Oríginal Article

World Journal of Engineering Research and Technology

WJERT

www.wjert.org

SJIF Impact Factor: 4.326

FUZZY STRONG BI-IDEALS OF NEAR-RINGS

S. Usha Devi^{*1}, S. Jayalakshmi² and T. Tamizh Chelvam³

¹Research Scholar, Sri Parasakthi College for Women, Courtallam.

²Associate Professor, Sri Parasakthi College for Women, Courtallam.

³Professor, Manonmaniam Sundaranar University, Tirunelveli.

Article Received on 01/06/2017Article Revised on 16/06/2017Article Accepted on 02/07/2017

*Corresponding Author S. Usha Devi Research Scholar, Sri Parasakthi College for Women, Courtallam.

ABSTRACT

In this paper we introduce the notation of fuzzy strong bi-ideal of a near-ring and obtain a characterization of a strong bi-ideal in terms of a fuzzy strong bi-ideal of a near-ring. We establish that every fuzzy left N-subgroup fuzzy left ideal of a near-ring is a fuzzy strong bi-ideal of

a near-ring. But the converse is not necessarily true as shown by an example. Further, we discuss the properties of fuzzy strong bi-ideal of a near-ring.

KEYWORDS: Fuzzy two sided N-subgroup, fuzzy subnear-ring, fuzzy bi-ideal, fuzzy strong bi-ideal.

1. INTRODUCTION

The notion of fuzzy subgroup was made be Rosenfeld^[9] in 1971. In,^[4] W. Liu introduced the notion of fuzzy ideal of a ring. The notions of fuzzy sub near-ring, fuzzy ideal and fuzzy N-subgroup of a near-ring were introduced by Salah Abou-Zaid^[11] and it has been studied by several authors.^[2, 3,6-8,10-12] In this paper, we introduce the notion of a fuzzy strong bi-ideal of a near-ring and obtain the characterization of a strong bi-ideal in terms of a fuzzy strong bi-ideal of a near-ring is a fuzzy strong bi-ideal of a near-ring and also we establish that every left permutable fuzzy right N-subgroup or left permutable fuzzy right ideal of a near-ring is a fuzzy strong bi-ideal of a near-ring. But the converse is not necessarily true as shown by an example. Further, we discuss the properties of fuzzy strong bi-ideal of a near-ring.

2. Preliminaries

Definition: 2.1

A nonempty set N together with two binary operations "+" and "." is called be a nearring^[1] if it satisfies the following axioms:

(i) (N,+) is a group.

- (ii) (N,\cdot) is a semi group.
- (iii) $(x + y) \cdot z = (x \cdot z) + y \cdot z$, for every $x, y, z \in N$.

Note: 2.2

(i) Let X be a near-ring. Given two subsets A and B of X, $AB = \{ab/a \in A, b \in B\}$. Also we define another operation "*" $A*B = \{a(b+i) - ab/a, b \in A, i \in B\}$.

(ii) 0x = 0. In general $x0 \neq 0$, for some x in N.

Definition: 2.3

A near-ring N is called zero-symmetric, if x0 = 0, for all x in N.

Definition: 2.4

A subgroup A of (N,+) is called a bi-ideal of near-ring N if $ANA \cap (AN)*A \subseteq A$.

Definition: 2.5

An element $a \in N$ is said to be regular if for each $a \in N$, a = aba, for some $b \in N$

Definition: 2.6

A near-ring N is said to be left permutable near-ring if abc= bac, for all a,b,c in N.

Definition: 2.7

A function A from a non-empty set X to the unit interval [0,1] is called a fuzzy subset of N.^[14]

Notation: 2.8

Let A and B be two fuzzy subsets of a semigroup N. We define the relation \subseteq between A and B, the intersection and product of A and B, respectively as follows:

(i)
$$A \subseteq B$$
 if $A(x) \le B(x)$, for all $x \in N$,
(ii) $(A \cap B)(x) = \min\{A(x), B(x)\}$, for all $x \in N$,
(iii) $(A \circ B)(x) = \begin{cases} \sup_{x=yz} \{\min\{A(y), B(z)\}\} \text{ if } x = yz \text{, for all } y, z \in N, \\ 0 \text{ otherwise} \end{cases}$

It is easily verified that the "product" of fuzzy subsets is associative. Throughout this paper, N will denote a near-ring unless otherwise specified. We denote by k_I the characteristic function of a subset I of N. The characteristic function of N is denoted by N, that is, N: N \rightarrow [0,1] mapping every element of N to1.

Definition: 2.9 [9]

A fuzzy subset A of a group (N,+) is said to be a fuzzy subgroup of N if for all $x,y \in N$,

(i) $A(x+y) \ge \min\{A(x), A(y)\}$ (ii) A(-x) = A(x),

Or equivalently $A(x - y) \ge \min\{A(x), A(y)\}$.

Note: 2.10

If A is a fuzzy subgroup of a group N, then $A(0) \ge A(x)$ for all $x \in N$.

Definition: 2.11^[11]

A fuzzy subset A of N is called a fuzzy subnear-ring of N if for all $x, y \in N$,

(i) $A(x-y) \ge \min\{A(x), A(y)\}$

(ii) $A(xy) = \min\{A(x), A(y)\}$

Definition: 2.12^[11]

A fuzzy subset A of N is said to be a fuzzy two-sided N-subgroup of N if

(i) A is a fuzzy subgroup of (N,+),

(ii) $A(xy) \ge A(x)$, for all $x, y \in N$,

(iii) $A(xy) \ge A(y)$, for all $x, y \in N$.

If A satisfies (i) and (ii), then A is called a fuzzy right N-subgroup of N. If A satisfies (i) and

(iii), then A is called a fuzzy left N-subgroup of N.

Definition: 2.13^[11]

A fuzzy subset A of N is said to be a fuzzy ideal of N if

(i) A is a fuzzy subnear-ring of N,

(ii) A(y+x-y) = A(x), for all $x, y \in N$,

(iii) $A(xy) \ge A(x)$, for all x, $y \in N$,

 $(iv)A(a(b+i)-ab) \ge A(i)$, for all $a, b, i \in N$.

If A satisfies (i) and (ii) and (iii) then A is called a fuzzy right ideal of N. If A satisfies (i), (ii)

and (iv), then A is called a fuzzy left ideal of N. In case of zero-symmetric, If A satisfies (i),

(ii) and $A(xy) \ge A(y)$, for all x, $y \in N$ and A is called a fuzzy left ideal of N.

3. Fuzzy Strong Bi-ideals of Near-Rings

Definition: 3.1

A fuzzy bi-ideal A of N is called a fuzzy strong bi-ideal of N, if $N \circ A \circ A \subseteq A$

Example: 3.1.1

Let $N=\{0,a,b,c\}$ be a near-ring with two binary operations '+' and '.' is defined as follows.

+	0	a	b	с	•	0	a	b	c
0	0	a	b	c	0	0	0	0	0
а	a	0	с	b	a	0	b	0	b
b	b	С	0	a	b	0	0	0	0
с	c	b	a	0	c	0	b	0	b

Define a fuzzy subset A: N \rightarrow [0,1] by A(0) = 0.8, A(a) = 0.3, A(b) = 0.6, A(c) = 0.3.

Then N \circ A \circ A (0) = 0.3, N \circ A \circ A (a) = 0, N \circ A \circ A (b) = 0, N \circ A \circ A (c) = 0, and so A is a fuzzy strong bi-ideal of N.

Note: 3.2

Every fuzzy strong bi-ideal is fuzzy bi-ideal. But the converse is not true.

Example: 3.2.1

Let $N=\{0,a,b,c\}$ be a near-ring with two binary operations '+' and '.' is defined as follows.

+	0	a	b	c	٠	0	a	b	С
0	0	a	b	c	0	0	0	0	0
a	a	0	С	b	a	a	a	a	a
b	b	c	0	a	b	0	0	b	b
с	c	b	a	0	c	a0	a	c	c

Define a fuzzy subset A: N \rightarrow [0,1] by A(0) = 0.9, A(a) = 0.4, A(b) = 0.4, A(c) = 0.7. Then $(A \circ N \circ A)(0) = 0.9$, $(A \circ N \circ A)(a) = 0.7$, $(A \circ N \circ A)(b) = 0.4$, $(A \circ N \circ A)(c) = 0.7$, $((A \circ N) * A)(0) = 0.9$, $((A \circ N) * A)(a) = 0$, $((A \circ N) * A)(b) = 0.7$, $((A \circ N) * A)(c) = 0$, $N \circ A \circ A$ (0) = 0.3, $N \circ A \circ A$ (a) = 0, $N \circ A \circ A$ (b) = 0, $N \circ A \circ A$ (c) = 0. Then A is a fuzzy bi-ideal of N. But not a fuzzy strong bi-ideal, since $N \circ A \circ A$ (b) $\leq A(b)$.

Theorem: 3.3

Let $\{A_i : i \in J\}$ be any family of fuzzy strong bi-ideals of N. Then $A = {}_{i \in J}^{\cap} A_i$ is a fuzzy strong bi-ideal of N, where J be an index set.

Proof

By Theorem 3.4,^[5] A is a fuzzy bi-ideal of N. Now for all $x \in N$, since $A = \bigcap_{i \in J} A_i \subseteq A_i$ for

every $i \in J$, we have

 $\begin{aligned} \left(N \bullet A \bullet A \right) (x) &\leq \left(N \bullet A_i \bullet A_i \right) (x) \\ &\leq A_i(x) \text{ for every } i \! \in \! J \end{aligned}$

(since A_i is a fuzzy strong bi-ideal of N)

It follows that, $(\mathbf{N} \circ \mathbf{A} \circ \mathbf{A}) (x) \leq \inf \{ A_i(x) : i \in J \}$

$$= \left(\bigcap_{i \in I} A_i \right) (x)$$

$$= A(x)$$

Thus $N \cdot A \cdot A \subseteq A$. So A is a fuzzy strong bi-ideal of N.

Theorem: 3.4

Let I be a non-empty subset of N and K_I be a fuzzy subset of N. Then the following conditions are equivalent:

(i) I is a strong bi-ideal of N.

(ii) K_I is a fuzzy strong bi-ideal of N.

Proof

First assume that I is a strong bi-ideal of N. Then I is a bi-ideal of N. By Theorem 3.8,^[5] we get K_I is a fuzzy bi-ideal of N.

Let a be any element of N. If $a \in I$ then $K_I(a) = 1 \ge (N \circ K_I \circ K_I)(a)$. If $a \notin I$ then $K_I(a) = 0$. On the other hand assume that $(N \circ K_I \circ K_I)(a) = 1$. Then

$$(N \circ K_{I^{\circ}} K_{I}) (a) = \sup_{a=pq}^{sup} \min\{N \circ k_{I}(p), k_{I}(q)\}$$

=
$$\sup_{a=pq}^{sup} \min\{\sup_{p=p_{1}p_{2}}^{sup} \min\{N(p_{1}), k_{I}(p_{2})\}, k_{I}(q)\}$$

(since N(x) = 1, $\forall x \in N$)
=
$$\sup_{a=pq}^{sup} \min\{\sup_{p=p_{1}p_{2}}^{sup}\{k_{I}(p_{2})\}, k_{I}(q)\} = 1$$

and $k_I(p_2) = 1$, $k_I(q) = 1$. So p_2 , $q \in I$. Then $a = pq = p_1p_2q \in NII \subseteq I$ which contradicts $a \notin I$. Thus $K_I(a) = 0 = (N \circ K_I \circ K_I)(a)$. This shows that $(N \circ K_I \circ K_I) \subseteq K_I$. Therefore K_I is a fuzzy strong bi-ideal of N.

Conversely, assume that K_I is a fuzzy strong bi-ideal of N. Every fuzzy strong bi-ideal of N is a fuzzy bi-ideal of N. Therefore by Theorem 3.8 [5], I is a fuzzy bi-ideal of N. Let a be any element of NI². Then there exists a,p,q,p₁ of N and the elements p_2 , q of I such that a = bc and $p = p_1p_2$.

$$\begin{split} (N \circ K_{I^{\circ}} K_{I}) &(a) = \sup_{a=pq}^{sup} \min\{N \circ k_{I}(p), k_{I}(q)\} \\ &= \sup_{a=pq}^{sup} \min\{\sup_{p=p_{1}p_{2}}^{sup} \min\{N(p_{1}), k_{I}(p_{2})\}, k_{I}(q)\} \\ &= \sup_{a=pq}^{sup} \min\{\sup_{p=p_{1}p_{2}}^{sup}\{k_{I}(p_{2})\}, k_{I}(q)\} = \min\{1, 1\} = 1. \end{split}$$

 $(K_I)(a) \ge (N \circ K_{I^\circ} K_I)(a) = 1$. Thus $a \in I$. So NII $\subseteq I$. This shows that I is a strong bi-ideal of N.

Theorem: 3.5

Every left permutable fuzzy right N-subgroup of N is a fuzzy strong bi-ideal of N.

Proof

Let A be a left permutable fuzzy right N-subgroup of N.

To prove A is a fuzzy strong bi-ideal of N.

By Theorem 3.9,^[5] we get every fuzzy right N-subgroup of N is a fuzzy bi-ideal of N. Choose a, b,c, $b_1, b_2 \in N$ such that a = bc and $b = b_1, b_2$. Then

$$N \circ A \circ A (a) = \sup_{a=bc}^{sup} \min\{\mathbf{N} \circ A(b), A(c)\}$$
$$= \sup_{a=bc}^{sup} \min\{\sup_{b=b_1b_2}^{sup} \min\{\mathbf{N}(b_1), A(b_2)\}, A(c)\}$$
$$= \sup_{a=bc}^{sup} \min\{\sup_{b=b_1b_2}^{sup}\{A(b_2), A(c)\}$$

(Since A is a left permutable fuzzy right N-subgroup of N, $A(bc) = A((b_1b_2)c) = A((b_2b_1)c)$ >A(b₂)) and N(c) \geq A(c)

$$\leq \sup_{a = bc} \min\{A(bc), N(c)\}$$
$$= \sup_{a = bc} \min\{A(bc), 1\}$$
$$= \sup_{a = bc} A(bc)$$
$$= A(a)$$

Therefore $N \circ A \circ A \subseteq A$. Hence A is a fuzzy strong bi-ideal of N.

Theorem: 3.6

Every fuzzy left N-subgroup of N is a fuzzy strong bi-ideal of N.

Proof

Let A be a fuzzy left N-subgroup of N.

To prove A is a fuzzy strong bi-ideal of N.

By Theorem 3.10,^[5] we get every fuzzy left N-subgroup of N is a fuzzy bi-ideal of N. Choose a, b,c, $c_1, c_2 \in N$ such that a = bc and $c = c_1, c_2$. Then

$$N \circ A \circ A (a) = \sup_{a = bc}^{sup} \min\{N(b), A \circ A(c)\}$$

=
$$\sup_{a = bc}^{sup} \min\{N(b), \sup_{c = c_1 c_2}^{sup} \min\{A(c_1), A(c_2)\}$$

=
$$\sup_{a = bc}^{sup} \min\{1, \sup_{c = c_1 c_2}^{sup} \min\{A(c_1), A(c_2)\}\}$$

(Since A is a fuzzy left N-subgroup of N, $A(bc) = A(b(c_1c_2)) = A((bc_1)c_2) > A(c_2)$)

$$\leq \sup_{a = bc}^{sup} \min\{\mathbf{N}(c_1), \mathbf{A}(bc)\}$$
$$= \sup_{a = bc}^{sup} \min\{\mathbf{1}, \mathbf{A}(bc)\}$$
$$= \mathbf{A}(bc)$$
$$= \mathbf{A}(a)$$

Therefore $N \circ A \circ A \subseteq A$. Hence A is a fuzzy strong bi-ideal of N.

Theorem: 3.7

Every left permutable fuzzy two-sided N-subgroup of N is a fuzzy strong bi-ideal of N.

Proof

The proof is straight forward from the above Theorem 3.5 and Theorem 3.6

Theorem: 3.8

Every left permutable fuzzy right ideal of N is a fuzzy strong bi-ideal of N.

Proof

Let A be a left permutable fuzzy right ideal of N.

To prove A is a fuzzy strong bi-ideal of N.

By Theorem 3.12,^[5] we get every fuzzy right ideal of N is a fuzzy bi-ideal of N. Choose a, b,c, $b_1, b_2 \in N$ such that a = bc and $b = b_1, b_2$. Then

 $N \circ A \circ A(a) = \sup_{a=bc} \min\{N \circ A(b), A(c)\}$

$$= \sup_{a=bc}^{sup} \min\left\{ \sup_{b=b_1b_2}^{sup} \min\{\mathbf{N}(b_1), \mathbf{A}(b_2)\}, \mathbf{A}(c) \right\}$$
$$= \sup_{a=bc}^{sup} \min\left\{ \sup_{b=b_1b_2}^{sup}\{\mathbf{A}(b_2), \mathbf{A}(c) \right\}$$

(Since A is a left permutable fuzzy right ideal of N, $A(bc) = A((b_1b_2)c) = A((b_2b_1)c) > A(b_2)$) and $N(c) \ge A(c)$

$$\leq \sup_{a=bc}^{sup} \min\{A(bc), N(c)\}$$
$$= \sup_{a=bc}^{sup} \min\{A(bc), 1\}$$
$$= \sup_{a=bc}^{sup} A(bc)$$
$$= A(a)$$

Therefore $N \circ A \circ A \subseteq A$. Hence A is a fuzzy strong bi-ideal of N.

Theorem: 3.9

Every fuzzy left ideal of N is a fuzzy strong bi-ideal of N.

Proof

Let A be a fuzzy left ideal of N. To prove A is a fuzzy strong bi-ideal of N.

By Theorem 3.13,^[5] we get every fuzzy left ideal of N is a fuzzy bi-ideal of N. Choose a, b,c, $b_1, b_2 \in N$ such that a = bc = b(n + c) - bn. Then

$$\mathbf{N} \circ \mathbf{A} \circ \mathbf{A} (\mathbf{a}) = \sup_{a = bc}^{sup} \min\{\mathbf{N} \circ \mathbf{A}(b), \mathbf{A}(c)\}$$
$$= \sup_{a = bc}^{sup} \min\{\sup_{b = b_1b_2}^{sup} \min\{\mathbf{N}(b_1), \mathbf{A}(b_2)\}, \mathbf{A}(c)\}$$
$$= \sup_{a = bc}^{sup} \min\{\sup_{b = b_1b_2}^{sup}\{\mathbf{A}(b_2), \mathbf{A}(c)\}$$

(Since A is a fuzzy left ideal of N, A(a) = A(bc) = A(b(n + c) - bn) > A(c) and $N(b_2) \ge A(b_2)$

$$\leq \sup_{a=bc}^{sup} \min\{\mathbf{N}(b_2), A(b(n+c) - bn)\}$$

=
$$\sup_{a=bc}^{sup} A(b(n+c) - bn)$$

=
$$A(bc)$$

=
$$A(a)$$

Therefore $N \cdot A \cdot A \subseteq A$. Hence A is a fuzzy strong bi-ideal of N.

Theorem: 3.10

Every left permutable fuzzy ideal of N is a fuzzy strong bi-ideal of N.

Proof

The proof is straight forward from the Theorem 3.8 and Theorem 3.9

Remark: 3.11

The converse of Theorem 3.7 and Theorem 3.10 are not necessarily true as shown by the following example.

Example: 3.12

Let $N=\{0,a,b,c\}$ be the near-ring with two binary operations '+' and '•' is defined as follows.

+	F	0	a	b	c	•	•	0	a	b	c
()	0	a	b	c	(0	0	0	0	0
8	ł	a	0	c	b	8	a	0	0	0	0
k)	b	c	0	a		b	0	0	0	a
0	2	c	b	a	0	(c	00	0	0	a

Define a fuzzy subset A: N \rightarrow [0,1] by A(0) = 0.75, A(a) = 0.2, A(b) = 0.3, A(c) = 0.3. Then $(A \circ N \circ A)(0) = 0.3$, $(A \circ N \circ A)(a) = 0$, $(A \circ N \circ A)(b) = 0$, $(A \circ N \circ A)(c) = 0$, $N \circ A \circ A$ (0) = 0.3, $N \circ A \circ A$ (a) = 0, $N \circ A \circ A$ (b) = 0, $N \circ A \circ A$ (c) = 0, and so A is a fuzzy strong bi-ideal of N. Since $A(a) = A(bc) \ge A(b)$ and $A(a) = A(bc) \ge A(c)$, A is not a fuzzy two-sided N-subgroup of N. Since $A(a) = A(bc) \ge \min \{A(b), A(c)\}$, A is not a fuzzy sub near-ring of N andso A is not a fuzzy ideal of N.

Theorem: 3.13

Let A be any fuzzy strong bi-ideal of a near-ring N. Then $A(axy) \ge \min\{A(x), A(y)\} \forall a, x, y \in N$.

Proof

Assume that A is a fuzzy strong bi-ideal of N. Then $N \cdot A \cdot A \subseteq A$.

Let a, x and y be any element of N. Then

$$A(axy) \ge (\mathbf{N} \circ \mathbf{A} \circ \mathbf{A}) (axy)$$

$$= \sup_{axy=pq} \min\{\mathbf{N} \circ \mathbf{A}(\mathbf{p}), \mathbf{A}(\mathbf{q})\}$$

$$\ge \min\{(\mathbf{N} \circ \mathbf{A})(ax), \mathbf{A}(\mathbf{y})\}$$

$$= \min\{\max_{ax=z_1z_2}^{sup}\min\{\mathbf{N}(z_1), \mathbf{A}(z_2)\}, \mathbf{A}(\mathbf{y})\}$$

$$\ge \min\{\min\{\mathbf{N}(a), \mathbf{A}(x)\}, \mathbf{A}(\mathbf{y})\}$$

$$= \min\{\min\{1, \mathbf{A}(x), \mathbf{A}(\mathbf{y})\}$$

www.wjert.org

 $= \min\{A(x), A(y)\}$

This shows that $A(axy) \ge \min\{A(x), A(y)\} \forall a, x, y \in \mathbb{N}$.

ACKNOWLEDGEMENT

The authors wish to thank referees for their valuable suggestions.

REFERENCES

- 1. Gunter Pilz, Near rings, The theory and its applications, North Holland publishing company, Amsterdam, 1983.
- 2. Kyung Ho Kim and Young Bae Jun, On fuzzy R -subgroups of near-rings, *J. Fuzzy Mathematics*, 2003; 11(3): 567-580.
- 3. Kuyng Ho Kim and Young Bae Jun, Normal fuzzy R -subgroups in near-rings, *Fuzzy Sets* and Systems, 2001; 121: 341-345.
- 4. W. Liu, Fuzzy invariant subgroups and fuzzy ideals, *Fuzzy Sets and Systems*, 1982; 8: 133-139.
- T. Manikandan, Fuzzy bi-ideals of near-rings, The journal of fuzzy mathematics, 2009; 17(3).
- 6. AL. Narayanan, Contributions to the algebraic structures in fuzzy theory, Ph.D. Thesis, Annamalai university, India, 2001.
- AL. Narayanan, Fuzzy ideals on strongly regular near-rings, J. Indian Math. Soc., 2002; 69(1-4): 193-199.
- 8. Al. Narayanan and T. Manikantan, $(\in, \in \Lambda q)$ -fuzzy subnear-rings and $(\in, \in \Lambda q)$ -fuzzy ideals of near-rings, *J. Applied Mathematics and Computing*, 2005; 18(1-2): 419-430.
- 9. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 1971; 35: 512-517.
- 10. H. K. Saikia and L. K. Barthakur, On fuzzy N -subgroups and fuzzy ideals of near-rings and near-ring groups, *J. Fuzzy Mathematics*, 2003; 11(3): 567-580.
- 11. Salah Abou-Zaid, On fuzzy subnear-rings and ideals, *Fuzzy Sets and Systems*, 1991; 44: 139-146.
- 12. Seung Dong Kim and Hee Sik Kim, On fuzzy ideals of near-rings, *Bull. Korean Math. Soc.*, 1996; 33(4): 593-601.
- T. Tamizh Chelvam and N. Ganesan, On bi-ideals of near-rings, *Indian J. Pure appl. Math.*, 1987; 18(11): 1002-1005.
- 14. L. A. Zadeh, Fuzzy sets, Information and Control, 1995; 8: 338-353.