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ABSTRACT 

In the n
+(p

+) − p(n) 𝐈𝐧𝐒𝐛𝟏−𝐱𝐏𝐱- crystalline alloy, 0 ≤ 𝑥 ≤ 1, all the 

numerical results of electrical-and- thermoelectric coefficients, 

obtained in our previous work (Van Cong, 2018; Van Cong et al., 

1984), are now revised and performed, by basing on our basic 

expressions, given Equations (1, 3, 5, 7, 11, 14, 19). Some remarkable 

results could be cited in the following. In Tables 5n (5p) given 

Appendix 1, for a given impurity density N and with increasing 

temperature T, and then in Tables 6n (6p) given Appendix 1, for a 

given T and with decreasing N, the reduced Fermi-energy ξn (p) 

decreases, and other thermoelectric coefficients are in variations, as 

indicated by the arrows as: (increase: ↗, decrease: ↘). Further, one 

notes in these Tables that with increasing T (or with decreasing N) one 

obtains: (i) for ξn (p) ≃ 1.8138, while the numerical results of the See beck coefficient S 

present a same minimum (S) min. (≃ −1.563 × 10
−4

), those of the figure of merit ZT 

show a same maximum (ZT) max. = 1, (ii) for ξn (p) = 1, S, ZT, the Mott figure of 

merit (ZT) Mott, the Van-Cong coefficient VC, and the Thomson coefficient Ts present 

the same results: −1.322 × 10
−4

, 0.715, 3.290, −1.105 × 10
−4

, and 1.657 × 10
−4

, 
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respectively, and (iii) for ξ n ≃ 1.8138, (ZT) Mott = 1. It seems that these same results 

could represent a new law in the thermoelectric properties, obtained in the degenerate case. 

 

KEYWORDS: Electrical conductivity, Seebeck coefficient, Figure of merit, Van-Cong 

coefficient, Thomson coefficient, Peltier coefficient. 

 

INTRODUCTION 

In the 𝐧+(𝐩+) − 𝐩(𝐧) 𝐗(𝐱) ≡ 𝐈𝐧𝐒𝐛𝟏−𝐱𝐏𝐱 - crystalline alloy, 0 ≤ 𝑥 ≤ 1 , all the numerical 

results of electrical-and-thermoelectric coefficients, obtained in our previous work (Van 

Cong, 2018; Van Cong et al.,1984), are now revised and performed, by basing on our 

following basic expressions (Van Cong, 1980 and 2024; Van Cong and Debiais, 1993; Van 

Cong and Doan Khanh, 1992). 

(1) The effective extrinsic static dielectric constant law, ε(rd(a), x), due to the impurity size 

effect, is determined in Eq. (1). 

(2) The generalized Mott criterium in the metal-insulator transition is expressed in Equations 

(3, 5, 6), showing that NCDn(CDp) is just the density of electrons (holes) localized in the 

exponential conduction (valence)-band tail,  with a precision of the order of 𝟐. 

𝟖𝟔 × 𝟏𝟎−𝟕, as given in our recent work (Van Cong, 2024), and the effective electron 

(hole)-density: N∗ ≡ N − NCDn(CDp) ≃ N − , as that observed in the compensated 

crystals. 

(3) The ratio of the inverse effective screening length ksn (sp) to Fermi wave number 

kFn(kp) at 0K, Rsn(sp) (N
∗), defined in Eq. (7), is valid at any density N∗. 

(4) The Fermi energy for any N and T, EFn(Fp), determined in Eq. (11) with a precision of the 

order of 2.11 × 10
−4

 (Van Cong, 1993), and it is present in all the expressions of 

electrical-and-thermoelectric coefficients. 

(5) Our expressions for the electrical conductivity, σ, and for the Seebeck coefficient, 

S, determined respectively in Equations (14, 19) are the basic expressions for 

determining the following electrical-and- thermoelectric coefficients. 

 

OUR STATIC DIELECTRIC CONSTANT LAW-AND-GENERALIZED MOTT 

CRITERIUM IN THE METAL-INSULATOR TRANSITION 

First of all, in the 𝐧+(𝐩+) − 𝐩(𝐧) 𝐗(𝐱) ≡ 𝐈𝐧𝐒𝐛𝟏−𝐱𝐏𝐱 - crystalline alloy at T=0K, we denote 

the donor (acceptor) d(a) -radius by rd(a), the corresponding intrinsic one by: rdo(ao) = rSb(In), 
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the unperturbed relative effective electron (hole) mass in conduction (valence) bands by: 

mc(v) (x)⁄mo, the unperturbed relative static dielectric constant by: εo(x). Then, their values 

are reported in Table 1 in Appendix 1. 

 

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values 

as: meV, and then, the isothermal bulk modulus, by: 

 

 

Effect of Impurity 𝐫𝐝(𝐚) -size, with a given x 

Here, the changes in all the energy-band-structure parameters, expressed in terms of the 

effective relative dielectric constant ε (rd(a), x), developed as follows. 

At rd(a) = rdo(ao), the needed boundary conditions are found to be, for the impurity-atom 

volume V =  (for the pressure p, po = 0 , and for the 

deformation potential energy (or the strain energy) 𝛼, 𝛼o = 0. Further, the two important 

equations (Van Cong, 1984  and 2018), used to determine the  -variation, ∆  ≡  − , 

are defined by: =−  and p=−  . giving:  ( )= . Then, by an integration, one gets:   

 

= ×(V− )× ln ( )= .          

     

Furthermore, we also shown that, as , the compression 

(dilatation) gives rise to the increase (the decrease) in the energy gap , and the 

effective donor (acceptor)-ionization energy  in absolute values, obtained in the  

 

effective Bohr model, which is represented respectively by: ,  

,  

for  , and for , 

.     
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Therefore, one obtains the expressions for relative dielectric constant ε (rd(a), x) and 

energy band gap  as: 

 

According to the increase in both Egn(gp) (rd(a), x) and Ed(a) (rd(a), x), with increasing rd(a) and for 

a given x, and 

 

 

Corresponding to the decrease in both Egn(gp) (rd(a), x) and Ed(a) (rd(a), x), with decreasing rd(a) 

and for a given x; therefore, the effective Bohr radius aBn(Bp) (rd(a), x) is defined by 

                                                      (2) 

 

Generalized Mott Criterium in the Metal-Insulator Transition 

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the 

metal-insulator transition (MIT) at T=0 K, NCDn(NDp) (rd(a), x), was given by the Mott’s 

criterium, with an empirical parameter, Mn(p), as: 

                                                  (3) 

 

Depending thus on our new 𝛆(𝐫𝐝(𝐚), 𝐱)-law. 

This excellent one can be explained from the definition of the reduced effective Wigner-

Seitz (WS) radius rsn(sp), characteristic of interactions, by: 

                             (4) 

 

Being equal to, in particular, at N= NCDn(CDp) (rd(a), x): rsn(sp) (NCDn(CDp) (rd(a), x), rd(a), x) = 

2.4813963, for any (rd(a), x) - values. Then, from Eq. (4), one also has: 

                             (5) 
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Explaining thus the existance of the Mott’s criterium 

Furthermore, by using 𝐌𝐧(𝐩) = 𝟎.𝟐𝟓, according to the empirical Heisenberg parameter 𝓗𝐧(𝐩) 

= 𝟎.𝟒𝟕𝟏𝟑𝟕, as those given in our previous work (Van Cong, 2024), we have also showed 

that NCDn(CDp) is just the density of electrons (holes) localized in the exponential 

conduction (valence)-band tail, , with a precision of the order of 𝟐.𝟖𝟔 × 𝟏𝟎−𝟕. 

It should be noted that the values of Mn(p) and ℋn(p) could be chosen so that those of 

NCDn(CDp) and  are in good agreement with their experimental results. 

 

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can 

be defined, as that given in compensated materials, by: 

 for a presentation simplicity.              (6) 

 

In summary, as observed in Table 1 of our previous paper (Van Cong, 2024), one remarks 

that, for a given x and an increasing rd(a), ε(rd(a), x) decreases, while Egno(gpo) (rd(a), 𝑥), 

NCDn(NDp) (rd(a), x) and  (rd(a), x) increase, affecting strongly all the physical 

properties, as those observed in following Sections. 

 

PHYSICAL MODEL 

In the n
+ (p

+) − p(n) 𝐗(𝐱) ≡ 𝐈𝐧𝐒𝐛𝟏−𝐱𝐏𝐱 - crystalline alloy, if denoting the Fermi wave 

number by:  the reduced effective Wigner-Seitz (WS) radius rsn(sp), 

characteristic of interactions, being given in Eq. (4), in which N is replaced by N∗, is now 

defined by:  

 

Being proportional to  means the averaged distance between 

ionized donors (acceptors), and aBn(Bp) (rd(a), 𝑥) is determined in Eq. (2). Then, the ratio 

of the inverse effective screening length 𝐤𝐬𝐧(𝐬𝐩)
 to Fermi wave number kFn(kp) at 0 K is 

defined by: 

                                        (7) 

 

Being valid at any 𝐍∗ 

Here, these ratios, RsnTF(spTF) and RsnWS(spWS), can be determined as follows. First, for N ≫ 
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NCDn(NDp) (rd(a), x) , according to the Thomas-Fermi (TF)-approximation, the ratio 

RsnTF(spTF) (N
∗) is reduced to 

                                                       (8) 

 

Being proportional to N∗−1/6
 

Secondly, for 𝑁≪NCDn(NDp) (rd(a)), according to the Wigner-Seitz (WS)-

approximation, the ratio RsnWS(snWS)
 is respectively reduced to 

                                                                 (9) 

 

Where 𝐸CE
 (N∗) is the majority-carrier correlation energy (CE), being determined by (Van 

Cong, 2018): 

 

 

Furthermore, in the highly degenerate case, the physical conditions are found to be given 

by (Van Cong, 2018) 

                                     (10) 

Which gives: An(p) (N
∗) =  

 

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION 

Fermi Energy and generalized Einstein relation 

Here, for a presentation simplicity, we change all the sign of various parameters, given in 

the p
+
 − X(x) - crystalline alloy in order to obtain the same one, as given in the n

+
 − X(x)- 

crystalline alloy, according to the reduced Fermi energy, 

 obtained respectively in the degenerate (non-

degenerate) case. 

 

For any (N, rd(a), x, T), the reduced Fermi energy ξn(p) (N, rd(a), x, T) or the Fermi energy EFn(Fp) 

(N, rd(a), x, T), obtained in our previous paper (Van Cong and Debiais, 1993), obtained 

with a precision of the order of 2.11 × 10
−4

, is found to be given by: 
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                                         (11) 

 

Where u is the reduced electron density,  

 

 

So, in the non-degenerate case (u ≪ 1), one has: EFn(Fp)
 (u) = kBT × G(u) ≃ kBT × Ln(u) as 

𝒖 ⟶ 𝟎, the limiting condition, and in the very degenerate case (u ≫ 1), one gets: 

EFn(Fp) (u ≫ 1) = kBT × F(u) =  as 𝒖 ⟶ ∞ , the 

limiting condition. In other words,  is accurate, and it also verifies the correct 

limiting conditions. In the following, it will be present in all the electrical-and-

thermoelectric coefficients. 

 

In particular, at T=0K, since u
−1

 = 0, Eq. (11) is reduced to: 

 being proportional to (N∗)
2/3

, and also equal to 0, according 

to the MIT. In the following, it should be noted that such the accurate expression of ξn(p) (N, 

rd(a), x, T) is present in all the following electrical-and-thermoelectric. 

 

FERMI-DIRAC DISTRIBUTION FUNCTION (FDDF) 

The Fermi-Dirac distribution function (FDDF) is given by: f(E) ≡ (1 + e
γ)

−1
, γ ≡ (E − 

EFn(Fp))/(kBT). So, the average of E
p
, calculated using the FDDF-method, as developed in 

our previous work (Van Cong, 2018) is found to be given by: 

 

Further, one notes that, at 0 K,  being the Dirac delta (δ)-

function. Therefore, Gp (EFno (Fpo)) =1. 

 

Then, at low T, by a variable change γ ≡ (E−EFn(Fp))/(kBT), one has: 
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 dγ vanishing for old values of β. Then, for even values of 

β=2n, with n=1, 2 one obtains: . 

 

Now, using an identity , a variable change: sγ = −t, the 

Gamma function:  and also the definition of the Riemann’s 

zeta function:  being the Bernoulli numbers, one finally gets: I2n 

= (2
2n 

− 2) × π
2n

 × |B2n|. So, from Eq. (22), we get in the degenerate case the following ratio: 

                          (12) 

Where  

 

Then, some usual results of Gp≥1(y) are given in Table 2 in Appendix 1, being important 

ones in this work. 

 

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES 

Here, if denoting, for majority electrons (holes), the electrical conductivity by σ (N, rd(a), x, 

T), expressed in ohm−1×cm−1, the thermal conductivity by κ(N, rd(a), x, T), expressed in  

and Lorenz number L by:  

then the well-known Wiedemann-Frank law states that the ratio,  is proportional to the 

temperature T(K), as: 

                                                                                                         (13) 

We now determine the general form of σ in the following. 

First, it is expressed in terms of the kinetic energy of the electron (hole),  or 

the wave number k, as: 

 

Which is thus proportional to Ek2. 

 

Then, for E≥0, we obtain:  
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  for a presentation simplicity. Therefore, one obtains: 

 

        (14) 

 

Which also determine the resistivity as:,  noting that N∗ ≡ N – 

NCDnNDp) (rd(a), x). This 𝛔(𝐍, 𝐫𝐝(𝐚), 𝐱, 𝐓)-result is an essential one in this paper. In Eq. (14), 

one notes that at T= 0 K, σ(N, rd(a), x, T = 0K) is proportional to  or to N∗. Thus, σ(N = 

NCDn(NDp), rd(a), x, T = 0K) = 0 at N∗ = 0, at which the metal-insulator transition (MIT) occurs. 

 

Electrical Coefficients  

The relaxation time 𝜏 is related to σ by: 

 Therefore, the mobility μ is given by: 

                                      (15) 

 

Here, at T = 0K, μ (N∗, rd(a), T) is thus proportional to (N∗)
1/3

, since σ(N∗, rd(a), T = 0K) is 

proportional to (N∗)
4/3

. Thus, μ (N∗ = 0, rd(a), T = 0K) = 0 at N∗ = 0, at which the metal-

insulator transition (MIT) occurs. Then, since τ and σ are both proportional to EFn(Fp) (N∗, T)
2
, 

as given above, the Hall factor can thus be determined by: 

 and therefore, 

the Hall mobility yields: 

                                                       (16) 

 

noting that, at T = 0K, since rH(N, rd(a), x, T) = 1, one then gets at N = NCDn(NDp): μH(N, rd(a), x, 

T) ≡ μ(N, rd(a), x, T) = 0 at N∗ = 0, at which the metal-insulator transition (MIT) occurs. 

Finally, our generalized Einstein relation is found to be defined (Van Cong, 1980) as: 

                                                              (17) 
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Where D (N, rd(a), x, T) is the diffusion coefficient, ξn(p)(u) is defined in Eq. (11), and the 

mobility μ (N, rd(a), x, T) is determined in Eq. (15). Then, by differentiating this function 

ξn(p)(u) with respect to u, one thus obtains  Therefore, Eq. (17) can also be rewritten as: 

 

 

One remarks that: (i) as u → 0, one has: W2 ≃ 1 and u [V′ × W – V × W′] ≃ 1, and therefore: 

 and (ii) as u → ∞, one has: W
2
 ≈ A

2
u

2B
 and u [V′ × W – V × W′]  

and therefore, in this highly degenerate case and at T = 0K, the above generalized Einstein 

relation is reduced to the usual Einstein one:  In other words, 

Eq. (17) verifies the correct limiting conditions. One also notes that, for N∗ = 0, μ (N∗ = 0, 

rd(a), T = 0K) = 0, as remarked in above, and therefore, for any rd(a), D (N∗ = 0, rd(a), T = 0K) = 

0, according to the MIT.  

 

Further, in the present degenerate case (u≫1), Eq. (17) gives: 

 

 

 

In Tables 3n (3p) given in Appendix 1, for given x, N > NCDn and T (= 4.2 K and 77 K), and 

from Equations (14, 15, 16, 18), the numerical results of the coefficients: σ, μ, μH, D, 

expressed respectively in  are found to be decreased with 

increasing rd(a), respectively. 

 

Thermoelectric Coefficients  

First off all, from Eq. (14), obtained for σ(N, rd(a), x, T), the well-known Mott definition for 

the thermoelectric  power or for the Seebeck coefficient, S, is given by: 
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Then, using Eq. (11), for ξn(p) (N, rd(a), x, T) ≳ 1, one gets, by putting FS(N, rd(a), x, T) ≡ 

 

                                                   (19) 

Giving here:  

Obtains:  

Further, the figure of merit, ZT, is found to be given by: 

                                   (20) 

Giving here:  

 

 

Furthermore, from Eq. (19), one gets: 

 and  

Noting that: (i) at given (N, rd(a), x), and for  increases (or decreases) for 

decreasing (or increasing) T, (ii) at given (rd(a), x, T), and for  increases (or 

decreases) for increasing (or decreasing) N. 

 

Finally, the Van-Cong coefficient, VC, is defined by: 

            (22) 

 

The Thomson coefficient, Ts, by: 

      (23) 

 

And then, the Peltier coefficient, Pt, as: 

Pt(N, rd(a), x, T)≡ T × S (V).                                                                                                   (24) 
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Furthermore, from Equations (17, 22), we can obtain a new electrical-and-thermoelectric law 

by:                                                        (25) 

Where, as given in Eq. (21),  

 

Now, in the lightly degenerate n(p)-type X(x)− alloy, in which N=𝟓×𝟏𝟎𝟏𝟕 𝐜𝐦−𝟑(𝟏𝟎𝟏𝟗 

𝐜𝐦−𝟑)>𝐍𝐂𝐃𝐧(𝐂𝐃𝐩), and for T=3K and 80K, the numerical results of various thermoelectric 

coefficients are reported in Tables 4n(4p) in Appendix 1, noting that their variations with 

increasing rd(a) are represented by the arrows: ↗ (increase), and ↘ (decrease), respectively. 

 

Then, in Tables 5n(5p) given Appendix 1 for a given 𝐍 and with increasing T, and then in 

Tables 6n(6p) given Appendix 1 for a given 𝐓 and with decreasing N, the reduced Fermi-

energy ξn(p) decreases, and other thermoelectric coefficients are in variations, as indicated by 

the arrows as: (increase: ↗, decrease: ↘). One notes here that with increasing T (or with 

decreasing N) one obtains: (i) for ξn(p) ≃ 1.8138, while the numerical results of S present a 

same minimum (S)min.  those of ZT show a same maximum (ZT)max.=1, 

(ii) for ξn(p)=1, those of S, ZT, (ZT)Mott, VC, and Ts present the same results: 

 

respectively, and (iii) for ξn ≃ 1.8138, (ZT)Mott = 1. It seems that these results could represent 

a new law in the thermoelectric properties, obtained in the degenerate case. 

 

CONCLUDING REMARKS 

In the n
+
(p+

) 
− p(n) X(x) − cristalline alloy, all the numerical results of electrical-and-

thermoelectric coefficients, obtained in our previous work (Van Cong, 2018), were revised 

and performed, by basing on our following basic expressions. 

1. The effective extrinsic static dielectric constant law, ε(rd(a), x), due to the impurity size 

effect, is determined in Eq. (1). 

2. The generalized Mott criterium in the metal-insulator transition is expressed in Equations 

(3, 5, 6), showing that NCDn(CDp) is just the density of electrons (holes) localized in the 

exponential conduction (valence)-band tail,  with a precision of the order of 

𝟐.𝟖𝟔 ×𝟏𝟎−𝟕 , as given in our recent work (Van Cong, 2024), and the effective electron 



www.wjert.org                         ISO 9001: 2015 Certified Journal       

Cong.                                               World Journal of Engineering Research and Technology 

  

 

 

 

102 

(hole)-density: N∗ ≡ N − NCDn(CDp) ≃ N − , as that observed in the compensated 

crystals. 

3. The ratio of the inverse effective screening length ksn(sp) to Fermi wave number kFn(kp) at 

0K, Rsn(sp) (N∗), defined in Eq. (7), is valid at any density N∗. 

4. The Fermi energy for any N and T, EFn(Fp), determined in Eq. (11) with a precision of the 

order of 2.11×10
−4

 (Van Cong, 1993), and it exists in all the expressions of electrical-and-

thermoelectric coefficients. 

5. Our expressions for the electrical conductivity, σ, and for the Seebeck coefficient, S, 

determined respectively in Equations (14, 19) are the basic expressions for determining 

the electrical-and-thermoelectric coefficients.  

6. Our new electrical-and-thermoelectric law is given in Eq. (25), by: 

 

7. Finally, in Tables 5n(5p) given Appendix 1 for a given N and with increasing T, and then 

in Tables 6n(6p) given Appendix 1 for a given T and with decreasing N, the reduced 

Fermi-energy ξn(p) decreases, and other thermoelectric coefficients are in variations, as 

indicated by the arrows as: (increase: ↗, decrease: ↘). One notes here that with increasing 

T (or with decreasing N) one obtains: (i) for ξn(p) ≃ 1.8138, while the numerical results of 

S present a same minimum (S)min.  those of ZT show a same 

maximum (ZT)max.=1, (ii) for ξn(p)=1, those of S, ZT, (ZT)Mott, VC, and Ts present the 

same results: 

  

Respectively, and (iii) for ξn≃1.8138, (ZT)Mott=1. It seems that these results could 

represent a new law in the thermoelectric properties, obtained in the degenerate case. In 

summary, all the numerical results of electrical-and-thermoelectric coefficients, given in 

our previous work (Van Cong, 2018), are now revised and performed. 
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APPENDIX 1 

Table 1: The values of energy-band-structure parameters are given in the following. 

 
 

Table 2: Expressions for  due to the Fermi-Dirac distribution function, 

noting that  used to determine the electrical-and-thermoelectric 

coefficients. 

 

 

Table 3n: Here, one notes that, for given x, N>NCDn and T(=4.2 K and 77 K), the 

functions: σ, μ, μH, D, expressed respectively in  

decrease with increasing rd. 
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Table 4n: In the lightly degenerate n-type X(x) − alloy, in which N=5×10
17

 cm
−3

, and for 

T=3K and 80K, the numerical results of various thermoelectric coefficients are 

reported. Further, their variations with increasing rd(a) are represented by the arrows: ↗ 

(increase), and ↘ (decrease). 
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Table 4p: In the lightly degenerate p-type X(x) − alloy, in which N=10
19

 cm
−3

, and for 

T=3K and 80K, the numerical results of various thermoelectric coefficients are 

reported. Further, their variations with increasing rd(a) are represented by the arrows: ↗ 

(increase), and ↘ (decrease). 
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Table 5n: Here, for a given N and with increasing T, the reduced Fermi-energy ξn 

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: ↗, decrease: ↘). One notes here that with increasing T: (i) for 

ξn≃1.8138, while the numerical results of S present a same minimum (S)min. 

 those of ZT show a same maximum (ZT)max.=1, (ii) for ξn=1, those of S, 

ZT, (ZT)Mott, VC, and Ts present the same results:  

 respectively, and (iii) for ξn≃1.8138, (ZT)Mott=1. 
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Table 6n: Here, for a given T and with decreasing N, the reduced Fermi-energy ξn 

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: ↗, decrease: ↘). One notes here that with increasing T: (i) for 

ξn≃1.8138, while the numerical results of S present a same minimum (S)min. 

 those of ZT show a same maximum (ZT)max.=1, (ii) for ξn=1, those of S, 

ZT, (ZT)Mott, VC, and Ts present the same results:  

 respectively, and (iii) for ξn≃1.8138, (ZT)Mott=1. 
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Table 6p: Here, for a given T and with decreasing N, the reduced Fermi-energy ξp 

decreases, and other thermoelectric coefficients are in variations, as indicated by the 

arrows as: (increase: ↗, decrease: ↘). One notes here that with increasing T: (i) for 

ξp≃1.8138, while the numerical results of S present a same minimum (S)min. 

 those of ZT show a same maximum (ZT)max.=1, (ii) for ξp=1, those of S, 

ZT, (ZT)Mott, VC, and Ts present the same results: 

 respectively, and (iii) for 

ξp≃1.8138, (ZT)Mott=1. 
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