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ABSTRACT 

Cloud computing, rapidly emerging as a new computation concept, 

offers agile and scalable resource access in a utility-like fashion, 

particularly for the processing of big data. An important open problem 

here is too effectively progress the data, from various geographical  

locations more time, into a cloud for efficient processing. Big Data introduces to datasets 

whose sizes are beyond the capability of typical database software tools to capture, 

accumulate, maintain and examined. The application of Big Data differs across verticals 

since of the several challenges that bring about the various use cases. With the increasing 

amount of data and the availability of high performance and relatively low-cost hardware, 

database systems have been extended and parallelized to run on multiple hardware platforms 

to manage scalability. Recently, a new distributed data processing framework called Map 

Reduce was proposed whose fundamental idea is to simplify the parallel processing using a 

distributed computing platform that offers only two interfaces. To further reduce network 

traffic within a Map Reduce job, we consider to aggregate data with the same keys before 

sending them to remote reduce tasks. Map Reduce is a framework for processing and 

managing large scale data sets in a distributed cluster, which has been used for applications 

such as generating search indexes, document clustering, access log analysis, and various 

other forms of data analytics. In existing system, a hash function is used to partition 

intermediate data among reduce tasks. In this project the system proposed a decomposition-

based distributed algorithm to deal with the large-scale optimization problem for big data 
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application and an online algorithm is also designed to adjust data partition and aggregation 

in a dynamic manner.   

 

KEYWORDS: Aggregation, Hadoop, Job Scheduling, Map Reduce, Partitioning.  

 

1. INTRODUCTION  

Hadoop is an open-source framework that allows to store and process big data in a distributed 

environment across clusters of computers using simple programming models. It is designed 

to scale up from single servers to thousands of machines, each offering local computation and 

storage. The core of Hadoop consists of a storage part, known as Hadoop Distributed File 

System (HDFS), and a processing part called Map Reduce. Hadoop splits files into large 

blocks and distributes them across nodes in a cluster. To process data, Hadoop transfers 

packaged code for nodes to process in parallel based on the data that needs to be processed. 

This approach takes advantage of data locality nodes manipulating the data they have access 

to allow the dataset to be processed faster and more efficiently than it would be in a more 

conventional supercomputer architecture that relies on a parallel file system where 

computation and data are distributed via high-speed networking. Hadoop consists of the 

Hadoop Common package, which provides file system and OS level abstractions, a Map 

Reduce engine and the Hadoop Distributed File System (HDFS). The Hadoop Common 

package contains the necessary Java Archive (JAR) files and scripts needed to start Hadoop.  

The Hadoop distributed file system (HDFS) is a distributed, scalable, and portable file-system 

written in Java for the Hadoop framework. A Hadoop cluster has nominally a single name 

node plus a cluster of data nodes, although redundancy options are available for the name 

node due to its criticality. Each data node serves up blocks of data over the network using a 

block protocol specific to HDFS. The file system uses TCP/IP sockets for communication. 

Clients use remote procedure call (RPC) to communicate between each other. Map Reduce is 

a programming model and an associated implementation for processing and generating large 

data sets with a parallel, distributed algorithm on a cluster. 

 

Map Reduce works by breaking the processing into two phases: the map phase and the reduce 

phase. Each phase has key-value pairs as input and output, the types of which may be chosen 

by the programmer. The programmer also specifies two functions: the map function and the 

reduce function. A Map Reduce program is composed of a Map () procedure that performs 

filtering and sorting and a Reduce () method that performs a summary operation. The Map 

Reduce System orchestrates the processing by marshalling the distributed servers, running the 
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various tasks in parallel, managing all communications and data transfers between the various 

parts of the system, and providing for redundancy and fault tolerance. 

 

Above the file systems comes the Map Reduce Engine, which consists of one Job Tracker, to 

which client applications submit Map Reduce jobs. The Job Tracker pushes work out to 

available Task Tracker nodes in the cluster, striving to keep the work as close to the data as 

possible. With a rack-aware file system, the Job Tracker knows which node contains the data, 

and which other machines are nearby. If the work cannot be hosted on the actual node where 

the data resides, priority is given to nodes in the same rack. This reduces network traffic on 

the main backbone network. If a Task Tracker fails or times out, that part of the job is 

rescheduled. The Task Tracker on each node spawns a separate Java Virtual Machine process 

to prevent the Task Tracker itself from failing if the running job crashes its JVM. A heartbeat 

is sent from the Task Tracker to the Job Tracker every few minutes to check its status. The 

Job Tracker and Task Tracker status and information is exposed by Jetty and can be viewed 

from a web browser. By default Hadoop uses FIFO scheduling, and optionally 5 scheduling 

priorities to schedule jobs from a work queue. 

 

The Map Reduce programming model simplifies large-scale data processing on commodity 

cluster by exploiting parallel map tasks and reduce tasks. Although many efforts have been 

made to improve the performance of Map Reduce jobs, they ignore the network traffic 

generated in the shuffle phase, which plays a critical role in performance enhancement. 

Traditionally, a hash function is used to partition intermediate data among reduce tasks, 

which, however, is not traffic-efficient because network topology and data size associated 

with each key are not taken into consideration. 

 

2. RELATED WORK  

In existing system, the system propose a Map Reduce algorithm to solve the ER problem for 

a huge collection of entities with multiple keys. The algorithm is characterized in the 

combination-based blocking and the load-balanced matching. The combination-based 

blocking utilizes the multiple keys to sort out necessary entity pairs for future matching. The 

load-balanced matching evenly distributes the required similarity computations to all the 

reducers in the matching step so as to remove the bottleneck of skewed matching 

computations for a single node in a Map Reduce framework. 
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The effectiveness and scalability of Map Reduce-based implementations of complex data-

intensive tasks depend on an even redistribution of data between maps and reduce tasks. In 

the presence of skewed data, sophisticated redistribution approaches thus become necessary 

to achieve load balancing among all reduce tasks to be executed in parallel. For the complex 

problem of entity resolution, we propose and evaluate two approaches for such skew handling 

and load balancing. The approaches support blocking techniques to reduce the search space 

of entity resolution, utilize a preprocessing Map Reduce job to analyze the data distribution, 

and distribute the entities of large blocks among multiple reduce tasks. The evaluation on a 

real cloud infrastructure shows the value and effectiveness of the proposed load balancing 

approaches. In this paper, we propose and evaluate two effective load balancing approaches 

to data skew handling for MR-based entity resolution. 

 

Note that MR’s inherent vulnerability to load imbalances due to data skew is relevant for all 

kind of pairwise similarity computation, e.g., document similarity computation and set-

similarity joins. Such applications can therefore also benefit from our load balancing 

approaches though we study MR-based load balancing in the context of ER only. The actual 

execution of an MR program (also known as job) is realized by an MR framework 

implementation such as Hadoop. An MR cluster consists of a set of nodes that run a fixed 

number of map and reduce processes. For each MR job execution, the number of map tasks 

(m) and reduce tasks (r) is specified. Note that the partition function part relies on the number 

of reduce tasks since it assigns key-value pairs to the available reduce tasks. Each process can 

execute only one task at a time. After a task has finished, another task is automatically 

assigned to the released process using a framework-specific scheduling mechanism. 

 

In Fig 2.1 load balancing is mainly realized within the map phase of the second MR Job. Both 

strategies follow the idea that map generates a carefully constructed composite key that 

(together with associated partition and group functions) allows a balanced load distribution. 

The composite key thereby com-bines information about the target reduce task(s), the block 

of the entity, and the entity itself. While the MR partitioning may only use part of the map 

output key for routing, it still groups together key-value pairs with the same blocking key 

component of the composite key and, thus, makes sure that only entities of the same block are 

compared within the reduce phase. 

 

As we will see, the map function may generate multiple keys per entity if this entity is 

supposed to be processed by multiple reduce tasks for load balancing. Finally, the reduce 
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phase performs the actual ER and computes match similarities between entities of the same 

block. Since the reduce phase consumes the vast majority of the overall runtime (more than 

95% in our experiments), our load balancing strategies solely focus on data redistribution for 

reduce tasks. Other MR-specific performance factors are therefore not considered. For 

example, consideration of data locality would have only limited impact and would require 

additional modification of the MR framework. We utilized two real-world datasets. 

 

Note that the blocking attributes were not chosen to artificially generate data skew but rather 

reflect a reasonable way to group together similar entities. Two entities were compared by 

computing the edit distance of their title. Two entities with a minimal similarity of 0.8 were 

regarded as matches. We proposed two load balancing approaches, Block Split and Pair 

Range, for parallelizing blocking-based entity resolution using the widely available Map 

Reduce framework. Both approaches are capable to deal with skewed data (blocking key) 

distributions and effectively distribute the workload among all reduce tasks by splitting large 

blocks. Our evaluation in a real cloud environment using realworld data demonstrated that 

both approaches are robust against data skew and scale with the number of available nodes. 

The Block Split approach is conception-wise simpler than Pair Range but achieves already 

excellent results. Pair Range is less dependent on the initial partitioning of the input data and 

slightly more scalable for large match tasks. 

 

 
Fig 2.1. Illustrates the Map Reduce Algorithm of Hadoop system. 

 

2.1. Disadvantages 

• The existing works focuses on load balance at reduce tasks.  

• It ignoring the network traffic during the shuffle phase.  

• It can be only applied to the network topology with servers directly linked to other 

servers, which is of limited practical use.  
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• This approach is not traffic efficient.  

• Hash based work load gives unstable work load. 

 

3. PROPOSED SYSTEM  

The system proposed a distributed algorithm for big data applications by decomposing the 

original large-scale problem into several sub problems that can be solved in parallel. The 

system design an online algorithm whose basic idea is to postpone the migration operation 

until the cumulative traffic cost exceeds a threshold.  The network topology is based on three-

tier architectures: an access tier, an aggregation tier and a core tier. The system investigate 

network traffic reduction within Map Reduce jobs by jointly exploiting traffic-aware 

intermediate data partition and data aggregation among multiple map tasks. It offers 

computers as physical or more often as virtual machines (VMs).   

  

A cluster of VMs, virtual cluster, is often requested as a platform for users to run parallel or 

distributed applications such as Map Reduce and Dryad applications. In order to get high 

throughput, fast response, load balance, low cost, and low price, many topics on VM 

configuration, VM placement, VM consolidation, and VM migration are explored. The 

network topology of a virtual cluster has a significant impact on the execution of applications 

running on it because the physical nodes where VMs are located can be linked in different 

ways. For example, some nodes are located in the same rack while others in different racks 

through a slow link.   

  

Another special architecture is the hierarchical network where two physical nodes may lie in 

different local area networks. Furthermore, the characteristics of different applications have 

different requirements for the network topology. Some applications create tasks running on 

different VMs which need to exchange large amount of data frequently, while others create 

tasks which execute independently or exchange a little data. Map Reduce and Map Reduce-

like models are widely used to process “Big Data”. Applications based on such models place 

heavily datadependency or communication on VMs, so network traffic becomes the 

bottleneck of jobs. The following are three phases of data exchange in the execution process 

of an application based on Map Reduce model.  

 

This paper targets at provisioning a virtual cluster according to the position relationship 

between VMs so as to decrease the network traffic and improve the performance of Map 

Reduce and Map Reduce-like applications rather than modifying the job scheduling strategies 
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or VM configurations. By optimizing the architecture of virtual clusters, cloud users can get a 

more efficient platform with the same resource request and cost, and cloud providers can 

obtain a higher resource utilization ratio. The shorter the distance, the closer the virtual 

cluster. The shortest distance problem is presented to obtain the closest virtual cluster.   

  

We solve the shortest distance problem by formulating it into an integer linear programming. 

The online heuristic VM placement algorithm and the global sub-optimization algorithm are 

compared by simulations. The former has lower time complexity while the latter returns 

shorter average distance for multiple requests. We analyze the performance of our approach 

through experiments. In the experiment, we adopt different virtual cluster architectures to test 

different Map Reduce applications. Two metrics of application runtime and cluster affinity 

show the efficiency of virtual cluster optimization. The distance difference between two 

central node selection strategies.   

  

Heuristic distance is mapped to the virtual cluster with the most appropriate central node built 

by our online VM placement algorithm. Shortest distance with a random central node is 

mapped to the same virtual cluster, however, the central node is chosen randomly. It is clear 

that even if we select the same virtual cluster, but not the same position of the central node, 

the distance difference is also great. For Map Reduce applications, the selection of the central 

node is the same important with the architecture of the virtual cluster. Each physical node has 

different capability and each request has different requirement.  

 

For Map Reduce applications, it is very important to match the request with a virtual cluster 

and appropriate central node so as to make full use of the advantage of data-locality and 

reduce the network traffic. Fig. 2.1 shows the different distances under the different central 

nodes. We can see that the choice of the central node has an important impact on the distance 

for one request. This is because Map Reduce and Map Reduce-like models are based on 

master-slaves network topology. When the requests arrive randomly, their service time are 

also random, and the cloud resources are enough to meet multiple requests at one time, we 

can get the virtual cluster provisioning according to our online heuristic algorithm and global 

sub-optimization algorithm.   

 

3.1 Advantages 

• This algorithm is traffic efficient.  

• Data partition and aggregation performed in dynamic manner.  
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• Network traffic cost is reduced in this approach.  

• This is the first to propose the scheme that exploits both aggregator placement and traffic-

aware partitioning.   

• Each reduce task aggregates the related data partitions belonging to it and stores its result 

in the distributed file system. 

 
Fig 3.1. Proposed System Architecture 

  

 
Fig 3.2. Data Flow Diagram for Proposed System 
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4. RESULT AND ANALYSIS  

Through this project we plan to solve the below two problems:  

• Network traffic: by designing a novel intermediate data partition scheme we aim to 

reduce network traffic cost.  

• Aggregator placement problem: A decomposition based distributed algorithm is proposed 

to with the largescale optimization problem for big data application. 

 

5. CONCLUSION  

Map Reduce job scheduling. It is a hot topic to improve the performance of Map Reduce 

applications. Traditional and efficient locality-aware scheduling strategies can reduce 

processing time and increase throughput by decreasing the data traffic between nodes and 

balancing the loads of the cluster. The shuffle operation of Map Reduce model is proved to 

be as much as a third of the completion time of a Map Reduce job with others are map 

operation and reduce operation. The proposed system also presents the effectiveness of the 

relationship of task precedence and dependence.  
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