

World Journal of Engineering Research and Technology WJERT

www.wjert.org

SJIF Impact Factor: 7.029

ELECRICAL – AND - THERMOELECTRIC LAWS GIVEN IN N(P) TYPE DEGENERATE InSb (1-x) P(x) - CRYSTALLINE ALLOY, DUE
TO OUR STATIC DIELECTRIC CONSTANT LAW AND ELECRICAL
CONDUCTIVITY FORMULA (II)

Prof. Dr. Huynh Van Cong*

Université De Perpignan Via Domitia, Laboratoire De Mathématiques et Physique (LAMPS), EA 4217, Département De Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 17/12/2024

Article Revised on 06/01/2025

Article Accepted on 26/01/2025

*Corresponding Author Prof. Dr. Huynh Van Cong

Université De Perpignan
Via Domitia, Laboratoire
De Mathématiques et
Physique (LAMPS), EA
4217, Département De
Physique, 52, Avenue Paul
Alduy, F-66 860 Perpignan,
France.

ABSTRACT

In the $n^+(p^+) - p(n)$ **InSb_{1-x}P_x-** crystalline alloy, $0 \le x \le 1$, all the numerical results of electrical-and- thermoelectric coefficients, obtained in our previous work (Van Cong, 2018; Van Cong et al., 1984), are now revised and performed, by basing on our basic expressions, given Equations (1, 3, 5, 7, 11, 14, 19). Some remarkable results could be cited in the following. In Tables 5n (5p) given Appendix 1, for a given impurity density N and with increasing temperature T, and then in Tables 6n (6p) given Appendix 1, for a given T and with decreasing N, the reduced Fermi-energy ξ_n (p) decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase: \nearrow , decrease: \searrow). Further, one notes in these Tables that with increasing T (or with decreasing N) one

obtains: (i) for ξ_n (p) $\simeq 1.8138$, while the numerical results of the See beck coefficient S present **a same minimum** (S) min. ($\simeq -1.563 \times 10^{-4} \frac{V}{K}$), those of the figure of merit ZT show **a same maximum** (ZT) max. = 1, (ii) for ξ_n (p) = 1, S, ZT, the Mott figure of merit (ZT) Mott, the Van-Cong coefficient VC, and the Thomson coefficient Ts present **the same results**: $-1.322 \times 10^{-4} \frac{V}{K}$, 0.715, 3.290, $-1.105 \times 10^{-4} \frac{V}{K}$, and $1.657 \times 10^{-4} \frac{V}{K}$,

respectively, and (iii) for ξ ⁿ \simeq 1.8138, (ZT) Mott = 1. It seems that these same results could represent a new law in the thermoelectric properties, obtained in the degenerate case.

KEYWORDS: Electrical conductivity, Seebeck coefficient, Figure of merit, Van-Cong coefficient, Thomson coefficient, Peltier coefficient.

INTRODUCTION

In the $\mathbf{n}^+(\mathbf{p}^+) - \mathbf{p}(\mathbf{n}) \ \mathbf{X}(\mathbf{x}) \equiv \mathbf{InSb}_{1-\mathbf{x}} \mathbf{P}_{\mathbf{X}}$ - crystalline alloy, $0 \le x \le 1$, all the numerical results of electrical-and-thermoelectric coefficients, obtained in our previous work (Van Cong, 2018; Van Cong et al.,1984), are now revised and performed, by basing on our following basic expressions (Van Cong, 1980 and 2024; Van Cong and Debiais, 1993; Van Cong and Doan Khanh, 1992).

- (1) The effective extrinsic static dielectric constant law, $\varepsilon(r_{d(a)}, x)$, due to the impurity size effect, is determined in Eq. (1).
- (2) The generalized Mott criterium in the metal-insulator transition is expressed in Equations (3, 5, 6), showing that $N_{CDn(CDp)}$ is just **the density of electrons (holes) localized in the exponential conduction (valence)-band tail,** $N_{CDn(CDp)}^{NEBT}$ with a precision of the order of **2**. **86** × **10**⁻⁷, as given in our recent work (Van Cong, 2024), and the effective electron (hole)-density: $N^* \equiv N N_{CDn(CDp)} \simeq N N_{CDn(CDp)}^{NEBT}$, as that observed in the compensated crystals.
- (3) The ratio of the inverse effective screening length k_{Sn} (sp) to Fermi wave number $k_{Fn(kp)}$ at 0K, $R_{sn(sp)}$ (N*), defined in Eq. (7), is valid at any density N*.
- (4) The Fermi energy for any N and T, $E_{Fn(Fp)}$, determined in Eq. (11) with a precision of the order of 2.11×10^{-4} (Van Cong, 1993), and it is present in all the expressions of electrical-and-thermoelectric coefficients.
- (5) Our expressions for the electrical conductivity, σ, and for the Seebeck coefficient, S, determined respectively in Equations (14, 19) are the basic expressions for determining the following electrical-and- thermoelectric coefficients.

OUR STATIC DIELECTRIC CONSTANT LAW-AND-GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the $\mathbf{n}^+(\mathbf{p}^+) - \mathbf{p}(\mathbf{n}) \mathbf{X}(\mathbf{x}) \equiv \mathbf{InSb_{1-x}P_{X}}$ - crystalline alloy at T=0K, we denote the donor (acceptor) d(a) -radius by $\mathbf{r}_{d(a)}$, the corresponding intrinsic one by: $\mathbf{r}_{do(ao)} = \mathbf{rSb}(\mathbf{In})$,

the unperturbed relative effective electron (hole) mass in conduction (valence) bands by: $m_{C(V)}(x)m_0$, the unperturbed relative static dielectric constant by: $\epsilon_0(x)$. Then, their values are reported in **Table 1 in Appendix 1**.

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values

$$\begin{array}{lll} E_{do(ao)}(x) = & \frac{13600 \times [m_{\text{de}(v)}(x)/m_o]}{[\epsilon_o(x)]^2} \\ \text{as:} & & [\epsilon_o(x)]^2 & \text{meV}, \quad \text{and} \quad \text{then,} \quad \text{the isothermal bulk modulus, by:} \\ B_{do(ao)}(x) \equiv & \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{3}\right) \times \left(r_{do(ao)}\right)^3} \end{array}$$

Effect of Impurity $\mathbf{r}_{\mathbf{d}(\mathbf{a})}$ -size, with a given x

Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant ε ($r_{d(a)}$, x), developed as follows.

At $r_{d(a)}=r_{do(ao)}$, the needed boundary conditions are found to be, for the $i\overline{m}purity$ -atom volume $V={}^{(4\pi/3)\times \left(r_{d(a)}\right)^3}, V_{do(ao)}={}^{(4\pi/3)\times \left(r_{do(ao)}\right)^3}$ (for the pressure $p,\ p_o=0$, and for the deformation potential energy (or the strain energy) $\alpha,\ \alpha_O=0$. Further, the two important equations (Van Cong, 1984 and 2018), used to determine the α -variation, $\Delta\alpha\equiv\alpha-\alpha_o=\alpha$, are defined by: $\frac{dp}{dv}=-\frac{B}{v}$ and $p=-\frac{d\alpha}{dv}$. giving: $\frac{d}{dv}(\frac{d\alpha}{dv})=\frac{B}{v}$. Then, by an integration, one gets:

$$\left[\Delta\alpha(r_{d(a)},x)\right]_{n(p)} = B_{do(ao)}(x) \times (v - V_{do(ao)}) \times \ln\left(\frac{v}{V_{do(ao)}}\right) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \geq 0$$

Furthermore, we also shown that, as $r_{d(a)} > r_{do(ao)}$ ($r_{d(a)} < r_{do(ao)}$), the compression (dilatation) gives rise to the increase (the decrease) in the energy gap $E_{gn(gp)}(r_{d(a)},x)$, and the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)},x)$ in absolute values, obtained in the

effective Bohr model, which is represented respectively by: $\pm \left[\Delta \alpha(\mathbf{r_{d(a)}}, \mathbf{x}) \right]_{\mathbf{n(n)}}$

$$\begin{split} &E_{gno(gpo)}(r_{d(a)},x) - E_{go}(x) = E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_0(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] = \\ &+ \left[\Delta \alpha(r_{d(a)},x) \right]_{n(p)} \end{split}$$

 $\mathrm{for}\ r_{d(a)} \geq r_{do(ao)}, \mathrm{and}\ \mathrm{for}\ r_{d(a)} \leq r_{do(ao)},$

$$\begin{split} &E_{gno(gpo)}(r_{d(a)},x) - E_{go}(x) = E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_0(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] = \\ &- \left[\Delta \alpha(r_{d(a)},x) \right]_{n(p)} \end{split}$$

Therefore, one obtains the expressions for relative dielectric constant ϵ ($r_{d(a)}$, x) and energy band gap $E_{gn(gp)}(r_{d(a)},x)$, as:

$$\textbf{(i)-for} \ \ r_{d(a)} \geq r_{do(ao)}, \ \ \text{since} \ \epsilon(r_{d(a)}, x) = \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \ \text{being a new } \epsilon(r_{d(a)}, x) \text{-law,}$$

$$E_{gno(gpo)}\big(r_{d(a)},x\big) - E_{go}(x) = E_{d(a)}\big(r_{d(a)},x\big) - E_{do(ao)}(x) = E_{do(ao)}(x) \\ \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \\ \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \\ \geq 0, \tag{1a}$$

According to the increase in both $E_{gn(gp)}\left(r_{d(a)},x\right)$ and $E_{d(a)}\left(r_{d(a)},x\right)$, with increasing $r_{d(a)}$ and for a given x, and

$$\text{(ii)-for } r_{d(a)} \leq r_{do(ao)}, \text{ since } \epsilon(r_{d(a)},x) = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \geq \epsilon_o(x), \text{ with a condition, given by: }$$

$$\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3-1\right]\times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3<1, \ \ \text{being a new } \epsilon(r_{d(a)},x)\text{-law,}$$

$$E_{gno(gpo)}\big(r_{d(a)},x\big) - E_{go}(x) = E_{d(a)}\big(r_{d(a)},x\big) - E_{do(ao)}(x) = -E_{do(ao)}(x) \\ \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \\ \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \leq 0, \tag{1b}$$

Corresponding to the decrease in both $E_{gn(gp)}$ $(r_{d(a)}, x)$ and $E_{d(a)}$ $(r_{d(a)}, x)$, with decreasing $r_{d(a)}$ and for a given x; therefore, the effective Bohr radius $a_{Bn(Bp)}$ $(r_{d(a)}, x)$ is defined by

$$a_{Bn(Bp)}(r_{d(a)},x) \equiv \frac{\epsilon(r_{d(a)},x) \times \hbar^2}{m_{c(v)}(x) \times m_o \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)},x)}{m_{c(v)}(x)}. \tag{2}$$

Generalized Mott Criterium in the Metal-Insulator Transition

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the metal-insulator transition (**MIT**) at T=0 K, $N_{CDn(NDp)}$ ($r_{d(a)}$, x), was given by the Mott's criterium, with an empirical parameter, $M_{n(p)}$, as:

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = M_{n(p)}, M_{n(p)} = 0.25,$$
(3)

Depending thus on our new $\varepsilon(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, \mathbf{x})$ -law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (WS) radius $r_{sn(sp)}$, characteristic of interactions, by:

$$r_{sn(sp)} \big(N, r_{d(a)}, x \big) \equiv \left(\frac{_3}{_{4\pi N}} \right)^{1/3} \times \frac{_1}{_{a_{Bn(Bp)}(r_{d(a)}, x)}} = 1.1723 \times 10^8 \times \left(\frac{_1}{_N} \right)^{1/3} \times \frac{_{m_{c(v)}(x) \times m_o}}{_{\epsilon(r_{d(a)}, x)}}, \tag{4}$$

Being equal to, in particular, at $N = N_{CDn(CDp)}(r_{d(a)}, x)$: $r_{sn(sp)}(N_{CDn(CDp)}(r_{d(a)}, x), r_{d(a)}, x) =$ **2.4813963**, for any $(r_{d(a)}, x)$ - values. Then, from Eq. (4), one also has:

$$N_{CDn(CDp)}(\mathbf{r}_{d(a)},\mathbf{x})^{1/_{3}}\times a_{Bn(Bp)}(\mathbf{r}_{d(a)},\mathbf{x}) = \left(\frac{_{3}}{^{4\pi}}\right)^{\frac{1}{3}}\times \frac{_{1}}{_{2.4813963}} = 0.25 = (WS)_{n(p)} = M_{n(p)} \tag{5}$$

93

Explaining thus the existance of the Mott's criterium

Furthermore, by using $\mathbf{M}_{\mathbf{n}(\mathbf{p})} = \mathbf{0.25}$, according to the empirical Heisenberg parameter $\mathcal{H}_{\mathbf{n}(\mathbf{p})} = \mathbf{0.47137}$, as those given in our previous work (Van Cong, 2024), we have also showed that $N_{\text{CDn}(\text{CDp})}$ is just **the density of electrons (holes) localized in the exponential conduction (valence)-band tail**, $N_{\text{CDn}(\text{CDp})}^{\text{EBT}}$, with a precision of the order of $\mathbf{2.86} \times \mathbf{10}^{-7}$. It should be noted that the values of $M_{\mathbf{n}(\mathbf{p})}$ and $\mathcal{H}_{\mathbf{n}(\mathbf{p})}$ could be chosen so that those of

It should be noted that the values of $M_{n(p)}$ and $\mathcal{H}_{n(p)}$ could be chosen so that those of $N_{CDn(CDp)}$ and $N_{CDn(CDp)}^{EBT}$ are in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined, as that given in compensated materials, by:

$$N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x) = N^*$$
 for a presentation simplicity. (6)

In summary, as observed in Table 1 of our previous paper (Van Cong, 2024), one remarks that, for a given x and an increasing $r_{d(a)}$, $\epsilon(r_{d(a)}, x)$ decreases, while $E_{gno(gpo)}(r_{d(a)}, x)$, $N_{CDn(NDp)}(r_{d(a)}, x)$ and $N_{CDn(CDp)}^{EBT}(r_{d(a)}, x)$ increase, affecting strongly all the physical properties, as those observed in following Sections.

PHYSICAL MODEL

In the $n^+(p^+)-p(n)$ $\mathbf{X}(\mathbf{x})\equiv \textbf{InSb1}_{-\mathbf{X}}\mathbf{P}_{\mathbf{X}}$ - crystalline alloy, if denoting the Fermi wave

Being proportional to $N^{*^{-1/3}}$. Here, $\gamma = (4/9\pi)^{1/3}$, $k_{Fn(Fp)}^{-1}$ means the averaged distance between ionized donors (acceptors), and $a_{Bn(Bp)}$ ($r_{d(a)}$, x) is determined in Eq. (2). Then, **the ratio** of the inverse effective screening length $k_{sn}(sp)$ to Fermi wave number $k_{Fn(kp)}$ at 0 K is defined by:

$$R_{sn(sp)}(N^*) \equiv \frac{k_{sn(sp)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{sn(sp)}^{-1}} = R_{snWS(spWS)} + \left[R_{snTF(spTF)} - R_{snWS(spWS)}\right]e^{-r_{sn(sp)}} < 1, \tag{7}$$

Being valid at any N*

Here, these ratios, $R_{snTF(spTF)}$ and $R_{snWS(spWS)}$, can be determined as follows. First, for $N \gg$

 $N_{CDn(NDp)}\left(r_{d(a)},x\right)$, according to the **Thomas-Fermi** (**TF**)-approximation, the ratio $R_{snTF(spTF)}\left(N^{*}\right)$ is reduced to

$$R_{snTF(spTF)}(N^*) \equiv \frac{k_{snTF(spTF)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{snTF(spTF)}^{-1}} = \sqrt{\frac{4\gamma r_{sn(sp)}}{\pi}} \ll 1,$$
(8)

Being proportional to $N^{*^{-1/6}}$

Secondly, for $N \ll N_{CDn(NDp)}$ $(r_{d(a)})$, according to the **Wigner-Seitz** (WS)-approximation, the ratio $R^{snWS(snWS)}$ is respectively reduced to

$$R_{sn(sp)WS}(N^*) \equiv \frac{k_{sn(sp)WS}}{k_{Fn}} = 0.5 \times \left(\frac{3}{2\pi} - \gamma \frac{d[r_{sn(sp)}^2 \times E_{CE}(N^*)]}{dr_{sn(sp)}}\right), \tag{9}$$

Where $E_{\rm CE}$ (N*) is the majority-carrier correlation energy (CE), being determined by (Van Cong, 2018):

$$E_{CE}(N^*) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67378876}}$$

Furthermore, in the highly degenerate case, the physical conditions are found to be given by (Van Cong, 2018)

$$\frac{k_{Fn(Fp)}^{-1}}{a_{Bn(Bp)}} < \frac{\eta_{n(p)}}{E_{Fno(Fpo)}} \equiv \frac{1}{A_{n(p)}} < \frac{k_{Fn(Fp)}^{-1}}{k_{sn(sp)}^{-1}} \equiv R_{sn(sp)} < 1, \ \eta_{n(p)}(N^*) \equiv \frac{\sqrt{2\pi N^*}}{\epsilon(r_{d(a)})} \times q^2 k_{sn(sp)}^{-1/2}, \tag{10}$$

Which gives: $A_{n(p)}\left(N^{*}\right) = \frac{\frac{E_{Fno(Fpo)}(N^{*})}{\eta_{n(p)}(N^{*})}}{}$

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy and generalized Einstein relation

Here, for a presentation simplicity, we change all the sign of various parameters, given in the $p^+-X(x)$ - crystalline alloy in order to obtain the same one, as given in the $n^+-X(x)$ -crystalline alloy, according to the reduced Fermi energy, $\xi_{n(p)}(N,r_{d(a)},x,T) \equiv \frac{E_{Fn(Fp)}(N,r_{d(a)},x,T)}{k_BT} > 0 (<0)$ obtained respectively in the degenerate (non-degenerate) case.

For any $(N, r_{d(a)}, x, T)$, the reduced Fermi energy $\xi_{n(p)}$ $(N, r_{d(a)}, x, T)$ or the Fermi energy $E_{Fn(Fp)}$ $(N, r_{d(a)}, x, T)$, obtained in our previous paper (Van Cong and Debiais, 1993), obtained with a precision of the order of 2.11×10^{-4} , is found to be given by:

$$\xi_{n(p)}(u) \equiv \frac{E_{Fn(Fp)}(u)}{k_BT} = \frac{G(u) + Au^BF(u)}{1 + Au^B} \equiv \frac{V(u)}{W(u)}, \ A = 0.0005372 \ \text{and} \ B = 4.82842262, \eqno(11)$$

Where u is the reduced electron density, $u(N, r_{d(a)}, x, T) \equiv \frac{N^*}{N_{c(v)}(T, x)}$, $N_{c(v)}(T, x) = 2g_{c(v)} \times 1$

$$\frac{\left(\frac{m_{c(v)}(x)\times m_0\times k_BT}{2\pi\hbar^2}\right)^{\frac{3}{2}}}{(cm^{-3})}, g_{c(v)} = 1, F(u) = au^{\frac{2}{3}}\left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}, \ a = \left[3\sqrt{\pi}/4\right]^{2/3}, \ b = \frac{1}{8}\left(\frac{\pi}{a}\right)^2, c = \frac{62.3739855}{1920}\left(\frac{\pi}{a}\right)^4, \ and \ G(u) \simeq Ln(u) + 2^{-\frac{3}{2}}\times u \times e^{-du}; \ d = 2^{3/2}\left[\frac{1}{\sqrt{27}} - \frac{3}{16}\right] > 0.$$

So, in the non-degenerate case (u \ll 1), one has: $E_{Fn(Fp)}(u) = k_BT \times G(u) \simeq k_BT \times Ln(u)$ as $u \to 0$, the limiting condition, and in the very degenerate case (u \gg 1), one gets:

$$E_{Fn(Fp)} \ (u \ \gg \ 1) \ = \ k_B T \ \times \ F(u) \ = ^{k_B T \ \times \ au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{\frac{2}{3}}} \ \simeq \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{c(v)}(x) \times m_o} \ as \ \ \boldsymbol{u} \ \longrightarrow \ \boldsymbol{\infty} \ , \ \ \boldsymbol{the}$$

limiting condition. In other words, $\xi_{n(p)} \equiv \frac{E_{Fn(Fp)}}{k_BT}$ is accurate, and it also verifies the correct limiting conditions. In the following, it will be present in all the electrical-and-thermoelectric coefficients.

In particular, at T=0K, since $u^{-1}=0$, Eq. (11) is reduced to: $E_{Fno(Fpo)}(N^*) \equiv \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{C(v)}(x) \times m_o} \ \ \text{being proportional to } (N^*)^{2/3}, \ \text{and also equal to } 0, \ \text{according to the MIT. In the following, it should be noted that such the accurate expression of } \xi_{n(p)}(N, r_{d(a)}, x, T) \ \text{is present in all the following electrical-and-thermoelectric.}$

FERMI-DIRAC DISTRIBUTION FUNCTION (FDDF)

The Fermi-Dirac distribution function (FDDF) is given by: $f(E) = (1 + e^{\gamma})^{-1}$, $\gamma = (E - E_{Fn(Fp)})/(k_BT)$. So, the average of E^p , calculated using the FDDF-method, as developed in our previous work (Van Cong, 2018) is found to be given by:

$$\langle E^p \rangle_{FDDF} \equiv G_p(E_{Fn(Fp)}) \times E_{Fn(Fp)}^p \equiv \int_{-\infty}^{\infty} E^p \times \left(-\frac{\partial f}{\partial E} \right) dE, \ -\frac{\partial f}{\partial E} = \frac{1}{k_B T} \times \frac{e^{\gamma}}{(1+e^{\gamma})^2}.$$

Further, one notes that, at 0 K, $-\frac{\partial f}{\partial E} = \delta(E - E_{Fno(Fpo)})$, $\delta(E - E_{Fno(Fpo)})$ being the Dirac delta (δ)-function. Therefore, G_p (EF_{no} (F_{po})) =1.

Then, at low T, by a variable change $\gamma \equiv (E - E_{Fn}(F_p))/(k_B T)$, one has:

$$\begin{split} G_p\big(E_{Fn(Fp)}\big) &\equiv 1 + E_{Fn(Fp)}^{-p} \times \int_{-\infty}^{\infty} \frac{e^{\gamma}}{(1+e^{\gamma})^2} \times \big(k_B T \gamma + E_{Fn(Fp)}\big)^p d\gamma = 1 + \sum_{\mu=1,2,\dots}^p C_p^{\beta} \times (k_B T)^{\beta} \times E_{Fn(Fp)}^{-\beta} \times I_{\beta}, \end{split}$$
 where $C_p^{\beta} \equiv p(p-1)\dots(p-\beta+1)/\beta!$ and the integral I_{β} is given by:

$$\begin{split} I_{\beta} &= \int_{-\infty}^{\infty} \frac{\gamma^{\beta} \times e^{\gamma}}{(1+e^{\gamma})^{2}} \mathrm{d}\gamma = \int_{-\infty}^{\infty} \frac{\gamma^{\beta}}{\left(e^{\gamma/2} + e^{-\gamma/2}\right)^{2}} \ \mathrm{d}\gamma \text{ vanishing for old values of } \beta. \text{ Then, for even values of } \beta = 2n, \text{ with } n = 1, 2 \text{ one obtains: } I_{2n} &= 2 \int_{0}^{\infty} \frac{\gamma^{2n} \times e^{\gamma}}{(1+e^{\gamma})^{2}} \mathrm{d}\gamma \,. \end{split}$$

Now, using an identity $(1+e^{\gamma})^{-2} \equiv \sum_{s=1}^{\infty} (-1)^{s+1} s \times e^{\gamma(s-1)}$, a variable change: $s\gamma = -t$, the Gamma function: $\int_0^\infty t^{2n} e^{-t} dt \equiv \Gamma(2n+1) = (2n)!$ and also the definition of the Riemann's zeta function: $\zeta(2n) \equiv 2^{2n-1} \pi^{2n} |B_{2n}|/(2n)!$, B_{2n} being the Bernoulli numbers, one finally gets: $I_{2n} = (2^{2n}-2) \times \pi^{2n} \times |B_{2n}|$. So, from Eq. (22), we get in the degenerate case the following ratio: $G_p(E_{Fn(Fp)}) \equiv \frac{\langle E^p\rangle_{FDDF}}{E_{Fn(Fp)}^p} = 1 + \sum_{n=1}^p \frac{p(p-1)...(p-2n+1)}{(2n)!} \times (2^{2n}-2) \times |B_{2n}| \times y^{2n} \equiv G_{p\geq 1}(y)$, (12)

Where
$$y \equiv \frac{\pi}{\xi_{n(p)}(N^*,T)} = \frac{\pi k_B T}{E_{Fn(Fp)}(N^*,T)}$$

Then, some usual results of $G_p \ge 1(y)$ are given in Table 2 in Appendix 1, being important ones in this work.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES

Here, if denoting, for majority electrons (holes), the electrical conductivity by σ (N, $r_{d(a)}$, x, T), expressed in ohm-1×cm-1, the thermal conductivity by κ (N, $r_{d(a)}$, x, T), expressed in $\frac{W}{cm \times K}$, and Lorenz number L by: $L = \frac{\pi^2}{3} \times \left(\frac{k_B}{q}\right)^2 = 2.4429637 \left(\frac{W \times ohm}{K^2}\right) = 2.4429637 \times 10^{-8} \left(V^2 \times K^{-2}\right)$

then the well-known Wiedemann-Frank law states that the ratio, $\frac{\kappa}{\sigma}$ is proportional to the temperature T(K), as:

$$\frac{\kappa(N,r_{d(a)},x,T)}{\sigma(N,r_{d(a)},x,T)} = L \times T. \tag{13}$$

We now determine the general form of σ in the following.

First, it is expressed in terms of the kinetic energy of the electron (hole), $E_k \equiv \frac{\hbar^2 \times k^2}{2 \times m_{Cn(Cp)} \times m_o}$, or the wave number k, as:

$$\sigma(k) \equiv \frac{q^2 \times k}{\pi \times \hbar} \times \frac{k}{k_{\text{sn(sp)}}} \times \left[k \times a_{\text{Bn(Bp)}}\right] \times \left(\frac{E_k}{\eta_{\text{n(p)}}}\right)^{1/2}$$

Which is thus proportional to E_k2 .

Then, for $E \ge 0$, we obtain: $\langle E^2 \rangle_{FDDF} \equiv G_2(y = \frac{\pi k_B T}{E_{E_{m/F_m}}}) \times E_{Fn(Fp)}^2$, and $G_2(y) = \left(1 + \frac{y^2}{3}\right) \equiv G_2(N, r_{d(a)}, x, T)$,

$$\text{with } y \equiv \frac{\pi}{\xi_{n(p)}}, \, \xi_{n(p)} = \xi_{n(p)} \big(\text{N,} \, r_{d(a)}, \text{x,} \, T \big) \quad \text{for a presentation simplicity. Therefore, one obtains:}$$

$$\sigma\big(N, r_{d(a)}, \textbf{x}, T\big) \equiv \left[\frac{\textbf{q}^2}{\pi \times \hbar} \times \frac{k_{Fn(Fp)}(N^*)}{R_{Sn(Sp)}(N^*)} \times \left[k_{Fn(Fp)}(N^*) \times a_{Bn(Bp)} \big(r_{d(a)}\big) \right] \times \sqrt{A_{n(p)}(N^*)} \right] \times \left[G_2 \big(N, r_{d(a)}, \textbf{x}, T\big) \times \left[R_{n(Fp)}(N^*) \times R_{n(Fp)}(N^*) \times R_{n(Fp)}(N^*) \right] \times \left[R_{n(Fp)}(N^*) \times R_{n(F$$

$$\left(\frac{E_{Fn(Fp)}(N,r_{d(a)},x,T)}{E_{Fno(Fpo)}(N^*)} \right)^2 \left[\left(\frac{1}{ohm \times cm} \right) \right] , \quad \frac{q^2}{\pi \times \hbar} = 7.7480735 \times 10^{-5} \ ohm^{-1} \quad , \quad A_{n(p)}(N^*) = \frac{E_{Fno(Fpo)}(N^*)}{\eta_{n(p)}(N^*)}$$
 (14)

Which also determine the resistivity as:, $\rho(N, r_{d(a)}, x, T) \equiv 1/\sigma(N, r_{d(a)}, x, T) \quad \text{noting that } N^* \equiv N - N_{CDnNDp)} \ (r_{d(a)}, x).$ This $\sigma(N, r_{d(a)}, x, T)$ -result is an essential one in this paper. In Eq. (14), one notes that at T=0 K, $\sigma(N, r_{d(a)}, x, T=0$ K) is proportional to $\frac{a^{\frac{3}{2}}}{E_{Fno(Fpo)}}$ or to N^* . Thus, $\sigma(N=N_{CDn(NDp)}, r_{d(a)}, x, T=0$ K) = 0 at $N^*=0$, at which the metal-insulator transition (MIT) occurs.

Electrical Coefficients

The relaxation time τ is related to σ by:

$$\tau(N, r_{d(a)}, x, T) \equiv \sigma(N, r_{d(a)}, x, T) \times \frac{m_{c(v)}(x) \times m_o}{q^2 \times N^*} \label{eq:tau}$$
 Therefore, the mobility μ is given by:

$$\mu\left(N, r_{d(a)}, x, T\right) \equiv \mu\left(N^*, r_{d(a)}, T\right) = \frac{q \times \tau\left(N, r_{d(a)}, x, T\right)}{m_{c(v)}(x) \times m_o} = \frac{\sigma\left(N, r_{d(a)}, x, T\right)}{q \times N^*} \left(\frac{cm^2}{V \times s}\right). \tag{15}$$

Here, at T=0K, μ (N*, $r_{d(a)}$, T) is thus proportional to $(N^*)^{1/3}$, since $\sigma(N^*$, $r_{d(a)}$, T=0K) is proportional to $(N^*)^{4/3}$. Thus, μ (N* = 0, $r_{d(a)}$, T = 0K) = 0 at N* = 0, at which the metal-insulator transition (MIT) occurs. Then, since τ and σ are both proportional to $E_{Fn(Fp)}$ (N*, T)², as given above, the Hall factor can thus be determined by:

$$r_H(\text{N}, r_{d(a)}, x, T) \equiv \frac{\langle \tau^2 \rangle_{FDDF}}{[\langle \tau \rangle_{FDDF}]^2} = \frac{G_4(y)}{[G_2(y)]^2}, \ y \equiv \frac{\pi}{\xi_{n(p)}(\text{N}, r_{d(a)}, x, T)} = \frac{\pi k_B T}{E_{Fn(Fp)}(\text{N}, r_{d(a)}, x, T)}, \quad \text{and therefore,}$$

the Hall mobility yields:

$$\mu_{H}\big(N, r_{d(a)}, x, T\big) \equiv \mu\big(N, r_{d(a)}, x, T\big) \times r_{H}(N^{*}, T) \left(\frac{cm^{2}}{V \times s}\right), \tag{16}$$

noting that, at T = 0K, since $r_H(N, r_{d(a)}, x, T) = 1$, one then gets at $N = N_{CDn(NDp)}$: $\mu_H(N, r_{d(a)}, x, T) = \mu(N, r_{d(a)}, x, T) = 0$ at $N^* = 0$, at which the metal-insulator transition (MIT) occurs. Finally, our **generalized Einstein relation** is found to be defined (Van Cong, 1980) as:

$$\frac{D(N,r_{d(a)},x,T)}{\mu(N,r_{d(a)},x,T)} \equiv \frac{N^*}{q} \times \frac{dE_{Fn(Fp)}}{dN^*} \equiv \frac{k_B \times T}{q} \times \left(u \frac{d\xi_{n(p)}(u)}{du}\right), \tag{17}$$

Where D (N, $r_{d(a)}$, x, T) is the diffusion coefficient, $\xi_{n(p)}(u)$ is defined in Eq. (11), and the mobility μ (N, $r_{d(a)}$, x, T) is determined in Eq. (15). Then, by differentiating this function $\xi_{n(p)}(u)$ with respect to u, one thus obtains $\frac{d\xi_{n(p)}(u)}{du}$. Therefore, Eq. (17) can also be rewritten as:

$$\frac{D\left(N,r_{d(a)},x,T\right)}{\mu\left(N,r_{d(a)},x,T\right)} = \frac{k_B \times T}{q} \times u \frac{V'(u) \times W(u) - V(u) \times W'(u)}{W^2(u)},$$

$$\text{where} \ \ W'(u) = ABu^{B-1} \ \ \text{and} \ \ V'(u) = u^{-1} + 2^{-\frac{3}{2}} e^{-du} (1-du) + \frac{2}{3} Au^{B-1} F(u) \left[\left(1 + \frac{3B}{2}\right) + \frac{4}{3} \times \frac{bu^{-\frac{4}{3}} + 2cu^{-\frac{8}{3}}}{1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}} \right] + \frac{4}{3} \times \frac{bu^{-\frac{4}{3}} + 2cu^{-\frac{8}{3}}}{1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}} \right] + \frac{4}{3} \times \frac{bu^{-\frac{4}{3}} + 2cu^{-\frac{8}{3}}}{1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}}$$

One remarks that: (i) as $u \to 0$, one has: $W2 \simeq 1$ and $u [V' \times W - V \times W'] \simeq 1$, and therefore:

$$\frac{D_{n(p)}(u)}{\mu} \simeq \frac{k_B \times T}{q}, \text{ and (ii) as } u \to \infty, \text{ one has: } W^2 \approx A^2 u^{2B} \text{ and } u \text{ [$V' \times W - V \times W'$]} \approx \frac{2}{3} a u^{2/3} A^2 u^{2B},$$

and therefore, in this **highly degenerate case** and at T = 0K, the **above generalized Einstein**

relation is reduced to the usual Einstein one: $\frac{\frac{D(N_r r_{d(a)},x,T=0\,K)}{\mu(N_r r_{d(a)},x,T=0\,K)}}{\frac{2}{3}} \approx \frac{2}{3} E_{Fno(Fpo)}(N^*)/q.$ In other words, Eq. (17) verifies the correct limiting conditions. One also notes that, for $N^*=0$, μ ($N^*=0$, $r_{d(a)}$, T=0K) = 0, as remarked in above, and therefore, for any $r_{d(a)}$, D ($N^*=0$, $r_{d(a)}$, T=0K) = 0, according to the MIT.

Further, in the present degenerate case ($u\gg1$), Eq. (17) gives:

$$\frac{D(N,r_{d(a)},x,T)}{\mu(N,r_{d(a)},x,T)} \simeq \frac{2}{3} \times \frac{E_{Fno(Fpo)}(u)}{q} \times \left[1 + \frac{4}{3} \times \frac{\left(bu^{-\frac{4}{3}} + 2cu^{-\frac{8}{3}}\right)}{\left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)}\right] \; ,$$

where
$$a = \left[3\sqrt{\pi}/4\right]^{2/3}, \ b = \frac{1}{8}\left(\frac{\pi}{a}\right)^2 \ \text{and} \ c = \frac{62.3739855}{1920}\left(\frac{\pi}{a}\right)^4.$$

In **Tables 3n (3p) given in Appendix 1**, for given x, $N > N_{CDn}$ and T (= 4.2 K and 77 K), and from Equations (14, 15, 16, 18), the numerical results of the coefficients: σ , μ , μ H, D, expressed respectively in $\frac{\left(\frac{10^3}{\text{ohm}\times\text{cm}},\frac{10^3\times\text{cm}^2}{\text{V}\times\text{s}},\frac{10^3\times\text{cm}^2}{\text{V}\times\text{s}},\frac{10\times\text{cm}^2}{\text{s}}\right)}{\text{V}}$, are found to be decreased with increasing $r_{d(a)}$, respectively.

Thermoelectric Coefficients

First off all, from Eq. (14), obtained for $\sigma(N, r_{d(a)}, x, T)$, the well-known Mott definition for the thermoelectric power or for the Seebeck coefficient, S, is given by:

$$S\big(N, r_{d(a)}, x, T\big) \equiv \frac{-\pi^2}{3} \times \frac{k_B}{q > 0} \times k_B T \times \frac{\partial \ln \sigma(E)}{\partial E}\Big]_{E = E_{Fn(Fp)}} = \frac{-\pi^2}{3} \times \frac{k_B}{q} \times \frac{\partial \ln \sigma \big(\xi_{n(p)}\big)}{\partial \xi_{n(p)}}.$$

Then, using Eq. (11), for $\xi_{n(p)}(N, r_{d(a)}, x, T) \gtrsim 1$, one gets, by putting $F_S(N, r_{d(a)}, x, T) \equiv$

$$\left[1 - \frac{y^2}{3 \times G_2\left(y = \frac{\pi}{\xi_{n(p)}}\right)}\right],$$

$$S\left(N, r_{d(a)}, x, T\right) \equiv \frac{-\pi^{2}}{3} \times \frac{k_{B}}{q} \times \frac{{}_{2}F_{Sb}(N^{*}, T)}{\xi_{n(p)}} = -\sqrt{\frac{3 \times L}{\pi^{2}}} \times \frac{{}_{2} \times \xi_{n(p)}}{\left(1 + \frac{3 \times \xi_{n(p)}^{2}}{\pi^{2}}\right)} \left(\frac{V}{K}\right), \tag{19}$$

Giving here: (i) at $\xi_{n(p)}=\sqrt{\frac{\pi^2}{3}}\simeq 1.8138$, one gets: $S=-\sqrt{L}\simeq -1.563\times 10^{-4}~\left(\frac{V}{K}\right)$ and at $\xi_{n(p)}=1$ one

Obtains: $S \simeq -1.322 \times 10^{-4} \left(\frac{V}{K}\right)$

Further, the figure of merit, ZT, is found to be given by:

$$ZT(N, r_{d(a)}, x, T) \equiv \frac{S^2 \times \sigma \times T}{\kappa} = \frac{S^2}{L} = (ZT)_{Mott} \times [2 \times F_S]^2, (ZT)_{Mott} = \frac{\pi^2}{3 \times \xi_{n(p)}^2}, \tag{20}$$

Giving here: (i) at $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$, one gets: $ZT = (ZT)_{Mott} = 1$, and at $\xi_{n(p)} = 1$ one obtains: $ZT \simeq 0.715$ and $(ZT)_{Mott} = \frac{\pi^2}{3} \simeq 3.290$.

Furthermore, from Eq. (19), one gets:

$$\frac{\partial s}{\partial \xi_{\mathrm{n(p)}}} = \sqrt{\frac{3 \times L}{\pi^2}} \times \frac{\frac{3 \times \xi_{\mathrm{n(p)}}^2}{\pi^2} - 1}{\left(1 + \frac{3 \times \xi_{\mathrm{n(p)}}}{\pi^2}\right)^2}, \frac{ds}{dT} = \frac{\partial s}{\partial \xi_{\mathrm{n(p)}}} \times \frac{\partial \xi_{\mathrm{n(p)}}}{\partial T}, \text{ and } \frac{ds}{dN^*} = \frac{\partial s}{\partial \xi_{\mathrm{n(p)}}} \times \frac{\partial \xi_{\mathrm{n(p)}}}{\partial N^*}, \frac{d(ZT)}{dT} = \frac{2 \times S}{L} \times \frac{dS}{dT} \text{ and } \frac{d(ZT)}{dN^*} = \frac{2 \times S}{L} \times \frac{dS}{dN^*},$$

Noting that: (i) at given (N, $r_{d(a)}$, x), and for $\frac{\partial \xi_{n(p)}}{\partial T} > 0$ (or < 0), $\xi_{n(p)}$ increases (or decreases) for decreasing (or increasing) T, (ii) at given ($r_{d(a)}$, x, T), and for $\frac{\partial \xi_{n(p)}}{\partial T} > 0$ (or < 0), $\xi_{n(p)}$ increases (or decreases) for increasing (or decreasing) N.

Finally, the Van-Cong coefficient, VC, is defined by:

$$VC\left(N, r_{d(a)}, x, T\right) \equiv N^* \times \frac{dS}{dN}\left(\frac{V}{K}\right) = N^* \times \frac{\partial S}{\partial \xi_{n(p)}} \times \frac{\partial \xi_{n(p)}}{\partial N^*} \quad , \quad \text{being} \quad \text{equal} \quad \text{to} \quad 0 \quad \text{for} \quad \xi_{n(p)} = \sqrt{\frac{\pi^2}{3}}$$
 (22)

The Thomson coefficient, Ts, by:

$$Ts\big(N,r_{d(a)},x,T\big)\equiv T\times \frac{dS}{dT}\left(\frac{V}{K}\right)=T\times \frac{\partial S}{\partial \xi_{n(p)}}\times \frac{\partial \xi_{n(p)}}{\partial T}, \text{ being equal to 0 for } \xi_{n(p)}=\sqrt{\frac{\pi^2}{3}}, \tag{23}$$

And then, the Peltier coefficient, Pt, as:

$$Pt(N, r_{d(a)}, x, T) \equiv T \times S(V). \tag{24}$$

Furthermore, from Equations (17, 22), we can obtain a new electrical-and-thermoelectric law

by:
$$\frac{k_{B} \times T}{q} \times VC(N, r_{d(a)}, x, T) \equiv \frac{\partial S}{\partial \xi_{n(p)}} \times \frac{D(N, r_{d(a)}, x, T)}{\mu(N, r_{d(a)}, x, T)} \left(\frac{V^{2}}{K}\right),$$

$$\frac{\partial S}{\partial \xi_{n(p)}} = \sqrt{\frac{3 \times L}{\pi^{2}}} \times \frac{\frac{3 \times \xi_{n(p)}^{2}}{\pi^{2}} - 1}{\left(1 + \frac{3 \times \xi_{n(p)}^{2}}{\pi^{2}}\right)^{2}}$$
Where we are since in Fig. (21)

Where, as given in Eq. (21),

Now, in the lightly degenerate n(p)-type X(x)- alloy, in which $N=5\times10^{17}$ cm⁻³(10^{19} cm⁻³)> $N_{CDn(CDp)}$, and for T=3K and 80K, the numerical results of various thermoelectric coefficients are reported in Tables 4n(4p) in Appendix 1, noting that their variations with increasing $r_{d(a)}$ are represented by the arrows: \nearrow (increase), and \searrow (decrease), respectively.

Then, in Tables 5n(5p) given Appendix 1 for a given N and with increasing T, and then in Tables 6n(6p) given Appendix 1 for a given T and with decreasing N, the reduced Fermienergy $\xi_{n(p)}$ decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase: \nearrow , decrease: \searrow). One notes here that with increasing T (or with decreasing N) one obtains: (i) for $\xi_{n(p)} \simeq 1.8138$, while the numerical results of S present **a**

respectively, and (iii) for $\xi_n \simeq 1.8138$, (ZT)_{Mott} = 1. It seems that these results could represent a new law in the thermoelectric properties, obtained in the degenerate case.

CONCLUDING REMARKS

In the $n^+(p+)^-$ p(n) X(x) – cristalline alloy, all the numerical results of electrical-and-thermoelectric coefficients, obtained in our previous work (Van Cong, 2018), were revised and performed, by basing on our following basic expressions.

- 1. The effective extrinsic static dielectric constant law, $\varepsilon(r_{d(a)}, x)$, due to the impurity size effect, is determined in Eq. (1).
- 2. The generalized Mott criterium in the metal-insulator transition is expressed in Equations (3, 5, 6), showing that $N_{CDn(CDp)}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail, $N_{CDn(CDp)}^{EBT}$ with a precision of the order of 2.86×10^{-7} , as given in our recent work (Van Cong, 2024), and the effective electron

(hole)-density: $N^* \equiv N - N_{CDn(CDp)} \simeq N - \frac{N_{CDn(CDp)}^{EBT}}{N_{CDn(CDp)}}$, as that observed in the compensated crystals.

- 3. The ratio of the inverse effective screening length $k_{sn(sp)}$ to Fermi wave number $k_{Fn(kp)}$ at 0K, $R_{sn(sp)}$ (N*), defined in Eq. (7), is valid at any density N*.
- 4. The Fermi energy for any N and T, $E_{Fn(Fp)}$, determined in Eq. (11) with a precision of the order of 2.11×10^{-4} (Van Cong, 1993), and it exists in all the expressions of electrical-and-thermoelectric coefficients.
- 5. Our expressions for the electrical conductivity, σ, and for the Seebeck coefficient, S, determined respectively in Equations (14, 19) are the basic expressions for determining the electrical-and-thermoelectric coefficients.
- 6. Our new electrical-and-thermoelectric law is given in Eq. (25), by:

$$\frac{k_B \times T}{q} \times \text{VC}\big(N, r_{d(a)}, x, T\big) \equiv \frac{\partial S}{\partial \xi_{n(p)}} \times \frac{D\big(N, r_{d(a)}, x, T\big)}{\mu\big(N, r_{d(a)}, x, T\big)} \left(\frac{V^2}{K}\right), \\ \frac{\partial S}{\partial \xi_{n(p)}} = \sqrt{\frac{3 \times L}{\pi^2}} \times \frac{\frac{3 \times \xi_{n(p)}^2}{\pi^2} - 1}{\left(1 + \frac{3 \times \xi_{n(p)}^2}{\pi^2}\right)^2} \,.$$

7. Finally, in Tables 5n(5p) given Appendix 1 for a given N and with increasing T, and then in Tables 6n(6p) given Appendix 1 for a given T and with decreasing N, the reduced Fermi-energy $\xi_{n(p)}$ decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase: \nearrow , decrease: \searrow). One notes here that with increasing T (or with decreasing N) one obtains: (i) for $\xi_{n(p)} \simeq 1.8138$, while the numerical results of S present a same minimum $(S)_{min}$. $(\simeq -1.563 \times 10^{-4} \frac{V}{K})$, those of ZT show a same maximum $(ZT)_{max}=1$, (ii) for $\xi_{n(p)}=1$, those of S, ZT, $(ZT)_{Mott}$, VC, and T_s present the same results:

$$-1.322 \times 10^{-4} \frac{\text{V}}{\text{K}}$$
, 0.715, 3.290, $-1.105 \times 10^{-4} \frac{\text{V}}{\text{K}}$, and $1.657 \times 10^{-4} \frac{\text{V}}{\text{K}}$

Respectively, and (iii) for $\xi_n \approx 1.8138$, (ZT)_{Mott}=1. It seems that these results could represent a new law in the thermoelectric properties, obtained in the degenerate case. In summary, all the numerical results of electrical-and-thermoelectric coefficients, given in our previous work (Van Cong, 2018), are now revised and performed.

REFERENCES

1. Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. *American Journal of Modern Physics*, 2018; 7: 136-165.

- 2. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. *Solid State Communications*, 1984; 49: 697-699.
- 3. Van Cong, H. Diffusion coefficient in degenerate semiconductors. *Phys. Stat. Sol.* (b)., 1980; 101: K27.
- 4. Van Cong, H. New critical impurity density in MIT, obtained in various n(p)-type degenerate InSb₁-_xP_x(As_x),GaSb₁-_xP_x(As_x, Te_x), CdSe₁-_xS_x(Te_x)-crystalline alloys, being just that of carriers localized in exponential band tails (III). *WJERT*., 2024; 10 (4): 191-220.
- 5. Van Cong, H. and Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. *J. Appl. Phys.*, 1993; 73: 1545-1546.
- 6. Van Cong, H. and Doan Khanh, B. Simple accurate general expression of the Fermi-Dirac integral $F_j(a)$ and for j > -1. *Solid-State Electron.*, 1992; 35: 949-951. Van Cong, H. New series representation of Fermi-Dirac integral $F_j(-\infty < a < \infty)$ for arbitrary j > -1, and its effect on $F_i(a \ge 0+)$ for integer $j \ge 0$. *Solid-State Electron.*, 1991; 489-492.

APPENDIX 1

Table 1: The values of energy-band-structure parameters are given in the following.

In $InSb_{1-x}P_x$ -alloy, in which $r_{do(ao)} = r_{Sb(In)} = 0.136$ nm (0.144 nm), we have: $g_{c(v)}(x) = 1 \times x + 1 \times (1-x), m_{c(v)}(x)/m_o = 0.007 (0.5) \times x + 0.1 (0.4) \times (1-x), \varepsilon_o(x) = 12.5 \times x + 16.8 \times (1-x), E_{go}(x) = 1.424 \times x + 0.23 \times (1-x).$

Table 2: Expressions for $G_{p\geq 1}(y\equiv \frac{\pi}{\xi_{n(p)}})$, due to the Fermi-Dirac distribution function, noting that $G_{p=1}(y\equiv \frac{\pi k_B T}{E_{Fn(Fp)}}=\frac{\pi}{\xi_{n(p)}})=1$, used to determine the electrical-and-thermoelectric coefficients.

Table 3n: Here, one notes that, for given x, N>N_{CDn} and T(=4.2 K and 77 K), the functions: σ , μ , μ_H , D, expressed respectively in $\frac{\left(\frac{10^3}{\text{ohm}\times\text{cm}},\frac{10^3\times\text{cm}^2}{\text{V}\times\text{s}},\frac{10^3\times\text{cm}^2}{\text{V}\times\text{s}},\frac{10^2\times\text{cm}^2}{\text{s}}\right)}{\text{decrease with increasing } r_d$.

Donor	P	As	Sb	Sn
r_d (nm)	→ 0.110	0.118	0.136	0.140

For x=0, the values of (σ, μ, μ_H, D) at 4.2K

 $N\,(10^{18}~cm^{-3})$

3 1.69, 3.525, 3.526, 1.78 1.48, 3.098, 3.099, 1.56 1.33, 2.793, 2.794, 1.40 1.32, 2.779, 2.780, 1.40 10 4.39, 2.745, 2.746, 3.09 3.82, 2.387, 2.388, 2.69 3.41, 2.136, 2.136, 2.41 3.40, 2.124, 2.124, 2.39 40 14.0, 2.185, 2.185, 6.21 12.0, 1.874, 1.874, 5.33 10.6, 1.658, 1.658, 4.71 10.5, 1.648, 1.648, 4.68 70 22.7, 2.026, 2.026, 8.36 19.4, 1.730, 1.730, 7.14 17.1, 1.524, 1.524, 6.29 17.0, 1.515, 1.515, 6.25

For x=0.5, the values of (σ, μ, μ_H, D) at 4.2K

 $\rm N~(10^{18}~cm^{-3})$

 3
 1.36, 2.850, 2.851, 162
 1.20, 2.512, 2.513, 1.43
 1.08, 2.266, 2.267, 1.29
 1.07, 2.255, 2.256, 1.28

 10
 3.47, 2.168, 2.168, 2.76
 3.04, 1.899, 1.899, 2.42
 2.73, 1.707, 1.708, 2.17
 2.71, 1.699, 1.699, 2.16

 40
 10.7, 1.665, 1.665, 5.35
 9.22, 1.439, 1.439, 4.62
 8.20, 1.281, 1.281, 4.11
 8.16, 1.274, 1.274, 4.09

 70
 17.1, 1.525, 1.525, 7.11
 14.7, 1.311, 1.311, 6.12
 13.0, 1.161, 1.161, 5.41
 12.9, 1.154, 1.154, 5.38

For x=1, the values of (σ, μ, μ_H, D) at 4.2K

```
For x=1, the values of (\sigma, \mu, \mu_H, D) at 4.2K
N (10^{18} \text{ cm}^{-3})
      1.09, 2.289, 2.289, 1.50 0.96, 2.012, 2.012, 1.31 0.86, 1.809, 1.809, 1.18 0.86, 1.799, 1.800, 1.17
10 2.76, 1.723, 1.723, 2.52 2.43, 1.517, 1.517, 2.22 2.19, 1.368, 1.369, 2.00 2.18, 1.362, 1.362, 1.99
40 8.20, 1.280, 1.280, 4.72 7.14, 1.115, 1.115, 4.11
                                                          6.40, 0.999, 0.999, 3.68 6.36, 0.993, 0.993, 3.66
70 12.9, 1.155, 1.155, 6.19 11.2, 1.000, 1.000, 5.36
                                                         10.0, 0.892, 0.892, 4.78 9.94, 0.887, 0.887, 4.75
For x=0, the values of (\sigma, \mu, \mu_H, D) at 77 K
N (10^{18} \text{ cm}^{-3})
     4.33, 2.770, 2.825, 3.11 3.85, 2.409, 2.457, 2.71
 10
                                                          3.44, 2.155, 2.198, 2.42 3.43, 2.143, 2.186, 2.41
40 14.0, 2.188, 2.195, 6.22 12.0, 1.877, 1.883, 5.33
                                                         10.6, 1.660, 1.666, 4.72 10.6, 1.651, 1.656, 4.69
     22.7, 2.028, 2.031, 8.37
                               19.4, 1.731, 1.734, 7.14
                                                          17.1, 1.525, 1.528, 6.29 17.0, 1.516, 1.518, 6.26
For x=0.5, the values of (\sigma, \mu, \mu_H, D) at 77 K
N (10^{18} \text{ cm}^{-3})
    10 \quad \quad 3.49, 2.183, 2.217, 2.77 \quad \quad 3.06, 1.912, 1.942, 2.43 \quad \quad 2.75, 1.719, 1.746, 2.18 \quad \quad 2.73, 1.710, 1.737, 2.17
40 \quad 10.7, 1.667, 1.671, 5.35 \quad 9.23, 1.441, 1.444, 4.62 \quad 8.21, 1.282, 1.286, 4.12 \quad 8.17, 1.275, 1.278, 4.09
70 \qquad 17.1, 1.525, 1.527, 7.11 \qquad 14.7, 1.311, 1.313, 6.11 \qquad 13.0, 1.162, 1.163, 5.42 \qquad 12.9, 1.155, 1.156, 5.39
For x=1, the values of (\sigma, \mu, \mu_H, D) at 77 K
N (10^{18} \text{ cm}^{-3})
    1.12, 2.349, 2.486, 1.53 0.99, 2.065, 2.186, 1.34 0.88, 1.857, 1.966, 1.20 0.88, 1.847, 1.955, 1.19
10 2.77, 1.732, 1.753, 2.53 2.44, 1.525, 1.543, 2.23
                                                          2.20, 1.376, 1.392, 2.01 2.19, 1.369, 1.385, 2.00
    8.21, 1.281, 1.283, 4.73
                              7.15, 1.116, 1.118, 4.12
                                                          6.40, 0.999, 1.001, 3.69 6.37, 0.994, 0.996, 3.67
    12.9, 1.155, 1.156, 6.19
                               11.2, 1.001, 1.002, 5.36
                                                         10.0, 0.892, 0.893, 4.78 9.95, 0.887, 0.888, 4.75
```

 $\begin{aligned} \textbf{Table 3p:} \quad \text{Here, one notes that, for given } x, \, N > N_{\text{CDp}} \text{ and } T (=&4.2 \text{ K and } 77 \text{ K}), \text{ the functions: } \sigma, \mu, \mu_{\text{H}}, D, \text{ expressed respectively in } \bigg(\frac{10^3}{\text{ohm} \times \text{cm}}, \frac{10^3 \times \text{cm}^2}{\text{V} \times \text{s}}, \frac{10^3 \times \text{cm}^2}{\text{V} \times \text{s}}, \frac{10 \times \text{cm}^2}{\text{V}} \bigg), \text{ decrease with increasing } r_a. \end{aligned}$

Acceptor	Ga	Mg	In	Cd
r _a (nm)	→ 0.120	0.140	0.144	0.148

```
For x=0, the values of (\sigma, \mu, \mu_H, D) at 4.2K
 N (10^{18} \text{ cm}^{-3})
            0.47, 1.598, 1.613, 1.47 \\ \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.36, 1.448, 1.464, 1.19} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.36, 1.448, 1.464, 1.19} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.36, 1.448, 1.464, 1.19} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.36, 1.448, 1.464, 1.19} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.36, 1.448, 1.464, 1.19} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.36, 1.448, 1.464, 1.19} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.454, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.477, 1.21} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.470, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.20} \\ \phantom{0.37, 1.460, 1.470, 1.20} \phantom{0.37, 1.460, 1.20} \\ \phantom{0.37, 1.460, 1.20} \phantom{0.37, 1.460, 1.20} \\ \phantom{0.37, 1.460, 1.20} \phantom{0.37, 1.460, 1.20} \\ \phantom{0.37
         1.65, 1.203, 1.204, 3.06 1.64, 1.196, 1.197, 3.04
 40
           7.52, 1.209, 1.209, 8.43
                                                            6.63, 1.072, 1.072, 7.44
                                                                                                            6.58, 1.065, 1.065, 7.39 6.54, 1.058, 1.059, 7.34
 70 12.8, 1.164, 1.164, 11.9 11.3, 1.031, 1.031, 10.5
                                                                                                            11.2, 1.024, 1.024, 10.4 11.2, 1.018, 1.018, 10.4
 For x=0.5, the values of (\sigma, \mu, \mu_H, D) at 4.2K
 N (10^{18} \text{ cm}^{-3})
            0.92, 0.823, 0.825, 1.62 0.91, 0.819, 0.820, 1.61
 10
          1.11, 0.922, 0.923, 1.91
                                                            0.93, 0.828, 0.829, 1.63
 40
         4.85, 0.807, 0.807, 4.88
                                                          4.24, 0.716, 0.716, 4.29
                                                                                                            4.21, 0.712, 0.712, 4.26 4.18, 0.707, 0.707, 4.24
 70 8.38, 0.775, 0.775, 6.94
                                                            7.37, 0.687, 0.687, 6.12
                                                                                                            7.32, 0.682, 0.682, 6.08 7.27, 0.678, 0.678, 6.04
For x=1, the values of (\sigma, \mu, \mu_H, D) at 4.2K
N (10^{18} \text{ cm}^{-3})
           10 0.47, 0.641, 0.644, 0.86 0.32, 0.596, 0.600, 0.65
                                                                                                           2.94, 0.530, 0.531, 2.74 2.52, 0.472, 0.472, 2.38
                                                                                                           2.50, 0.469, 0.470, 2.36 2.48, 0.467, 0.467, 2.34
70
         5.24, 0.507, 0.507, 3.97
                                                           4.57, 0.450, 0.450, 3.47
                                                                                                           4.53, 0.447, 0.447, 3.45 4.50, 0.444, 0.444, 3.43
For x=0, the values of (\sigma, \mu, \mu_H, D) at 77K
N (10^{18} \text{ cm}^{-3})
          0.53, 2.108, 6.874, 2.40 0.53, 2.107, 6.907, 2.39
                                                                                                           1.95,\, 1.416,\, 1.885,\, 3.49 \quad \  1.93,\, 1.408,\, 1.875,\, 3.46
10
         2.25, 1.586, 2.094, 3.99 1.96, 1.423, 1.894, 3.51
         7.70, 1.237, 1.301, 8.58
                                                                                                           6.74, 1.090, 1.147, 7.52 6.69, 1.083, 1.140, 7.47
40
                                                          6.78, 1.096, 1.154, 7.57
70
         12.9, 1.177, 1.206, 12.0
                                                          11.4, 1.042, 1.068, 10.6
                                                                                                           11.4, 1.036, 1.061, 10.5 11.3, 1.029, 1.054, 10.4
For x=0.5, the values of (\sigma, \mu, \mu_H, D) at 77K
N (10^{18} \text{ cm}^{-3})
          1.11, 1.256, 2.082, 2.52 0.91, 1.138, 1.991, 2.31
                                                                                                           0.90,\, 1.133,\, 1.988,\, 2.29 0.89,\, 1.127,\, 1.985,\, 2.28
         1.40, 1.157, 1.694, 2.40
                                                                                                            1.17, 1.051, 1.584, 2.13 1.16, 1.047, 1.580, 2.11
10
                                                          1.18, 1.056, 1.588, 2.14
         5.00, 0.831, 0.888, 5.00
                                                           4.38, 0.739, 0.790, 4.40
                                                                                                           4.35, 0.734, 0.785, 4.37 4.32, 0.730, 0.780, 4.34
70
          8.50, 0.786, 0.811, 7.02
                                                           7.47, 0.696, 0.719, 6.18
                                                                                                            7.42, 0.692, 0.714, 6.14 7.37, 0.688, 0.710, 6.10
For x=1, the values of (\sigma,\mu,\mu_{\text{H}},D) at 77K
N (10^{18} \text{ cm}^{-3})
         3.06, 0.553, 0.604, 2.83
                                                          2.64, 0.493, 0.541, 2.46
                                                                                                           2.61, 0.490, 0.538, 2.44 2.59, 0.488, 0.535, 2.42
          5.34, 0.516, 0.537, 4.02 4.65, 0.458, 0.478, 3.53 4.62, 0.456, 0.475, 3.50 4.59, 0.453, 0.472, 3.48
```

Table 4n: In the lightly degenerate n-type X(x) – alloy, in which $N=5\times10^{17}$ cm⁻³, and for T=3K and 80K, the numerical results of various thermoelectric coefficients are reported. Further, their variations with increasing $r_{d(a)}$ are represented by the arrows: \nearrow (increase), and \searrow (decrease).

Donor	P	As	Sb	Sn
For x=0,				
$\xi_{n(T=3K)} \qquad \qquad \searrow$	87.31	86.776	86.209	86.178
$\xi_{n(T=80K)} \qquad \searrow$	3.30	3.270	3.240	3.238
$\kappa_{(T=3K)}(\frac{10^{-5}\times\!W}{cm\!\times\!K})\qquad \searrow$	3.077	2.678	2.384	2.370
$\kappa_{(T=80K)}(\frac{10^{-4}\!\times\!W}{cm\!\times\!K})\qquad \searrow$	10.84	9.429	8.384	8.335
$-S_{(T=3K)}(\frac{10^{-6}\!\times\!V}{K})\qquad \vee$	6.491	6.531	6.574	6.576
$-S_{(T=80\mathrm{K})}(\frac{\mathtt{10}^{-5}\!\times\!V}{\mathrm{K}}) \boldsymbol{\searrow}$	13.201	13.260	13.324	13.327
$VC_{(T=3K)}(\frac{10^{-6}\times V}{K})$ \nearrow	4.322	4.349	4.377	4.379
$VC_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$	6.477	6.472	6.463	6.4629
$-Ts_{(T=3K)}(\frac{{\scriptstyle 10^{-6}\times V}}{\scriptstyle K}) \vee$	6.484	6.523	6.566	6.568
$-Pt_{(T=3K)}(10^{-5} \times V)$ \searrow	1.947	1.959	1.972	1.973
$-\text{Pt}_{(T=80\text{K})}(10^{-2}\times\text{V})$ $ \ \ \searrow$	1.056	1.061	1.066	1.0662
$ZT_{(T=3K)} (10^{-3})$	1.725	1.746	1.769	1.770
ZT _(T=80K)	0.713	0.7197	0.72665	0.72704
For x=0.5,				
$\xi_{n(T=3K)} \qquad \qquad \searrow$	98.57	97.941	97.272	97.235
$\xi_{n(T=80K)} \qquad \qquad \searrow$	3.85	3.823	3.791	3.790
$\kappa_{(T=3K)}(\frac{10^{-5}\!\times\!W}{cm\!\times\!K})\qquad \vee$	2.451	2.115	1.868	1.857
$\kappa_{(T=80K)} \left(\frac{10^{-4} \times W}{cm \times K}\right)$	8.668	7.485	6.612	6.571
$-S_{(T=3K)}(\frac{_{10^{-6}\times V}}{_{K}}) \checkmark$	5.750	5.787	5.827	5.829
$-S_{(T=80K)}(\frac{10^{-5}\times V}{K}) \searrow $	12.048	12.106	12.169	12.173
$VC_{(T=3K)}(\frac{10^{-6}\times V}{K})$ \nearrow	3.830	3.854	3.881	3.882
$VC_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ 7	6.055	6.093	6.133	6.135
$-Ts_{(T=3K)}\;(\frac{{\scriptstyle 10^{-6}\times V}}{\scriptstyle K}) \searrow $	5.745	5.782	5.821	5.823
$-Ts_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ \vee	9.083	9.140	9.200	9.203

$-\text{Pt}_{(T=3K)}(10^{-5}\times\text{V}) \text{`}$	1.725	1.736	1.748	1.749
$-Pt_{(T=80K)}(10^{-2} \times V)$ >	0.964	0.968	0.973	0.974
$ZT_{(T=3K)} (10^{-3})$	1.353	1.371	1.390	1.391
ZT _(T=80K)	0.594	0.600	0.606	0.6065
For x=1,				
ξ _{n(T=3K)}	113.2	112.4	111.6	111.5
$\xi_{n(T=80K)}$	4.48	4.446	4.413	4.411
$\kappa_{(T=3K)}(\frac{10^{-5}\!\times\!W}{cm\!\times\!K})\qquad \searrow$	1.888	1.615	1.417	1.408
$\kappa_{(T=80K)}(\frac{10^{-4}\times\!W}{cm\!\times\!K})\qquad \searrow$	6.519	5.588	4.912	4.880
$-S_{(T=3K)}(\frac{_{10^{-6}\times V}}{_{K}}) \checkmark$	5.009	5.043	5.080	5.082
$-S_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$	10.880	10.934	10.992	10.995
$VC_{(T=3K)}(\frac{10^{-6}\times V}{K})$ \nearrow	3.337	3.360	3.384	3.386
$VC_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ 7	5.255	5.288	5.324	5.326
$-Ts_{(T=3K)}\;(\frac{10^{-6}\times V}{K}) \searrow$	5.006	5.040	5.076	5.079
$-Ts_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ \vee	7.883	7.932	7.986	7.989
$-Pt_{(T=3K)}(10^{-5}\times V) \ \searrow$	1.503	1.513	1.524	1.5247
$-\text{Pt}_{(T=80\text{K})}(10^{-2} \times \text{V})$ \searrow	0.870	0.875	0.8793	0.8796
$ZT_{(T=3K)} (10^{-3})$	1.027	1.041	1.056	1.057
ZT _(T=80K)	0.484	0.489	0.4946	0.4949

Table 4p: In the lightly degenerate p-type X(x) – alloy, in which $N=10^{19}$ cm⁻³, and for T=3K and 80K, the numerical results of various thermoelectric coefficients are reported. Further, their variations with increasing $r_{d(a)}$ are represented by the arrows: \nearrow (increase), and \searrow (decrease).

Acceptor	Ga	Mg	In	Cd
For x=0,				-
$\xi_{p(T=3K)} \qquad \searrow$	151	147.97	147.8	147.63
$\xi_{p(T=80K)} \qquad \searrow$	5.88	5.776	5.769	5.763
$\kappa_{(T=3K)}(\frac{10^{-4}\!\times\!W}{cm\!\times\!K})\qquad $	1.41	1.221	1.212	1.203
$\kappa_{(T=80K)}(\frac{10^{-3}\times\!W}{cm\!\times\!K})\qquad \searrow$	4.45	3.876	3.849	3.821
$-S_{(T=3K)}(\frac{{10}^{-6}{\times}V}{K}) \searrow$	3.76	3.831	3.835	3.840
$-S_{(T=80K)}(\frac{10^{-5}\times V}{K}) \searrow$	8.80	8.936	8.943	8.951
$VC_{(T=3K)}(\frac{10^{-6}\times V}{K})$ \nearrow	2.50	2.553	2.556	2.559
$VC_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ >	4.51	4.546	4.548	4.550

10^-6×V				
$-Ts_{(T=3K)}\left(\frac{10^{-6}\times V}{K}\right)$ \vee	3.75	3.8296	3.834	3.838
$-\mathrm{Ts}_{(\mathrm{T=80K})}\left(\frac{\mathrm{10^{-5}\times V}}{\mathrm{K}}\right)$	6.77	6.8193	6.822	6.825
$-\text{Pt}_{(T=3\text{K})}(10^{-5}\times\text{V}) \text{\searrow}$	1.13	1.1494	1.151	1.152
$-\text{Pt}_{(T=80\text{K})}(10^{-3} \times \text{V})$ \searrow	7.04	7.1486	7.155	7.161
$ZT_{(T=3K)} (10^{-4})$	5.78	6.008	6.022	6.036
$ZT_{(T=80K)}(10^{-1})$	3.17	3.268	3.274	3.280
For x=0.5,				
$\xi_{p(T=3K)}$	120.52	114.57	114.23	113.88
$\xi_{p(T=80K)}$	4.76	4.532	4.519	4.505
$\kappa_{(T=3K)}(\frac{\text{10}^{-4}{\times}W}{\text{cm}{\times}K})\qquad \searrow$	0.81	0.679	0.672	0.666
$\kappa_{(T=80K)} \left(\frac{10^{-3}\times W}{cm\times K}\right)$	2.77	2.338	2.317	2.295
$-S_{(T=3K)}\left(\frac{10^{-6}\times V}{K}\right)$ \searrow	4.70	4.948	4.962	4.978
$-S_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right) \searrow$	10.39	10.78	10.806	10.830
$VC_{(T=3K)} \left(\frac{10^{-6} \times V}{K}\right) \nearrow$	3.13	3.296	3.306	3.316
$VC_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ \nearrow	5.00	5.199	5.212	5.226
$-\mathrm{Ts}_{(T=3K)}\left(\frac{10^{-6}\times V}{K}\right)$	4.70	4.9442	4.959	4.974
$-\mathrm{Ts}_{(T=80\mathrm{K})}\left(\frac{10^{-5}\times\mathrm{V}}{\mathrm{K}}\right)$	7.50	7.7982	7.8183	7.839
$-Pt_{(T=3K)}(10^{-5} \times V)$ \searrow	1.41	1.4843	1.4887	1.4933
$-\text{Pt}_{(T=80\text{K})}(10^{-3} \times \text{V})$ \rightarrow	8.32	8.6265	8.645	8.664
$ZT_{(T=3K)} (10^{-4})$	9.05	10.02	10.08	10.14
$ZT_{(T=80K)}(10^{-1})$	4.42	4.7596	4.780	4.80
For x=1,				
ξ _{p(T=3K)}	77.688	63.188	62.320	61.42
ξ _{p(T=80K)}	2.786	2.020	1.975	1.928
$\kappa_{(T=3K)} \left(\frac{10^{-4} \times W}{cm \times K}\right)$	0.34	0.234	0.229	0.223
$\kappa_{(T=80K)} \left(\frac{10^{-3}\times W}{cm\times K}\right)$	1.19	0.820	0.803	0.786
$-S_{(T=3K)}(\frac{10^{-6}\!\times\!V}{K}) \vee$	7.29	8.966	9.090	9.224
$-S_{(T=80K)}(\frac{{\tt 10^{-5}}{\times}V}{K}) \searrow$	14.29	15.54	15.573	15.600
$VC_{(T=3K)}(\frac{10^{-6}\times V}{K})$ \nearrow	4.85	5.963	6.046	6.134
$VC_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right) \searrow$	5.777	1.791	1.432	1.042
$-Ts_{(T=3K)}\;(\frac{10^{-6}\times V}{K}) \searrow$	7.28	8.945	9.069	9.201
$-Ts_{(T=80K)}\left(\frac{10^{-5}\times V}{K}\right)$ \nearrow	8.66	2.686	2.147	1.563

109

$-Pt_{(T=3K)}(10^{-5} \times V)$	7	2.19	2.689	2.727	2.767
$-Pt_{(T=80K)}(10^{-3} \times V)$	7	11.43	12.432	12.459	12.48
$\mathrm{ZT}_{(T=3K)} \ (10^{-4})$	7	21.78	32.90	33.826	34.825
$\mathrm{ZT}_{(T=80\mathrm{K})}(10^{-1})$	7	8.36	9.88	9.928	9.962

Table 5n: Here, for a given N and with increasing T, the reduced Fermi-energy ξ_n decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase: >). One notes here that with increasing T: (i) for $\xi_n \simeq 1.8138$, while the numerical results of S present a same minimum (S)_{min.} $\left(\simeq -1.563\times 10^{-4}\frac{V}{K}\right)$, those of ZT show a same maximum (ZT)_{max.}=1, (ii) for ξ_n =1, those of S, $-1.322 \times 10^{-4} \frac{\text{v}}{\text{k}}$, 0.715, 3.290, ZT, $(ZT)_{Mott}$, VC, and T_s present the same results: $-1.105 \times 10^{-4} \frac{v}{K}$, and $1.657 \times 10^{-4} \frac{v}{K}$, respectively, and (iii) for $\xi_n \approx 1.8138$, (ZT)_{Mott}=1.

In the degenerate P- X(x) – alloy, for $N = 2 \times N_{CDn}(r_p)$, one gets:

$T(K)$ \nearrow . ξ_n				10.528 1.8138		12 1.442		14.325731		14.5 0.972
$S\left(10^{-4}\frac{V}{K}\right)$							7	- 1.322	7	
ZT	0	.993	7	1	>	0.949	7	0.715	>	0.693
$(ZT)_{Mott}$	7 0	.844		1		1.581		3.290		3.484
$VC\left(10^{-4}\frac{V}{F}\right)$	<u>(</u>) o	142	7	0	7	-0.423	>	-1.105	>	-1.153
$T_s \left(10^{-4} \frac{V}{K}\right)$										
$Pt (10^{-3}V)$	-1	.557	>	-1.645	>	-1.827	>	-1.893	7	-1.887

In the degenerate As- $X(x)$ – alloy, for $N = 2 \times N_{CDn}(r_{As})$, one gets:									
T(K) ≥	10		12.813		15		17.435302		17.5
ξ _n Σ	2.685		1.8138		1.372		1		0.991
$S\left(10^{-4}\frac{V}{K}\right)$	-1.450	>	-1.563	7	-1.504	7	- 1.322	7	- 1.315
ZT	0.860	7	1	7	0.926	>	0.715	>	0.708
(ZT) _{Mott} ✓	0.456		1		1.748		3.290		3.348
$VC\left(10^{-4}\frac{V}{K}\right)$	0.547	7	0	>	-0.519	7	-1.105	7	-1.120
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.820	7	0	7	0.779	7	1.657	7	1.680
$Pt (10^{-3}V)$	-1.450	>	-2.003	>	-2.256	>	-2.304	7	-2.302

In the degenerate Sb- X(x) – alloy, for $N = 2 \times N_{CDn}(r_{Sb})$, one gets: 10 15.0335 20.4571662 20.5 3.382 1.631 1 0.995 $S\left(10^{-4}\frac{V}{K}\right)$ -1.302 ↘ -1.563-1.322-1.554-1.3180.989 0.715 0.711 (ZT)_{Mott} ∕ 0.287 1.236 3.290 3.322 $VC\left(10^{-4}\frac{V}{K}\right)$ 0.647 -0.191-1.105-1.113-0.971 ₹ 0.286 1.657 1.670 -2.704-2.70

In the degenera	te Sn- Y(v) —	alloy for N	J — 2	у N (r_) one	a meter					
T(K) ↗	10	15.1525		^ NCDn (181 16	n), one	20.6188		20.7			
ξ_n	3.418	1.8138		1.654		1		0.991			
$S\left(10^{-4}\frac{V}{K}\right)$	−1.294 \	-1.563	7	-1.556	7	- 1.322	7	- 1.315			
ZT	0.686 7	1	7	0.991	7	0.715	7	0.708			
$(ZT)_{Mott}$ /	0.281	1		1.203		3.290		3.351			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.646 ↘	0	7	-0.165	7	-1.105	7	-1.121			
$T_s \left(10^{-4} \frac{V}{K} \right)$	-0.969 /	0	7	0.248	7	1.657	7	1.681			
$Pt(10^{-3}V)$	-1.294	-2.368	>	-2.490	>	-2.725	7	-2.722			
For x=0.5,											
In the degenera	nte P- X(x) —	allov, for N	= 2 ×	N _{CDn} (r _p).	one ge	ets:					
T(K) ⊅.	10	12.25241		14		6.672601		16.675			
ξ_n	2.508	1.8138		1.436		1		0.9997			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.484 >	-1.563	7	-1.521	 	1.322	7	- 1.3215			
ZT	0.902 7	1	7	0.947	>	0.715	>	0.7148			
(ZT) _{Mott}		1		1.595		3.290		3.292			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.477	0	7	-0.432	7	-1.105	7	-1.1055			
$T_{\rm s}\left(10^{-4}\frac{\rm V}{\rm K}\right)$	-0.716 ∕	0	7	0.648	7	1.657	7	1.6582			
Pt (10 ⁻³ V)	-1.484	-1.915	>	-2.130	7	-2.204	7	-2.203			
In the degenera			I=2					20.4			
T(K) ξ _n Σ	12 2.563	14.9117 1.8138		16 1.608		20.291589 1		20.4 0.987			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.474	-1.563	7	-1.552	7	- 1.322	7	- 1.313			
ZT K)	0.889 /		` \	0.986	, \	0.715	, \	0.705			
(ZT) _{Mott} ✓	0.501	1	-	1.272	-	3.290	_	3.374			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.501 😼	0	7	-0.217	>	-1.105	7	-1.126			
,											
$T_{\rm s}\left(10^{-4}\frac{\rm v}{\rm K}\right)$	-0.851	 7 0	7	0.325	7	1.657	7	1.689			
$Pt (10^{-3}V)$	-1.769	> −2.331	>	-2.483	>	-2.682	7	-2.678			
In the degenera T(K) ↗	te Sb- X(x) — 15	alloy, for N 17.4965	N = 2	× N _{CDn} (r _{Sl} 20		e gets: 23.808502	,	23.9			
ξ _n \	2.324	1.8138		1.435		1	•	0.991			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.516 ↘	-1.563	7	-1.521	7	- 1.322	7	- 1.315			
ZT K/	0.941 /		7	0.947	`	0.715	>	0.708			
(ZT) _{Mott} ∕	0.609	1		1.598		3.290		3.350			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.384	0	>	-0.433	>	-1.105	>	-1.120			
$T_{\rm s} \left(10^{-4} \frac{\rm v}{\rm K}\right)$	-0.576	· 0	 7.	0.650	7	1.657	7	1.680			
$Pt (10^{-3}V)$	-2.274	> −2.735		-3.042	_	-3.147	7	-3.14			
10(10 1)	2.271	2.755	-	3.012	-	3.117		5.11			
In the degenerate Sn- $X(x)$ — alloy, for $N = 2 \times N_{CDn}(r_{Sn})$, one gets:											
In the degenera	te Sn- X(x) -	alloy, for N	l=2	CDn (1Sn	, one	geis:					
								24			
In the degenera $T(K) \nearrow \xi_n \qquad \searrow$	te Sn- X(x) - 15 2.352	alloy, for N 17.6345 1.8138	;	20 1.456		3.996614 1		24 0.9997			
$T(K)$ ξ_n	15	17.6345	;	20	2	3.996614	7				
T(K) ↗	15 2.352 −1.511 >	17.6345 1.8138 -1.563	;	20 1.456 -1.526	2	3.996614 1 - 1.322	<i>7</i>	0.9997 - 1.321			
$\begin{array}{ccc} T(K) & \nearrow \\ \xi_n & \searrow \\ S\left(10^{-4}\frac{v}{K}\right) \\ ZT \\ (ZT)_{Mott} \nearrow \end{array}$	15 2.352	17.6345 1.8138	;	20 1.456	2	3.996614 1	<i>7</i> ∖	0.9997			
$\begin{array}{ccc} T(K) & \nearrow \\ \xi_n & \searrow \\ S\left(10^{-4}\frac{v}{K}\right) \\ ZT \\ (ZT)_{Mott} \nearrow \end{array}$	15 2.352 -1.511 \(\sigma\)	17.6345 1.8138 -1.563	;	20 1.456 -1.526 0.953	2 /	3.996614 1 - 1.322 0.715	<i>7</i> \ \	0.9997 - 1.321 0.714			
$\begin{array}{ccc} T(K) & \nearrow \\ \xi_n & \searrow \\ S\left(10^{-4}\frac{v}{K}\right) \\ ZT \\ (ZT)_{Mott} \nearrow \\ VC\left(10^{-4}\frac{v}{K}\right) \end{array}$	15 2.352 -1.511 \(\neg \) 0.935 \(\neg \) 0.594 0.400 \(\neg \)	17.6345 1.8138 -1.563 1 1	; ,	20 1.456 -1.526 0.953 1.552 -0.405	2 / \	3.996614 1 - 1.322 0.715 3.290 -1.105	7	0.9997 - 1.321 0.714 3.292 -1.1055			
$\begin{array}{c} T(K) \\ \xi_n \\ S\left(10^{-4}\frac{V}{K}\right) \\ ZT \\ (ZT)_{Mott} \nearrow \\ VC\left(10^{-4}\frac{V}{K}\right) \\ T_s\left(10^{-4}\frac{V}{K}\right) \end{array}$	15 2.352 −1.511 \> 0.935 \\ \tilde{7} 0.594	17.6345 1.8138 -1.563 1 1	<i>7</i>	20 1.456 -1.526 0.953 1.552	2 / \	3.996614 1 - 1.322 0.715 3.290	<i>y</i>	0.9997 - 1.321 0.714 3.292			

_	_	
For	v=1	
1 01	A-1,	

In the de	gener	rate P- X(x)) — a.	lloy, for N	=2	$\times N_{CDn}(r_{P})$), one	gets:		
T(K)	↗.	10		14.6428		17		19.925354	ŀ	20
		3.263		1.8138		1.394		1		0.991
$S(10^{-4})$	$\left(\frac{V}{K}\right)$	-1.327	>	-1.563	7	-1.510	7	- 1.322	7	- 1.315
ZT		0.721	7	1	7	0.934	7	0.715	>	0.708
$(ZT)_{Mott}$		→ 0.309		1		1.693		3.290		3.348

In the degenerate Mg- $X(x)$ — alloy, for $N=2\times N_{\text{CDp}}(r_{\text{Mg}})$, one gets:												
T(K) ∠.	30		59.722 70 81.26823					81.3				
ξ _p Σ	4.658		1.8138		1.369		1		0.999			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.057	7	-1.563	7	-1.503	7	-1.322	7	-1.321			
ZT	0.457	7	1	7	0.925	>	0.715	>	0.714			
	7 0.152				1.756		3.290		3.296			
$VC\left(10^{-4}\frac{V}{K}\right)$,					7	-1.105	7	-1.106			
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.762	7	0	7	0.786		1.657	7	1.660			
$Pt (10^{-2}V)$	-0.317	>	-0.934	>	-1.052	>	-1.07412	7	-1.07402			

In the degenerate In- X(x) — alloy, for $N=2\times N_{\text{CDp}}(r_{\text{In}})$, one gets: 60.135 81.828665 81.9 4.689 1.8138 1.387 1 0.998 -1.052-1.508-1.563-1.322-1.320ZT 0.453 1 0.931 0.715 0.713 0.150 1.710 3.290 3.303 0.506 -1.108-0.7591.663 -0.315-1.056-1.08153-1.0812

For x=0.5,

In the degenerate Ga- X(x) – alloy, for $N=2\times N_{\mbox{CDp}}(r_{\mbox{Ga}}),$ one gets:

$T(K)$ \nearrow .	70		77.2013		80		105.052709		105.1
ξ _p	2.127		1.8138		1.708		1		0.999
$S\left(10^{-4}\frac{V}{K}\right)$	-1.543	7	-1.563	7	-1.560	7	-1.322	7	-1.321
ZT	0.975	7	1	>	0.996	>	0.715	>	0.714
$(ZT)_{Mott}$	7 0.727		1		1.128		3.290		3.297
$VC\left(10^{-4}\frac{V}{K}\right)$									
$T_s \left(10^{-4} \frac{V}{K} \right)$									
$Pt(10^{-2}V)$	-1.080	>	-1.207	>	-1.248	>	-1.3884	7	-1.3883

In the degener		(x) -		N = 3		$(r_{Mg}), o$						
$T(K)$ \nearrow . ξ_p	80 2.132		88.3555 1.8138		90 1.758		120.23104 1	5	120.5 0.995			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.543			7		7		7				
$\frac{3(10-K)}{K}$	0.974	∠	-1.563 1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	-1.562 0.999	\	-1.322 0.715	\ \	-1.318 0.711			
(ZT) _{Mott}		,	1	2	1.064	2	3.290	3	3.325			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.262	>	0	>	-0.054	>	-1.105	>	-1.114			
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.394	7	0	7	0.081	7	1.657	7	1.671			
Pt (10 ⁻² V)	-1.234	٧	-1.381	7	-1.406 	<i>\</i>	-1.589	<i>7</i>	-1.588			
In the degenerate In- $X(x)$ — alloy, for $N=2\times N_{CDp}(r_{In})$, one gets:												
$T(K)$ \nearrow . ξ_p	80 2.155		88.964 1.8138		95 1.622		121.06018 1		121.1 0.999			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.540	>	-1.563	7	-1.553	7	-1.322	7	-1.321			
ZT	0.970	7	1	>	0.987	7	0.715	>	0.714			
$VC \left(10^{-4} \frac{V}{K}\right)$	0.708		1		1.251		3.290		3.295			
$T_s \left(10^{-4} \frac{V}{H}\right)$	-0.418	. Z	0	7	-0.201	У 7	-1.105	7	-1.106			
$\frac{1_s \left(10 - \frac{1}{K}\right)}{\text{Pt} \left(10^{-2} \text{V}\right)}$	-0.418 -1.232	٧	-1.390	\ <u>\</u>	0.302 -1.475	\ \	1.657 -1.600	7	1.659 -1.599			
In the degenera $T(K)$ \nearrow .	ate Cd- X(80	(x) —	alloy, for I 89.5919	N = 2	× N _{CDp} (r 95		ne gets: 121.912654	4	122.2			
ξ _p	2.179		1.8138		1.642		1	-	0.994			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.540	>	-1.563	7	-1.555	7	-1.322	7	-1.318			
ZT (ZT) _{Mott}	0.967	7	1 1	7	0.990 1.221	7	0.715 3.290	7	0.711 3.326			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.295	\	0	\	-0.179	٧	-1.105	>	-1.114			
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.442	7	0	7	0.268	7	1.657	7	1.671			
$Pt (10^{-2}V)$	-1.229	7	-1.400	7	-1.477	>	-1.611	7	-1.610			
For x=1,												
In the degenera	ite Ga- X((x) -	alloy, for l	N = 2	$\times N_{CDn}(1)$	r _{ca}), o	ne gets:					
T(K) ∠.	100		117.825		120	du	160.3319	1	160.5			
ξ _p \	2.361		1.8138		1.759		1	1	0.997			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.510	7	-1.563	7	-1.562	7	-1.322	7	-1.320			
ZT K/	0.934	7	1	7	0.999	7	0.715	\	0.713			
	0.590		1		1.063		3.290		3.306			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.404	7	0	7	-0.054	>	-1.105	7	-1.109			
$T_s \left(10^{-4} \frac{V}{K}\right)$												
1S \ 10 17 1	-0.606	7	0	7	0.081	7	1.657	7	1.664			
	-0.606 -1.510		0 -1.842		0.081 -1.875		1.657 -2.119		1.664 -2.118			
Pt (10 ⁻² V)	-1.510	٧	-1.842	٧	-1.875	٧	-2.119					
Pt (10 ⁻² V) In the degenera	-1.510	٧	-1.842 alloy, for	N = 2	-1.875	٧	-2.119	7	-2.118			
Pt (10 ⁻² V) In the degenera	-1.510 ate Mg- X	٧	-1.842	N = 2	-1.875 2 × N _{CDp} (٧	-2.119 one gets:	7				
Pt $(10^{-2}V)$ In the degenera $T(K)$ ξ_p	-1.510 ate Mg- X 120	٧	-1.842 alloy, for 134.8488	N = 2	-1.875 2 × N _{CDp} ((r _{Mg}),	-2.119 one gets: 183.497	ァ 16	-2.118 183.6			
Pt $(10^{-2}V)$ In the degenera $T(K)$ ξ_p $S\left(10^{-4}\frac{V}{K}\right)$ ZT	-1.510 	(x) -	-1.842 alloy, for 134.8488 1.8138	N = 2	-1.875 2 × N _{CDp} (140 1.702	(r _{Mg}),	-2.119 one gets: 183.497	7 16	-2.118 183.6 0.999			
Pt (10^{-2}V) In the degeneration ξ_p S $\left(10^{-4}\frac{\text{V}}{\text{K}}\right)$ ZT $(ZT)_{\text{Mott}}$	-1.510 ate Mg- X 120 2.191 -1.535 0.965 7 0.685	(x) -	-1.842 alloy, for 134.8488 1.8138 -1.563 1	N = 2	-1.875 $2 \times N_{CDp}$ 140 1.702 -1.560	(r _{Mg}), (-2.119 one gets: 183.4977 1 -1.322	ア 16 ア ゝ	-2.118 183.6 0.999 -1.321			
Pt $(10^{-2}V)$ In the degenera $T(K)$ ξ_p $S\left(10^{-4}\frac{V}{K}\right)$ ZT	-1.510 ate Mg- X 120 2.191 -1.535 0.965 7 0.685	(x) -	-1.842 alloy, for 134.8488 1.8138 -1.563	N = 2	-1.875 2 × N _{CDP} (140 1.702 -1.560 0.996	/(r _{Mg}), (-2.119 one gets: 183.497 1 -1.322 0.715	7 16	-2.118 183.6 0.999 -1.321 0.714			
In the degeneration $T(K)$ \nearrow . ξ_p \searrow $S\left(10^{-4}\frac{V}{K}\right)$ ZT $(ZT)_{Mott}$ $VC\left(10^{-4}\frac{V}{K}\right)$	-1.510	\(\frac{1}{2}\)	-1.842 alloy, for 134.8488 1.8138 -1.563 1	N = 2	-1.875 2 × N _{CDp} (140 1.702 -1.560 0.996 1.135	(r _{Mg}), (-2.119 one gets: 183.497: 1 -1.322 0.715 3.290	7 16	-2.118 183.6 0.999 -1.321 0.714 3.298			
Pt (10^{-2}V) In the degeneration ξ_p S $\left(10^{-4}\frac{\text{V}}{\text{K}}\right)$ ZT $(ZT)_{\text{Mott}}$	-1.510	\(\frac{1}{2}\)	-1.842 alloy, for 134.8488 1.8138 -1.563 1 0	N = 2	-1.875 2 × N _{CDp} (140 1.702 -1.560 0.996 1.135 -0.112	(r _{Mg}), (-2.119 one gets: 183.497: 1 -1.322 0.715 3.290 -1.105	7 16	-2.118 183.6 0.999 -1.321 0.714 3.298 -1.107			

	185 0.997
7	-1.319
>	0.713
	3.310
>	-1.110
7	1.665
7	-2.441
	186.5
	0.994
7	-1.318
<u>.</u>	0.711
2	3.326
7	-1.114
7	1.671
7	-2.458

Table 6n: Here, for a given T and with decreasing N, the reduced Fermi-energy ξ_n decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase: \nearrow , decrease: \searrow). One notes here that with increasing T: (i) for $\xi_n \simeq 1.8138$, while the numerical results of S present a same minimum (S)_{min}. $\left(\simeq -1.563 \times 10^{-4} \frac{V}{K} \right)$, those of ZT show a same maximum (ZT)_{max.}=1, (ii) for ξ_n =1, those of S, ZT, (ZT)_{Mott}, VC, and T_s present the same results: $(-1.322 \times 10^{-4} \frac{V}{K}, 0.715, 3.290, -1.105 \times 10^{-4} \frac{V}{K}, \text{ and } 1.657 \times 10^{-4} \frac{V}{K}, \text{ respectively, and (iii) for } \xi_n \simeq 1.8138, (ZT)_{Mott}=1.$

For x=0,												
In the degenerate P- $X(x)$ – alloy, for T= 10.528 K, one gets:												
$N(10^{16} cm^{-3})$			2.5942062		2.3	2	2.1142838	5	2.11			
7II V	2.42542		1.8138		1.336		1		0.992			
$S\left(10^{-4}\frac{V}{K}\right)$	-1.499	7	-1.563	7	-1.493	↗ -	- 1.322	7	- 1.316			
ZT	0.920	7	1	7	0.912	7	0.715	7	0.709			
(ZT) _{Mott}	0.559		1		1.844		3.290		3.345			
$VC\left(10^{-4}\frac{V}{K}\right)$	0.438	٧	0	7	-0.571	>	-1.105	7	-1.119			
$T_s \left(10^{-4} \frac{V}{K} \right)$	-0.657	7	0	7	0.856	7	1.657	7	1.678			
Pt (10 ⁻³ V)	-1.578	>	-1.645	7	-1.571	7	-1.391	7	-1.385			
In the degenerat	e As- X(x	() — a	alloy, for T	= 12.	813 K, one	gets:						
N(10 ¹⁶ cm ⁻³)	4		3.4831608		3		2.838754	5	2.838			
ξ _n	2.395		1.8138		1.221		1		0.999			
$S(10^{-4}\frac{V}{V})$	-1.504	>	-1.563	7	-1.448	7	-1.322	7	-1.3209			
(K)						,	1.022	,	1.5205			
ZT	0.927	7	1	>	0.858	`\		7	0.714			
ZT (ZT) _{Mott} /	0.927 0.574	7	1 1	>		`\						
			_	٠ ٧	0.858	`\ \	0.715		0.714			
	0.574		1		0.858 2.206	\ \ '	0.715 3.290 -1.105	<i>></i>	0.714 3.297			
	0.574 0.422	٧	0 0	٧	0.858 2.206 -0.742	>	0.715 3.290 -1.105	\ \ 7	0.714 3.297 -1.107			

In the degenera	ate Sb- X(x) – al	loy, for T	Γ= 15.0	0335 K, or	ne gets	S:		
$N(10^{16} cm^{-3})$	¥ 4.5	4.426877	8	4		3.6078456	i	3.607
ξ _n \	1.880	1.8138		1411		1		0.999
$S\left(10^{-4}\frac{V}{K}\right)$	-1.562 ↘	-1.563	7	-1.514	7	- 1.322	7	- 1.321
ZT	0.999 7	1	7	0.939	7	0.715	7	0.714
(ZT) _{Mott} ∧	0.930	1		1.653		3.290		3.296
$VC\left(10^{-4}\frac{V}{K}\right)$	0.062 >	0	7	-0.466	7	-1.105	7	-1.106
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.092 ↗	0	7	0.699	7	1.657	7	1.660
Pt (10 ⁻³ V)	−2.348 ¥	-2.350	7	-2.277	7	-1.987	7	-1.986
In the decener	ate Sn- X(x) — al	lov for T	 Γ=15 1	525 K on	e oets			
$N(10^{16} cm^{-3})$	\ \ 5	4.479446		4	e gets.	3.6507193		3.65
ξ_n \searrow	2.271	1.8138		1.364		1		0.999
$S\left(10^{-4}\frac{V}{K}\right)$	−1.524 >	-1.563	7	-1.502	7	- 1.322	7	- 1.321
ZT	0.951 7	1	7	0.923	7	0.715	7	0.714
$(ZT)_{Mott}$ \nearrow	0.638	1		1.768		3.290		3.295
$VC\left(10^{-4}\frac{V}{K}\right)$	0.353 🖫	0	>	-0.530	7	-1.105	>	-1.106
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.529 ↗	0	7	0.796	7	1.657	7	1.659
Pt (10 ⁻³ V)	−2.310 >	-2.368	7	-2.275	7	-2.003	7	-2.002
	ate P- X(x) — allo		=12.252		e gets:			2.2
$N(10^{16} cm^{-3})$ ξ_n	3 2. 2.233	7117476 1.8138		2.5 1.490		2.2100481 1		2.2 0.981
$S\left(10^{-4}\frac{V}{K}\right)$	−1.530 >	-1.563	7	-1.533	7	- 1.322	7	- 1.308
ZT	0.958 7	1	>	0.962	>	0.715	>	0.701
$VC \left(10^{-4} \frac{V}{V}\right)$	0.660 0.329 ↘	0		1.482 -0.361		3.290 -1.105	`	3.415 -1.136
(K)			, k		, k			
$T_{s} \left(10^{-4} \frac{V}{K} \right)$ Pt $(10^{-3} V)$	-0.494	0 -1.915	7	0.541 -1.879	7	1.657 -1.619	7	1.705 -1.603
					·			
	ıte As- X(x) — all	loy, for T 3.64098	=14.91	17 K, one 3.5	gets:	2.9673356		2.96
ξ _n Σ	2.203	1.8138		1.656		1		0.990
$S\left(10^{-4}\frac{V}{K}\right)$	−1.534 \	-1.563	7	-1.556	7	- 1.322	7	- 1.314
ZT K/	0.963 7	1	7	0.992	7	0.715	7	0.707
(ZT) _{Mott} ↗	0.678	1	•	1.200	•	3.290	•	3.357
$VC\left(10^{-4}\frac{V}{V}\right)$	0.310 >	0	7	-0.163	7	-1.105	7	-1.122
$T_s \left(10^{-4} \frac{V}{V}\right)$	-0.466 ⊅	0	7	0.245	7	1.657	7	1.683
Pt (10 ⁻³ V)	-2.2.287 ↘	-2.331	7	-2.321	7	-1.971	7	-1.960
In the decenera	te Sb- X(x) — all	ov for T	=17.49	65 K one (oets:			
N(10 ¹⁶ cm ⁻³)	$\frac{110 \cdot 30 - A(A) - an}{5}$	4.6274562		4	be13.	3.7713369		3.75
ξ_n \searrow	2.133	1.8138		1.235		1		0.977
$S\left(10^{-4}\frac{V}{K}\right)$	-1.543 ↘	-1.563	7	-1.454	7	- 1.322	7	- 1.305
ZT	0.974 /	1	>	0.866	7	0.715	7	0.697
$(ZT)_{Mott} \nearrow VC \left(10^{-4} \frac{V}{}\right)$	0.723 0.263 \	1 0	٧	2.155 -0.720	7	3.290 -1.105	7	3.447 -1.144
$T_s \left(10^{-4} \frac{V}{V}\right)$	-0.394 /	0	7	1.080		1.657	7	1.716
$r_s (10 \text{ K})$ Pt (10^{-3}V)								
rt(10 'V)	−2.699 \	-2.735	7	-2.545	7	-2.312	7	-2.283

In the degenera	ate Sn- $X(x) - a$	lloy, for T	=17.6	345 K one g	gets:			
$N(10^{16} cm^{-3})$	√ 5	4.682407		4		3.8160912		3.81
ξ_n	2.083	1.8138		1.889		1		0.993
$S\left(10^{-4}\frac{V}{K}\right)$	−1.548 >	-1.563	7	-1.433	7	- 1.322	7	- 1.317
ZT	0.981 7	1 1	7	0.841	7	0.715 3.290	7	0.710
(ZT) _{Mott} ↑	0.758			2.328				3.333
$VC\left(10^{-4}\frac{V}{K}\right)$	0.227 💃	0	7	-0.793	7	-1.105	7	-1.116
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.341 ≯	0	7	1.190	7	1.657	7	1.674
$Pt (10^{-3} V)$	−2.730 >	-2.756	7	-2.527	7	-2.331	7	-2.323
For x=1,								
-	ate P- X(x) — ali	low for T=	14 64	29 K one o	ote:			
In the degenera	ate $F - A(X) = aI$	loy, 101 1—	14.04	zo K, one g	CIS.			
$N(10^{16} cm^{-3})$	√ 3	2.8752424		2.5	2	.3432946		2.34
ξ_n \searrow	1.987	1.8138		1.259		1		0.994
$S\left(10^{-4}\frac{V}{K}\right)$							_	
	−1.556 \	-1.563	7	-1.464		1.322	7	- 1.318
ZT (ZT) _{Mott}	0.992 / 0.833	1 1	7	0.878 2.076	7	0.715 3.290	7	0.711 3.328
$VC\left(10^{-4}\frac{V}{K}\right)$	0.153	0	٧	-0.685	`	-1.105	`	-1.115
$T_s \left(10^{-4} \frac{V}{V}\right)$								
\ N/	−0.229 <i>7</i>	0	7	1.027	7	1.657	7	1.672
Pt (10 ⁻³ V)	−2.279 \sigma	-2.289	<u>-</u>	-2.144	<i>"</i>	-1.935 	<i>"</i> 	-1.929
In the degenera	ate As- X(x) — a	lloy, for T	=17.8	21 K, one g	ets:			
$N(10^{16} cm^{-3})$	√ 4	3.8604994		3.5		3.1462495		3.145
ξ _n	1.907	1.8138		1.375		1		0.998
$S\left(10^{-4}\frac{V}{V}\right)$	−1.561 >	-1.563	7	-1.505	7	- 1.322	7	- 1.320
ZT	0.997 🗷	1	>	0.927	>	0.715	>	0.714
(ZT) _{Mott} /	0.904	1		1.740		3.290		3.300
$VC\left(10^{-4}\frac{V}{K}\right)$	0.086 💃	0	7	-0.515	7	-1.105	7	-1.108
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.129 7	0	7	0.773	,	7 1.657	7	1.661
Pt (10 ⁻³ V)	-2.400 \	-2.785	7	-2.313	7	-2.355	7	-2.353
In the decener	rate Sb- X(x) —	alloy for T	-20.9	1 K one ce	te.			
N(10 ¹⁶ cm ⁻³)		4.9064514	-20.9	4.5		3.9987166		3.995
ξ_n	2.236	1.8138		1.420		1		0.996
$S(10^{-4}\frac{V}{V})$	-1.529 ↘	-1.563	7	-1.517	7	- 1.322	7	- 1.319
ZT	0.957 🗷	1	`	0.942	>	0.715	>	0.712
(ZT) _{Mott} ≯	0.658	1		1.630		3.290		3.314
$VC(10^{-4}\frac{V}{V})$	0.331 >	0	>	-0.452	>	-1.105	>	-1.111
T (10-4 V)	-0.497 ↗	0	7	0.670	7	1 657	2	1 667
I _s (10 - K)				0.679	,	1.657	,	1.667
$Pt (10^{-3}V)$	-2.759	→ -3.268	7	-2.737	7	-2.764	7	-2.758
In the degener	rate Sn- X(x) —	allov, for T	=21.0	748 K, one	gets:			
$N(10^{16} cm^{-3})$	√ 5.5	4.9647154		4.5		4.0461555		4.045
ξ _n \ V	2.186	1.8138		1.374		1		0.999
$S\left(10^{-4}\frac{V}{K}\right)$	-1.536 ↘	-1.563	7	-1.505	7	- 1.322	7	- 1.321
ZT	0.966 7	1	7	0.927	7	0.715	7	0.714
(ZT) _{Mott} ⊅	0.689	1		1.742		3.290		3.297
$VC\left(10^{-4}\frac{V}{K}\right)$	0.299 🖫	0	7	-0.516	7	-1.105	7	-1.107
$T_s \left(10^{-4} \frac{V}{V}\right)$	-0.448 ₹	0	7	0.775	7	1.657	7	1.660
$r_s (10 \text{ K})$ Pt (10^{-3}V)								
Ft(10 V)	-2.793	-3.294	7	-2.735	7	-2.785	/	-2.784

Table 6p: Here, for a given T and with decreasing N, the reduced Fermi-energy ξ_p decreases, and other thermoelectric coefficients are in variations, as indicated by the arrows as: (increase: >). One notes here that with increasing T: (i) for $\xi_p \simeq 1.8138$, while the numerical results of S present a same minimum $(S)_{min.}$ $\left(^{\simeq -1.563\times 10^{-4}\frac{V}{R}\right)}\!\!, \text{ those of ZT show a same maximum (ZT)}_{max.}\!\!=\!\!1\text{, (ii) for }\xi_{p}\!\!=\!\!1\text{, those of S,}$ VC, ZT, \mathbf{T}_{s} present $(ZT)_{Mott.}$ the results: same $-1.322\times 10^{-4}\frac{v}{\kappa}, \, 0.715, \, 3.290, \, \, -1.105\times 10^{-4}\frac{v}{\kappa}, \, \text{and} \, \, 1.657\times 10^{-4}\frac{v}{\kappa},$ respectively. and (iii) for $\xi_{\rm p} \simeq 1.8138$, (ZT)_{Mott}=1.

For x=0,									
In the degener	ata Ga. V	(v) .	allow for	т–52	1941/ on	a cate:			
$N(10^{18} cm^{-3})$.ate Ga- ∧	(x) –	2.2902686		2 2		1.8665662		1.866
$\xi_{\mathbf{p}}$	2.176		1.8138		1.276		1		0.999
$S\left(10^{-4}\frac{V}{K}\right)$	-1.537	7	-1.563	7	-1.471	7	-1.322	7	-1.321
ZT	0.968	7	1	7	0.886	7	0.715	7	0.714
$(ZT)_{Mott}$	→ 0.695		1		2.021		3.290		3.298
$VC\left(10^{-4}\frac{V}{K}\right)$	0.292	7	0	7	-0.659	7	-1.105	7	-1.107
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.438	7	0	7	0.988	7	1.657	7	1.660
$Pt(10^{-3}V)$	-8.023	>	-8.156	7	-7.676	7	-6.897	7	-6.893
In the degener	rate Mo- X	((x) -	alloy for	T=59	722 K. on	e gets:			
$N(10^{18} cm^{-3})$	√ 3	-()	2.8041452		2.5	- 8-13.	2.2853372		2.28
$\xi_{\rm p}$	2.091		1.8138		1.358		1		0.990
$S\left(10^{-4}\frac{V}{K}\right)$	-1.547	7	-1.563	7	-1.500	7	-1.322	7	-1.315
ZT	0.980	7	1	7	0.921	>	0.715	7	0.708
(ZT) _{Mott}	→ 0.752		1		1.784		3.290		3.353
$VC\left(10^{-4}\frac{V}{K}\right)$	0.233	7	0	7	-0.539	7	-1.105	7	-1.121
$T_{\rm s}\left(10^{-4}\frac{\rm V}{\rm K}\right)$	-0.350	7	0	7	0.809	7	1.657	7	1.682
$Pt (10^{-3}V)$	-9.241	7	-9.334	7	-8.956	7	-7.893	7	-7.853
In the degenera N(10 ¹⁸ cm ⁻³)		x) — a		=60.13		gets:	2.3090434	5	2.305
In the degenera $N(10^{18} cm^{-3})$ ξ_p		x) — a	lloy, for T= 2.8332018 1.8138	=60.13	35 K, one § 2.5 1.317	gets:	2.3090434 1	5	2.305 0.993
$N(10^{18} cm^{-3})$	√ 3	x) — a	2.8332018	=60.13	2.5	gets:		5 7	
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \end{array}$	∑ 3 2.048	x) — a	2.8332018 1.8138	=60.13	2.5 1.317		1		0.993
$N(10^{18} \text{cm}^{-3})$ ξ_p $S\left(10^{-4} \frac{V}{K}\right)$	3 2.048 -1.551	x) — a	2.8332018 1.8138 -1.563	=60.13	2.5 1.317 -1.486	7	1 -1.322		0.993 -1.317
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \end{array}$	3 2.048 -1.551 0.985	x) — a	2.8332018 1.8138 -1.563 1	=60.13	2.5 1.317 -1.486 0.904	7	1 -1.322 0.715		0.993 -1.317 0.710
$N(10^{18} \text{cm}^{-3})$ ξ_{p} $S\left(10^{-4} \frac{\text{V}}{\text{K}}\right)$ ZT $(ZT)_{\text{Mott}}$	3 2.048 -1.551 0.985 > 0.784	x) — a	2.8332018 1.8138 -1.563 1 1	=60.13	2.5 1.317 -1.486 0.904 1.896	7	1 -1.322 0.715 3.290		0.993 -1.317 0.710 3.337
$N(10^{18} \text{cm}^{-3})$ ξ_{p} $S\left(10^{-4} \frac{\text{V}}{\text{K}}\right)$ ZT $(ZT)_{Mott}$ $VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right)$	3 2.048 -1.551 0.985 > 0.784 0.201	x) — a	2.8332018 1.8138 -1.563 1 1	<i>></i>	2.5 1.317 -1.486 0.904 1.896 -0.598	7	1 -1.322 0.715 3.290 -1.105		0.993 -1.317 0.710 3.337 -1.117
$\begin{array}{c} N(10^{18}\text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4}\frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{Mott} \\ VC\left(10^{-4}\frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4}\frac{\text{V}}{\text{K}}\right) \end{array}$	3 2.048 -1.551 0.985 0.784 0.201 -0.301 -9.330	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937	7 3 7 7	1 -1.322 0.715 3.290 -1.105 1.657		0.993 -1.317 0.710 3.337 -1.117
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{\text{Mott}} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline In the degener} \\ N(10^{18} \text{cm}^{-3}) \end{array}$	3 2.048 -1.551 0.985 -7 0.784 0.201 -0.301 -9.330 rate Cd- X	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 2.8631806	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -558 K, one	7 3 7 7	1 -1.322 0.715 3.290 -1.105 1.657 -7.948	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{\text{Mott}} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline In \text{ the degener} \\ N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ \end{array}$	3 2.048 -1.551 0.985 7 0.784 0.201 -0.301 -9.330 rate Cd- X	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 2 2.8631806 1.8138	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -558 K, one 2.5 1.275	אר אינייטייטייטייטייטייטייטייטייטייטייטייטיי	1 -1.322 0.715 3.290 -1.105 1.657 -7.948	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline \\ In the degener \\ N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \end{array}$	3 2.048 -1.551 0.985 - 0.784 0.201 -0.301 -9.330 rate Cd- X	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 1 2.8631806 1.8138 -1.563	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -558 K, one 2.5 1.275 -1.471	7 3 7 7	1 -1.322 0.715 3.290 -1.105 1.657 -7.948 2.3334658 1 -1.322	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918 2.33 0.994 -1.317
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{Mott} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline \\ In the degener \\ N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \end{array}$	3 2.048 -1.551 0.985 -0.784 0.201 -0.301 -9.330 rate Cd- X 3 2.004 -1.555 0.990	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 2.8631806 1.8138 -1.563	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -558 K, one 2.5 1.275 -1.471 0.885	אר אינייטייטייטייטייטייטייטייטייטייטייטייטיי	1 -1.322 0.715 3.290 -1.105 1.657 -7.948 2.3334658 1 -1.322 0.715	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918 2.33 0.994 -1.317 0.710
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{Mott} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline \\ In the degener \\ N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{Mott} \end{array}$	3 2.048 -1.551 0.985 0.784 0.201 -0.301 -9.330 rate Cd- X 3 2.004 -1.555 0.990 7 0.819	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 1 2.8631806 1.8138 -1.563	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -8.937 -1.275 -1.471 0.885 2.022	אר אינייטייטייטייטייטייטייטייטייטייטייטייטיי	1 -1.322 0.715 3.290 -1.105 1.657 -7.948 2.3334658 1 -1.322 0.715 3.290	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918 2.33 0.994 -1.317 0.710 3.330
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{\text{Mott}} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline \\ In the degener \\ N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{\text{Mott}} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ \end{array}$	3 2.048 -1.551 0.985 7 0.784 0.201 -0.301 -9.330 rate Cd- X 3 2.004 -1.555 0.990 7 0.819 0.167	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 1 2.8631806 1.8138 -1.563 1 0	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -558 K, one 2.5 1.275 -1.471 0.885 2.022 -0.659	אר אינייטייטייטייטייטייטייטייטייטייטייטייטיי	1 -1.322 0.715 3.290 -1.105 1.657 -7.948 2.3334658 1 -1.322 0.715 3.290 -1.105	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918 2.33 0.994 -1.317 0.710 3.330 -1.115
$\begin{array}{c} N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{Mott} \\ VC\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ T_s\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ Pt\left(10^{-3} \text{V}\right) \\ \hline \\ In the degener \\ N(10^{18} \text{cm}^{-3}) \\ \xi_p \\ S\left(10^{-4} \frac{\text{V}}{\text{K}}\right) \\ ZT \\ (ZT)_{Mott} \end{array}$	3 2.048 -1.551 0.985 0.784 0.201 -0.301 -9.330 rate Cd- X 3 2.004 -1.555 0.990 7 0.819	\ \ \ \ \	2.8332018 1.8138 -1.563 1 0 0 -9.400 alloy, for 2.8631806 1.8138 -1.563 1	/ \ /	2.5 1.317 -1.486 0.904 1.896 -0.598 0.897 -8.937 -8.937 -1.275 -1.471 0.885 2.022	אר אינייטייטייטייטייטייטייטייטייטייטייטייטיי	1 -1.322 0.715 3.290 -1.105 1.657 -7.948 2.3334658 1 -1.322 0.715 3.290	/ \ / /	0.993 -1.317 0.710 3.337 -1.117 1.676 -7.918 2.33 0.994 -1.317 0.710 3.330

For x=0.5,									
In the degener						_	0070454		
$N(10^{18} cm^{-3})$ ξ_p	√ 5 1.881		4.9176652 1.8138		4.5 1.461	4	.0078454 1		4 0.992
$S\left(10^{-4}\frac{V}{K}\right)$	-1.562	7	-1.563	7	-1.527	7	-1.322	7	-1.316
ZT	0.999	7	1	7	0.954	7	0.715	7	0.709
$(ZT)_{Mott}$	7 0.930		1		1.542		3.290		3.343
$VC\left(10^{-4}\frac{V}{K}\right)$	0.062	7	0	7	-0.399	7	-1.105	7	-1.118
$T_{\rm s} \left(10^{-4} \frac{\rm V}{\rm K}\right)$	-0.094	7	0	7	0.599	7	1.657	7	1.678
Pt (10 ⁻² V)	-1.206	7	-1.207	7	-1.179	7	-1.020	7	-1.016
In the degener	rate Mg- X	(χ) -	 - allov. for	T=88	.3555 K. on	e gets:			
$N(10^{18} cm^{-3})$ ξ_p	→ 6.5 2.129	-()	6.021061 1.8138		5.9 1.732		4.9070987 1		4.89 0.986
$S\left(10^{-4}\frac{V}{V}\right)$	-1.543	7	-1.563	7	-1.561	7	-1.322	7	-1.311
ZT K	0.975	7	1.303	Ý	0.998	`\	0.715	`	0.704
$(ZT)_{Mott}$	7 0.726 7 0.726	,	1	-	1.096	-	3.290	-	3.385
$VC\left(10^{-4}\frac{V}{K}\right)$	0.260	7	0	7	-0.081	7	-1.105	7	-1.129
$T_{\rm s} \left(10^{-4} \frac{\rm V}{\rm r}\right)$	-0.390	7	0	7	0.122	7	1.657	7	1.694
$Pt(10^{-2}V)$	-1.363	7	-1.381	7	-1.379	7	-1.168	7	-1.159
In the degener		x) –	alloyalloy,	for T	=88.964K, c	one ge	ts:		
$N(10^{18} cm^{-3})$ ξ_p	≥ 6.5 2.086		6.0834514 1.8138	4	5.9 1.691		4.95792 1		4.95 0.993
$S\left(10^{-4}\frac{V}{K}\right)$	-1.548	7	-1.563	7	-1.559	7	-1.322	7	-1.317
ZT	0.981	7	1	7	0.995	7	0.715	7	0.710
$(ZT)_{Mott}$ $VC\left(10^{-4}\frac{V}{V}\right)$	0.756		1		1.150		3.290		3.333
(14)	0.229	7	0	7	-0.125	7	-1.105	7	-1.116
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.344	7	0	7	0.187	7	1.657	7	1.674
$Pt (10^{-2}V)$	-1.377	7	-1.390	7	-1.387	7	-1.176	7	-1.172
In the degener	ate Cd_ V	(v) _	alloy for	T=80	5010 one o	etc.			
$N(10^{18} cm^{-3})$	3 6.5 bit 6.5	(A) —	6.1478218	1-09.	6 6	5	.0104274		5
ξ_p	2.042		1.8138		1.716		1		0.991
$S\left(10^{-4}\frac{V}{K}\right)$	-1.552		-1.563	7	-1.560	7	-1.322	7	-1.316
ZT (ZT) _{Mott}	0.986 > 0.789	7	1 1	7	0.99 7 1.117	7	0.715 3.290	7	0.708 3.346
/ 77\	0.196	\	0	7	-0.098	7	-1.105	\ <u></u>	-1.119
$T_s \left(10^{-4} \frac{V}{V}\right)$		7	0	7			1.657	7	1.679
$r_s (10 \text{ K})$ Pt (10^{-2}V)			-1.400	7	-1.398	7	-1.184	7	-1.179
For x=1,									
In the degenera		(x) –		Γ=117		gets:			
$N(10^{19} cm^{-3})$ ξ_p	1.1 1.866		1.0859611 1.8138		0.89 1.022		0.885047 1		0.884 0.995
$S\left(10^{-4}\frac{V}{K}\right)$	-1.562	7	-1.563	7	-1.337	7	-1.322	7	-1.318
ZT	0.999	7	1	7	0.732	>	0.715	>	0.711
$(ZT)_{Mott}$ $VC\left(10^{-4}\frac{V}{K}\right)$	0.945	\ <u></u>	1 0	\ <u></u>	3.146 -1.066	\ <u></u>	3.290 -1.105	7	3.322 -1.113
$T_s \left(10^{-4} \frac{V}{K} \right)$	_0.072	7	0	<i>></i>	1.600	<i>-</i> <i>7</i>		<i>-</i>	
	-0.073 -1.841		-1.842	7	-1.576		1.657 -1.557	7	1.670 -1.553
(== -)	2.2.1	-	J.2		2.2.7.0	,	2.557		2.222

In the degenera N(10 ¹⁹ cm ⁻³)	te Mg- X		alloy, for 1.3296224		1.8488 K, on 1.3		s: .08362885		1.08
ξ _p \	1.875		1.8138	•	1.723	1.	1		0.986
$S\left(10^{-4}\frac{V}{K}\right)$	-1.562	7	-1.563	7	-1.561	7	-1.322	7	-1.312
ZT	0.999	7	1	>	0.997	>	0.715	7	0.704
$(ZT)_{Mott}$ 7	0.935		1		1.108		3.290		3.381
$VC\left(10^{-4}\frac{V}{K}\right)$	0.057	7	0	>	-0.090	7	-1.105	7	-1.128
$T_{\rm s} \left(10^{-4} \frac{\rm V}{\rm V}\right)$	-0.086	7	0	7	0.136	7	1.657	7	1.692
Pt (10 ⁻² V)	-2.106	\	-2.108	7	-2.105	7	-1.782	7	-1.769
In the degenerat		x) — al		[=135.		gets:			
	1.35		1.3434		1.3		1.0948586	65	1.09
ξ _p	1.833		1.8138		1.682		1		0.982
$S\left(10^{-4}\frac{V}{K}\right)$	-1.5629	7	-1.563	7	-1.558	7	-1.322	7	-1.308
ZT	0.999	7	1	7	0.994	7	0.715	7	0.701
$(ZT)_{Mott}$	0.978		1		1.163		3.290		3.412
$VC\left(10^{-4}\frac{V}{K}\right)$	0.019	7	0	7	-0.134	7	-1.105	7	-1.136
$T_{\rm s}\left(10^{-4}\frac{\rm V}{\rm K}\right)$	-0.028	7	0	7	0.201	7	1.657	7	1.704
$Pt (10^{-2}V)$	-2.122	>	-2.122	7	-2.116	7	-1.794	7	-1.777
In the degener	rate Cd- X	(x) –	allov, for	T=136	5.735 K. one	e gets:			
	√ 1.38	-()	1.357614		1.3	. 8	1.1064430	4	1.10
ξ _p	1.880		1.8138		1.640		1		0.976
$S\left(10^{-4}\frac{V}{K}\right)$	-1.562	7	-1.563	7	-1.555	7	-1.322	7	-1.305
ZT	0.999	7	1	\	0.990	>	0.715	7	0.697
(= -) Mott	7 0.931		1		1.223		3.290		3.451
$VC\left(10^{-4}\frac{V}{K}\right)$	0.061	7	0	7	-0.180	7	-1.105	7	-1.145
$T_s \left(10^{-4} \frac{V}{K}\right)$	-0.092	7	0	7	0.271	7	1.657	7	1.718
$Pt(10^{-2}V)$	-2.136	7	-2.137	7	-2.126	7	-1.807	7	-1.784