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ABSTRACT 

In this paper we introduce the notation of fuzzy strong bi-ideal of a 

near-ring and obtain a characterization of a strong bi-ideal in terms of a 

fuzzy strong bi-ideal of a near-ring. We establish that every fuzzy left 

N-subgroup fuzzy left ideal of a near-ring is a fuzzy strong bi-ideal of  

a near-ring. But the converse is not necessarily true as shown by an example. Further, we 

discuss the properties of fuzzy strong bi-ideal of a near-ring. 

 

KEYWORDS: Fuzzy two sided N-subgroup, fuzzy subnear-ring, fuzzy bi-ideal, fuzzy 

strong bi-ideal. 

 

1. INTRODUCTION 

The notion of fuzzy subgroup was made be Rosenfeld
[9]

 in 1971. In,
[4]

 W. Liu introduced the 

notion of fuzzy ideal of a ring. The notions of fuzzy sub near-ring, fuzzy ideal and fuzzy N-

subgroup of a near-ring were introduced by Salah Abou-Zaid
[11]

 and it has been studied by 

several authors.
[2, 3,6-8,10-12]

 In this paper, we introduce the notion of a fuzzy strong bi-ideal of 

a near-ring and obtain the characterization of a strong bi-ideal in terms of a fuzzy strong bi-

ideal of a near-ring. We establish that every fuzzy left N-subgroup or fuzzy left ideal of a 

near-ring is a fuzzy strong bi-ideal of a near-ring and also we establish that every left 

permutable fuzzy right N-subgroup or left permutable fuzzy right ideal of a near-ring is a 

fuzzy strong bi-ideal of a near-ring. But the converse is not necessarily true as shown by an 

example. Further, we discuss the properties of fuzzy strong bi-ideal of a near-ring. 
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2. Preliminaries  

Definition: 2.1  

A nonempty set N together with t w o  binary operations “+” and “” is called be a near-

ring
[1]

 if it satisfies the following axioms: 

(i) (N,+) is a group. 

(ii) (N,) is a semi group. 

(iii) (x + y)z = (xz) + yz, for every x, y, zN. 

 

Note: 2.2  

(i) Let X be a near-ring. Given two subsets A and B of X, AB = {ab/aA, bB}. Also 

we define another operation “ ” AB = {a(b+i) – ab /a,bA, iB}. 

(ii) 0x = 0. In general x0  0, for some x in N. 

 

Definition: 2.3  

A near-ring N is called zero-symmetric, if x0 = 0, for all x in N.  

 

Definition: 2.4  

A subgroup A of (N,+) is called a bi-ideal of near-ring N if ANA∩(AN)AA. 

 

Definition: 2.5  

An element aN is said to be regular if for each aN, a = aba, for some bN 

 

Definition: 2.6 

A near-ring N is said to be left permutable near-ring if abc= bac, for all a,b,c in N.  

 

Definition: 2.7 

A function A from a non-empty set X to the unit interval [0,1]is called a fuzzy subset of N.
[14]

 

 

Notation: 2.8 

Let A and B be two fuzzy subsets of a semigroup N. We define the relation  between A and 

B, the intersection and product of A and B, respectively as follows: 

(i) A  B if A(x)  B(x), for all xN, 

(ii) (AB) (x) = min{A(x), B(x)}, for all xN, 

(iii)(AB) (x) =    

      0   otherwise 
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It is easily verified that the “product” of fuzzy subsets is associative. Throughout this paper, 

N will denote a near-ring unless otherwise specified. We denote by kI the characteristic 

function of a subset I of N. The characteristic function of N is denoted by N, that is, N: N  

[0,1] mapping every element of N to1.  

 

Definition: 2.9 [9] 

A fuzzy subset A of a group (N,+) is said to be a fuzzy subgroup of N if for all x,yN, 

(i) A(x+y)  min{ A(x) , A(y)} 

(ii) A(-x) = A(x), 

Or equivalently A(x − y)  min{A(x) , A(y)}. 

 

Note: 2.10 

If A is a fuzzy subgroup of a group N, then A(0)  A(x) for all xN. 

 

Definition: 2.11
[11]

 

A fuzzy subset A of N is called a fuzzy subnear-ring of N if for all x,yN, 

(i) A( x − y )  min{A(x) , A(y)} 

(ii) A(xy) = min{A(x) , A(y)} 

 

Definition: 2.12
[11]

 

A fuzzy subset A of N is said to be a fuzzy two-sided N-subgroup of N if 

(i) A is a fuzzy subgroup of (N,+), 

(ii) A(xy)  A(x), for all x,yN, 

(iii)A(xy)  A(y), for all x,yN. 

If A satisfies (i) and (ii), then A is called a fuzzy right N-subgroup of N. If A satisfies (i) and 

(iii), then A is called a fuzzy left N-subgroup of N.  

 

Definition: 2.13
[11]

 

A fuzzy subset A of N is said to be a fuzzy ideal of N if 

(i) A is a fuzzy subnear-ring of N, 

(ii) A(y+x-y) = A(x), for all x, yN, 

(iii)A(xy)  A(x), for all x, yN, 

(iv) A( a(b+i) – ab)  A(i), for all a, b, i,N. 

If A satisfies (i) and (ii) and (iii) then A is called a fuzzy right ideal of N. If A satisfies (i), (ii) 
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and (iv), then A is called a fuzzy left ideal of N. In case of zero-symmetric, If A satisfies (i), 

(ii) and A(xy)  A(y), for all x, yN and A is called a fuzzy left ideal of N. 

 

3. Fuzzy Strong Bi-ideals of Near-Rings 

Definition: 3.1 

A fuzzy bi-ideal A of N is called a fuzzy strong bi-ideal of N, if NAA  A 

 

Example: 3.1.1 

Let N={0,a,b,c} be a near-ring with two binary operations „‟ and „‟ is defined as follows. 

+ 0 a b c   0 a b c 

0 0 a b c  0 0 0 0 0 

a a 0 c b  a 0 b 0 b 

b b c 0 a  b 0 0 0 0 

c c b a 0  c 0 b 0 b 

 

Define a fuzzy subset A: N [0,1] by A(0) = 0.8, A(a) = 0.3, A(b) = 0.6, A(c) = 0.3. 

Then NAA (0) = 0.3, NAA (a) = 0, NAA (b) = 0, NAA (c) = 0, and so A is a fuzzy 

strong bi-ideal of N. 

 

Note: 3.2 

Every fuzzy strong bi-ideal is fuzzy bi-ideal. But the converse is not true. 

 

Example: 3.2.1 

Let N={0,a,b,c} be a near-ring with two binary operations „‟ and „‟ is defined as follows. 

+ 0 a b c  • 0 a b c 

0 0 a b c  0 0 0 0 0 

a a 0 c b  a a a a a 

b b c 0 a  b 0 0 b b 

c c b a 0  c a0 a c c 

 

Define a fuzzy subset A: N [0,1] by A(0) = 0.9, A(a) = 0.4, A(b) = 0.4, A(c) = 0.7. Then 

(ANA)(0) = 0.9, (ANA)(a) = 0.7, (ANA)(b) = 0.4, (ANA)(c) = 0.7, ((AN)*A)(0) = 0.9 , 

((AN)*A)(a) = 0, ((AN)*A)(b) = 0.7, ((AN)*A)(c) = 0, NAA (0) = 0.3, NAA (a) = 0, 

NAA (b) = 0, NAA (c) = 0. Then A is a fuzzy bi-ideal of N. But not a fuzzy strong bi-

ideal, since NAA (b)  A(b). 
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Theorem: 3.3 

Let {Ai  iJ} be any family of fuzzy strong bi-ideals of N. Then A = is a fuzzy strong 

bi-ideal of N, where J be an index set. 

 

Proof 

By Theorem 3.4,
[5]

 A is a fuzzy bi-ideal of N. Now for all xN, since A =   Ai for 

every iJ, we have  

(NAA) (x)   ≤ (NAiAi) (x) 

  ≤ Ai(x) for every iJ  

(since Ai is a fuzzy strong bi-ideal of N) 

 

It follows that, (NAA) (x) ≤ inf { Ai(x) : iJ} 

    = ( ) (x) 

    = A(x) 

Thus NAA  A. So A is a fuzzy strong bi-ideal of N. 

 

Theorem: 3.4 

Let I be a non-empty subset of N and KI be a fuzzy subset of N. Then the following 

conditions are equivalent: 

(i) I is a strong bi-ideal of N. 

(ii) KI is a fuzzy strong bi-ideal of N. 

 

Proof 

First assume that I is a strong bi-ideal of N. Then I is a bi-ideal of N. By Theorem 3.8,
[5]

 we 

get KI is a fuzzy bi-ideal of N. 

 

Let a be any element of N. If aI then KI(a) = 1 ≥ (NKIKI ) (a). If aI then KI(a) = 0. On the 

other hand assume that (NKIKI ) (a)= 1. Then 

(NKIKI ) (a)= {N } 

=  

(since N(x) = 1 ,  xN ) 

=  = 1 
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and = 1. So . Then a = pq = q  NII  I which contradicts aI. 

Thus KI(a) = 0 = (NKIKI)(a). This shows that (NKIKI)  KI. Therefore KI is a fuzzy strong 

bi-ideal of N. 

 

Conversely, assume that KI is a fuzzy strong bi-ideal of N. Every fuzzy strong bi-ideal of N is 

a fuzzy bi-ideal of N. Therefore by Theorem 3.8 [5], I is a fuzzy bi-ideal of N. Let a be any 

element of NI
2
. Then there exists a,p,q,p1 of N and the elements p2 , q of I such that a = bc and 

p = p1p2. 

(NKI KI) (a) = {N } 

           =  

                     =  = min{1 ,1} = 1. 

(KI) (a) ≥ (NKI KI) (a) = 1. Thus aI. So NII  I. This shows that I is a strong bi-ideal of N. 

 

Theorem: 3.5 

Every left permutable fuzzy right N-subgroup of N is a fuzzy strong bi-ideal of N. 

 

Proof 

Let A be a left permutable fuzzy right N-subgroup of N. 

To prove A is a fuzzy strong bi-ideal of N.  

By Theorem 3.9,
[5]

 we get every fuzzy right N-subgroup of N is a fuzzy bi-ideal of N. Choose 

a, b,c, N such that a = bc and b = , . Then 

NAA (a) =  

     =  

      =  

(Since A is a left permutable fuzzy right N-subgroup of N, A(bc) = A((b1b2)c) = A((b2b1) c) 

A(b2)) and N(c) A(c) 

     

    =  

   =  

   = A(a) 

Therefore NAA  A. Hence A is a fuzzy strong bi-ideal of N. 
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Theorem: 3.6 

Every fuzzy left N-subgroup of N is a fuzzy strong bi-ideal of N. 

 

Proof 

Let A be a fuzzy left N-subgroup of N. 

To prove A is a fuzzy strong bi-ideal of N.  

By Theorem 3.10,
[5]

 we get every fuzzy left N-subgroup of N is a fuzzy bi-ideal of N. Choose 

a, b,c, N such that a = bc and c = , . Then 

NAA (a) =  

     =  

     =  

(Since A is a fuzzy left N-subgroup of N, A(bc) = A(b(c1c2)) = A((bc1)c2)A(c2)) 

     

   =  

   = A(bc) 

= A(a)  

Therefore NAA  A. Hence A is a fuzzy strong bi-ideal of N. 

 

Theorem: 3.7 

Every left permutable fuzzy two-sided N-subgroup of N is a fuzzy strong bi-ideal of N. 

 

Proof 

The proof is straight forward from the above Theorem 3.5 and Theorem 3.6 

 

Theorem: 3.8 

Every left permutable fuzzy right ideal of N is a fuzzy strong bi-ideal of N. 

 

Proof 

Let A be a left permutable fuzzy right ideal of N. 

To prove A is a fuzzy strong bi-ideal of N. 

By Theorem 3.12,
[5]

 we get every fuzzy right ideal of N is a fuzzy bi-ideal of N. Choose a, 

b,c, N such that a = bc and b = , . Then 

NAA (a) =  
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     =  

      =  

(Since A is a left permutable fuzzy right ideal of N, A(bc) = A((b1b2)c) = A((b2b1) c) A(b2)) 

and N(c) A(c) 

     

=  

   =  

   = A(a) 

Therefore NAA  A. Hence A is a fuzzy strong bi-ideal of N. 

 

Theorem: 3.9 

Every fuzzy left ideal of N is a fuzzy strong bi-ideal of N. 

 

Proof 

Let A be a fuzzy left ideal of N. To prove A is a fuzzy strong bi-ideal of N.  

By Theorem 3.13,
[5]

 we get every fuzzy left ideal of N is a fuzzy bi-ideal of N. Choose a, 

b,c, N such that a = bc = b(n + c) - bn. Then 

NAA (a) =  

     =  

     =  

(Since A is a fuzzy left ideal of N, A(a) = A(bc) = A(b(n + c) - bn) A(c) and N(b2) A(b2) 

     

=  

   = A(bc) 

   = A(a) 

Therefore NAA  A. Hence A is a fuzzy strong bi-ideal of N. 

 

Theorem: 3.10 

Every left permutable fuzzy ideal of N is a fuzzy strong bi-ideal of N. 
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Proof 

The proof is straight forward from the Theorem 3.8 and Theorem 3.9  

 

Remark: 3.11 

The converse of Theorem 3.7 and Theorem 3.10 are not necessarily true as shown by the 

following example. 

 

Example: 3.12 

Let N={0,a,b,c} be the near-ring with two binary operations „‟ and „‟ is defined as follows. 

+ 0 a b c  • 0 a b c 

0 0 a b c  0 0 0 0 0 

a a 0 c b  a 0 0 0 0 

b b c 0 a  b 0 0 0 a 

c c b a 0  c 00 0 0 a 

 

Define a fuzzy subset A: N [0,1] by A(0) = 0.75, A(a) = 0.2, A(b) = 0.3, A(c) = 0.3. 

Then (ANA)(0) = 0.3, (ANA)(a) = 0, (ANA)(b) = 0, (ANA)(c) = 0, NAA (0) = 0.3, 

NAA (a) = 0, NAA (b) = 0, NAA (c) = 0, and so A is a fuzzy strong bi-ideal of N. Since 

A(a) = A(bc)  and A(a) = A(bc) , A is not a fuzzy two-sided N-subgroup of N. 

Since A(a) = A(bc)  min {A(b),A(c)}, A is not a fuzzy sub near-ring of N andso A is not a 

fuzzy ideal of N. 

 

Theorem: 3.13 

Let A be any fuzzy strong bi-ideal of a near-ring N. Then A(axy)  min{ A(x), A(y)} a, x, y 

N. 

 

Proof 

Assume that A is a fuzzy strong bi-ideal of N. Then NAA  A. 

Let a, x and y be any element of N. Then 

A(axy)  (NAA) (axy) 

=  

  

 = A(y)} 

  min{min{N(a), A(x)}, A(y)} 

 = min{min{1,A(x), A(y)} 
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 = min{A(x), A(y)} 

This shows that A(axy)  min{ A(x), A(y)} a, x, y N. 
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