    | 300    |

**Table 5p.** In the X(x)-system, at E=3.2 eV and N =  $10^{20}$  cm<sup>-3</sup>, for given  $r_a$  and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of  $\eta_p$  ( $\gg$  1, degenerate case),  $E_{gp1}$ , n,  $\kappa$ ,  $\varepsilon_1$  and  $\varepsilon_2$ , obtained as functions of T, being represented by the arrows:  $\nearrow$  and  $\searrow$ , noting that both  $\eta_p$  and  $E_{gp1}$  decrease with increasing T.

| T in K                                                  | ~         | 20     | 50     | 100    | 300    |      |  |
|---------------------------------------------------------|-----------|--------|--------|--------|--------|------|--|
|                                                         |           |        | x=0    |        |        |      |  |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}}$ | a,        |        |        |        |        |      |  |
| $\eta_{p}\gg 1$                                         | 2         | 413    | 165    | 82     | 27     |      |  |
| Egp1 in eV                                              | 7         | 1.843  | 1.833  | 1.808  | 1.680  |      |  |
| n                                                       | 7         | 3.726  | 3.736  | 3.761  | 3.886  |      |  |
| κ                                                       | 7         | 1.365  | 1.382  | 1.436  | 1.712  |      |  |
| ε                                                       | 7         | 12.023 | 12.042 | 12.083 | 12.174 |      |  |
| ε2                                                      | ~         | 10.173 | 10.351 | 10.799 | 13.310 |      |  |
| For $\mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}}$ |           |        |        |        |        |      |  |
| η <sub>p</sub> ≫1                                       | ر.<br>الا | 404    | 161    | 81     | 27     |      |  |
| E <sub>gp1</sub> in eV                                  | 7         | 1.882  | 1.872  | 1.847  | 1.719  |      |  |
| n                                                       | 7         | 3.604  | 3.614  | 3.638  | 3.765  |      |  |
| κ                                                       | 7         | 1.287  | 1.307  | 1.356  | 1.625  |      |  |
| ε                                                       | 7         | 11.330 | 11.352 | 11.400 | 11.535 |      |  |
| ε2                                                      | 7         | 9.278  | 9.446  | 9.867  | 12.237 |      |  |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{c}}$ |           |        |        |        |        |      |  |
| $\eta_p\gg 1$                                           | 2         | 399    | 159    | 80     | 26     |      |  |
| E <sub>gp1</sub> in eV                                  | 2         | 1.898  | 1.888  | 1.864  | 1.736  |      |  |
| n                                                       | 7         | 3.551  | 3.561  | 3.586  | 3.712  |      |  |
| κ                                                       | 7         | 1.256  | 1.275  | 1.323  | 1.590  |      |  |
| ε                                                       | 7         | 11.031 | 11.053 | 11.105 | 11.256 |      |  |
| ε2                                                      | 7         | 8.918  | 9.081  | 9.492  | 11.803 |      |  |
|                                                         |           |        | x=0.5  |        |        | <br> |  |
|                                                         |           |        |        |        |        | <br> |  |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}}$ | a,        |        |        |        |        |      |  |

| $\eta_{p}\gg 1$                                                   | 7   | 617    | 247    | 123    | 41     |
|-------------------------------------------------------------------|-----|--------|--------|--------|--------|
| E <sub>gp1</sub> in eV                                            | 7   | 1.285  | 1.278  | 1.260  | 1.156  |
| n                                                                 | 7   | 4.441  | 4.448  | 4.464  | 4.556  |
| κ                                                                 | 7   | 2.717  | 2.738  | 2.791  | 3.097  |
| $\varepsilon_1$                                                   | 7   | 12.341 | 12.287 | 12.141 | 11.164 |
| $\varepsilon_2$                                                   | 7   | 24.138 | 24.354 | 24.920 | 28.217 |
|                                                                   |     |        |        |        |        |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{I}\mathbf{r}}$ | 1,  |        |        |        |        |
| $\eta_p\gg 1$                                                     | 7   | 613    | 245    | 122.7  | 40.87  |
| Egp1 in eV                                                        | 7   | 1.353  | 1.346  | 1.327  | 1.224  |
| n                                                                 | 7   | 4.289  | 4.295  | 4.312  | 4.405  |
| κ                                                                 | 7   | 2.529  | 2.549  | 2.600  | 2.895  |
| ε                                                                 | 7   | 11.998 | 11.954 | 11.834 | 11.018 |
| ε2                                                                | 7   | 21.692 | 21.894 | 22.423 | 25.508 |
|                                                                   |     |        |        |        |        |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{C}}$           | d,  |        |        |        |        |
| $\eta_p\gg 1$                                                     | 2   | 611    | 244.5  | 122.3  | 40.73  |
| E <sub>gp1</sub> in eV                                            | 7   | 1.382  | 1.374  | 1.356  | 1.252  |
| n                                                                 | 7   | 4.222  | 4.229  | 4.246  | 4.339  |
| κ                                                                 | 7   | 2.451  | 2.470  | 2.521  | 2.812  |
| E1                                                                |     | 11.820 | 11.780 | 11.671 | 10.919 |
| 21<br>82                                                          | - 7 | 20,700 | 20.896 | 21.409 | 24.405 |
| - 4                                                               |     |        |        |        |        |
|                                                                   |     |        | x=1    |        |        |
|                                                                   |     |        |        |        |        |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{G}}$           | a,  |        |        |        |        |
| $\eta_p\gg 1$                                                     | 7   | 1115.9 | 446    | 223    | 74     |
| Egp1 in eV                                                        | 7   | 0.919  | 0.915  | 0.902  | 0.823  |
| n                                                                 | 7   | 4.928  | 4.932  | 4.942  | 5.007  |
| κ                                                                 | 7   | 3.856  | 3.870  | 3.913  | 4.186  |
| £1                                                                | 2   | 9.423  | 9.344  | 9.116  | 7.544  |
| 82                                                                | 7   | 38.005 | 38.178 | 38.678 | 41.925 |
|                                                                   |     |        |        |        |        |
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{h}}$           | 1,  |        |        |        |        |
| <br>η <sub>n</sub> ≫1                                             | 2   | 1114.2 | 445.7  | 222.8  | 74.3   |
| Ein eV                                                            | ~   | 1,039  | 1 035  | 1 022  | 0 943  |
| ~gp1 m C v                                                        |     | 4 700  | 4.722  | 4.742  | 4 000  |
| n                                                                 | -   | 4.729  | 4.732  | 4.743  | 4.809  |
| κ                                                                 | 7   | 3.462  | 3.476  | 3.516  | 3.776  |
| $\varepsilon_1$                                                   | 7   | 10.376 | 10.314 | 10.134 | 8.875  |

| ε2                                                      | 7  | 32.740 | 32.899 | 33.354 | 36.319 |
|---------------------------------------------------------|----|--------|--------|--------|--------|
| For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{C}}$ | d, |        |        |        |        |
| $\eta_{p}\gg 1$                                         | 7  | 1113.3 | 445.3  | 222.6  | 74.2   |
| Egp1 in eV                                              | 7  | 1.090  | 1.085  | 1.073  | 0.994  |
| n                                                       | 7  | 4.642  | 4.645  | 4.656  | 4.723  |
| κ                                                       | 7  | 3.301  | 3.315  | 3.354  | 3.608  |
| ε                                                       | 7  | 10.647 | 10.591 | 10.429 | 9.293  |
| ε2                                                      | 7  | 30.647 | 30.799 | 31.235 | 34.083 |
| <br>T in K                                              | 7  | 20     | 50     | 100    | 300    |
| ImK                                                     |    | 20     | 50     | 100    | 500    |