World Journal of Engineering Research and Technology (WJERT) has indexed with various reputed international bodies like : Google Scholar , Index Copernicus , Indian Science Publications , SOCOLAR, China , International Institute of Organized Research (I2OR) , Cosmos Impact Factor , Research Bible, Fuchu, Tokyo. JAPAN , Scientific Indexing Services (SIS) , Jour Informatics (Under Process) , UDLedge Science Citation Index , International Impact Factor Services , International Scientific Indexing, UAE , International Society for Research Activity (ISRA) Journal Impact Factor (JIF) , International Innovative Journal Impact Factor (IIJIF) , Science Library Index, Dubai, United Arab Emirates , Scientific Journal Impact Factor (SJIF) , Science Library Index, Dubai, United Arab Emirates , Eurasian Scientific Journal Index (ESJI) , Global Impact Factor (0.342) , IFSIJ Measure of Journal Quality , Web of Science Group (Under Process) , Directory of Research Journals Indexing , 

World Journal of Engineering
Research and Technology

( An ISO 9001:2015 Certified International Journal )

An International Peer Reviewed Journal for Engineering Research and Technology

ISSN 2454-695X

Impact Factor : 5.924

ICV : 79.45

News & Updation

  • Article Invited for Publication

    Article are invited for publication in WJERT Coming Issue

  • ICV

    WJERT Rank with Index Copernicus Value 79.45 due to high reputation at International Level

  • New Issue Published

    Its Our pleasure to inform you that, WJERT 1 November 2020 Issue has been Published, Kindly check it on http://wjert.org/home/current_issues

  • WJERT New Impact Factor

    Its our Pleasure to Inform you that WJERT Impact Factor has been increased from  5.549 to 5.924 due to high quality Publication at International Level

  • WJERT NOVEMBER ISSUE PUBLISHED

    NOVEMBER 2020 Issue has been successfully launched on 1 November 2020.

Indexing

Abstract

DROPOUT STUDENT PREDICTION USING NAIVE BAYS CLASSIFIER

Dr. P.S.S.Akilashri*, P. Sundari and M. Vijayalakshmi

ABSTRACT

The objectives of this research work is to identify relevant attribute from socio-demographic, academic and institutional data of first year students from undergraduate at the University and design a prototype machine learning tool which can routinely distinguish whether the student persist their revise or drop their learning using classification technique based on decision tree. For powerful decision making tool different parameter are need to be considered such as socio-demographic data, parental attitude and institutional factors. The generated knowledge will be quite useful for tutor and management of university to develop policies and strategies related to increase the enrolment rate in University and to take precautionary and consultative procedures and thereby diminish student dropout. It can also use to find the reasons and relevant factors that affect the dropout students.

[Full Text Article]