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ABSTRACT 

In this research the hybrid Hopscotch Crank-Nicholson- Lax Fredich’s 

method is developed to solve Burgers’ equations. Here a hybrid 

Hopscotch-Crank-Nicholson-Lax Fredrich finite difference scheme is 

proposed to solve 2-D Burgers equations. Hybrid Hopscotch-Crank-

Nicholson-Lax Fredrich Scheme (HP-CN-LF) compared well with 

earlier developed schemes. It has proved to be stable, consistent and  

convergent. 

 

KEYWORD: Hopscotch, Burgers Equation, Crank-Nicholson-Lax-Fredrich. 

 

1. INTRODUCTION 

Let us consider the 2-D Burgers’ equation is of the form: 

      (1) 

  

The paper proposes a numerical solution to the system of Burgers equation (1). 
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2. Background information 

Burgers’ equation is a parabolic equation that has always been used as a mathematical model 

for many physical phenomena. In particular, it is widely used as a simplified model for 

understanding turbulence flow, boundary layer behavior, shock wave formation, convection 

dominated diffusion phenomena, acoustic attenuation in fog and continuum traffic 

simulation. Moreover, Burgers' equation is one of the very few nonlinear partial differential 

equations that can be solved exactly using a transformation for arbitrary initial and boundary 

conditions. Thus, the numerical method has practical significance, and has drawn the 

attention of many researchers in the past. 

 

Several attempts have been made to solve Burgers’ equation with varied level of accuracy. 

For example implicit methods, ADI methods, finite element methods, moving finite element, 

mixed finite element technique, Chebyshev spectral collocation methods and collocation 

procedures using cubic B-splines. In addition, the Group Explicit method, the odd-even 

Hopscotch scheme and the alternating direction implicit scheme to solve Burgers' equation on 

the Vector Machine, and spectral method using the finitely reproducing property of a 

nonlinear operator in order to solve Burgers' equation with different boundary conditions.  

 

Caldwell and Wanless (1981) attempted a piecewise polynomial approximation also referred 

to as Finite Element where the size of the elements were chosen to take into account the 

nature of the solution. The aim was to ‘chase the peak’ by altering the size of the elements at 

each stage using information from the previous step. The research restricted attention to the 

use of piecewise polynomials, being the simplest form. The results were discussed and 

proved to be very satisfactory. 

 

Evans and Abdullah (1984) proposed the Group Explicit method to the numerical solution of 

a non-linear parabolic partial differential equation of second order. The method was tested 

out on Burger's equation for various initial and boundary conditions. It proved that the 

method is accurate and comparable to existing finite difference methods. 

 

The numerical values of the dependent variables are obtained at the points of intersection of 

the parallel lines, called mesh points or nodal points. These values are obtained by 

discretizing the governing partial differential equations over the region of interest to derive 

approximately equivalent algebraic equations. Discretization consists of replacing each 
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derivative of the partial differential equation at mesh point by a finite difference 

approximation in terms of the values of the dependent variable at the mesh. 

 

Bressan and Quarteron (1986) defined and analyzed Chebyshev spectral collocation methods 

for approximating the solution of Burgers' equation. Discretization in time by an 

implicit/explicit single step method was also discussed. The method was shown to be stable 

under a very weak condition on the time step, for the (linear) diffusive part is dealt with 

implicitly. Besides, fast transform methods was also used to compute the explicit (non-linear) 

convective term.  

 

Hrymak et. al. (1986) explained the moving finite element method as an adaptive gridding 

procedure for systems of partial differential equations whose solutions contain steep 

gradients. The research implemented the method in a very straight forward way. The 

performance of the method was illustrated with solutions of Burgers’ equation. 

 

Sereno et. al. (1991) developed the moving finite element method (MFEM) using polynomial 

approximations of arbitrary degree in each of the finite elements. The approximations are 

then obtained by the Lagrange interpolation polynomials, with the interior nodes optimized as 

in the orthogonal collocation method. The research proposed that the method can be used for 

any type of linear boundary conditions. A computer code was developed to illustrate the 

method with three examples: the 1-D Burgers' problem; equilibrium model for fixed-bed 

adsorption; and pseudo-homogeneous axial dispersion model. 

 

Samir (1999) solved numerically the 2-D unsteady coupled Burgers’ equations with moderate 

to severe gradients, using higher-order accurate finite difference schemes; namely the fourth-

order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. 

The question of numerical stability and convergence were presented. Comparisons were 

made between the schemes in terms of accuracy and computational efficiency for solving 

problems with severe internal and boundary gradients. The study showed that the fourth-

order compact ADI scheme is stable and efficient. 

 

Chen and Jiang (2004) used a new mixed finite element method, called the characteristics 

mixed method, for approximating the solution to Burgers equation. The method is based upon 

a space-time variational form of Burgers’ equation. The hyperbolic part of the equation is 

approximated along the characteristics in time and the diffusion part is approximated by a 
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mixed finite element method of lowest order. The scheme is locally conservative since fluid 

is transported along the approximate characteristics on the discrete level and the test function 

can be piecewise constant. The new method approximated the scalar unknown and the vector 

flux optimally and simultaneously. The research showed that the scheme has much smaller 

time-truncation errors than those of standard methods. Numerical example was presented to 

show that the new scheme is easily implemented; shocks and boundary layers are handled 

with almost no oscillations. 

 

Amir (2007) et. al. developed multi-symplectic box implicit methods for solving Burgers’ 

equation. The research showed that the multi-symplectic box scheme is a very effective box 

scheme in diminishing artificial wiggles which appear in approximation solution. Two types 

of box schemes and implementation on the Burgers equation was done to get better results 

with no artificial wiggles.  

 

Idris and Ali (2007) Iillustrated how the numerical solution of the Burgers’ equation is 

obtained using the methods of cubic B-spline collocation and quadratic B-spline Galerkin 

over the geometrically graded mesh. The design involved partitioning of spatial domain into 

geometrically graded mesh. The finite element methods were constructed within the Galerkin 

and collocation methods using an expansion of the quadratic and cubic B-splines as an 

approximate function, respectively, over the mesh. The paper proved that higher errors are 

observed at near boundaries for shock-like and travelling wave solutions of the Burgers’ 

equation when bigger mesh are used, accuracy of the defined methods increase by using finer 

mesh at near this boundary. 

 

Shusen et. al. (2010) introduced a high-order accurate compact finite difference method using 

the Hopf–Cole transformation for solving 1-D Burgers’ equation numerically. The stability 

and convergence analyses for the proposed method were given, and this method was shown 

to be unconditionally stable. To demonstrate efficiency, numerical results that were obtained 

by the proposed scheme were compared with the exact solutions and the results obtained by 

some other methods. Their proposed method is second- and fourth-order accurate in time and 

space, respectively. They derived a high-order accurate compact finite difference method 

(FDM) to numerically solve the linearized equation. The present method gives an implicit 

scheme with tri-diagonal symmetric positive-definite system, which could be easily 

implemented. Stability and convergence analyses showed that the method was 

unconditionally stable and has an accuracy of second- and fourth-order in time and space, 
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respectively. Numerical experiments showed that the accuracy of the method and the fourth-

order iterative Finite Difference Method is almost the same. The numerical solutions obtained 

by the method are in good agreement with the exact solutions, and their method gives 

compatible numerical results with the ones obtained by some other available methods given 

in references. 

 

Al-Saif et. al. (2012) proposed a new development of differential quadrature method. It is 

known alternating direction implicit formulation of the differential quadrature method (ADI-

DQM) for computing the numerical solutions of the two dimension Burger equations. The 

results confirm that this method has a high accuracy, good convergence and less workload 

comparing with the other numerical methods. 

 

Vineet et. al (2013a) proposed a fully implicit finite-difference method for the numerical 

solutions of one dimensional coupled nonlinear Burgers’ equations on the uniform mesh 

points. The method forms a system of nonlinear difference equations which was solved at 

each iteration. Newton’s iterative method has been implemented to solve this nonlinear 

assembled system of equations. The linear system was solved by Gauss elimination method 

with partial pivoting algorithm at each iteration of Newton’s method. Three test examples 

were carried out to illustrate the accuracy of the method. Computed solutions obtained by 

proposed scheme were compared with analytical solutions and those already available in the 

literature by finding  and  errors.  

 

Vineet et. al (2013b) described a new implicit finite-difference method: an implicit 

logarithmic finite-difference method (I-LFDM), for the numerical solution of two 

dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. 

As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear 

systems, which was solved by Newton’s iterative method at each time step. Computed 

solutions were compared with the analytical solutions and those already available in the 

literature and it was clearly shown that the results obtained using the method is precise and 

reliable for solving Burgers’ equation. 

 

Vineet et. al (2013c) an implicit exponential finite-difference scheme (Expo FDM) was 

proposed for solving two dimensional nonlinear coupled viscous Burgers’ equations (VBEs) 

with appropriate initial and boundary conditions. The accuracy of the method was illustrated 

by taking two numerical examples. Results were compared with exact solution and those 
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already available in the literature by finding the  and  errors. Excellent 

numerical results indicate that the proposed scheme is efficient, reliable and robust technique 

for the numerical solutions of Burgers’ equation. 

 

Bilge and Ahmet (2013) proposed a numerical method to approximate the solution of the 

one-dimensional Burgers' equation. Technique called explicit exponential finite difference 

method was used. Since the Burgers' equation is nonlinear, the equation was converted to the 

linear heat equation by the Hopf-Cole transformation. And then, the explicit exponential 

finite difference method was applied to obtain numerical solution. The results were compared 

with exact values clearly showed that results obtained using the method were precise and 

reliable. 

 

Vineet et al. (2014) implemented an implicit logarithmic finite difference method (I-LFDM) 

for the numerical solution of one dimensional coupled nonlinear Burgers’ equation. The 

numerical scheme provided a system of nonlinear difference equations which they linearized 

using Newton’s method. The obtained linear system via Newton’s method was solved by 

Gauss elimination with partial pivoting algorithm. To illustrate the accuracy and reliability of 

the scheme, they described three numerical examples. The obtained numerical solutions 

proved to compare well with the exact solutions and those already available.  

 

In this research hybrid Hopscotch Crank-Nicholson- Lax Fredich’s method for solving two-

dimensional system of Burgers’ equations is developed. It is an extension of the work done 

by Maritim et. al. (2018) where the two dimensional Burgers equation is solved using hybrid 

Hopscotch-Crank-Nicholson-Du-Fort and Frankel scheme. In their research a solution 

algorithm for two-dimensional Burgers’ equation with mixed boundary condition is derived 

then hybrid Hopscotch-Crank-Nicholson-Lax Fredrich Scheme finite scheme is developed.  

 

In our research Hybrid Hopscotch-Crank-Nicholson-Lax Fredrich Scheme (HP-CN-LF) 

compared well with earlier developed schemes. It has proved to be stable, consistent and 

convergent. Here Lax-Frdrich method, which can be described as the FTCS (forward in time, 

centered in space) scheme with an artificial viscosity term of ½, is blended with Hopscotch 

and Crank-Nicholson. 
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3. Approximation at the Boundaries 

Rotich et. al. (2016) proposed a solution of Burgers system of equations (1) to be is given by 

the following equations:  

      (2) 

     (3) 

 

Using and  and  we obtain Hopscotch-Crank-

Nicholson scheme as shown below, according to Maritim et. al. (2018).  

 

  (4)  

 

 (5) 

 

4. Hybrid Schemes 

4.1 Hopscotch-Crank-Nicholson-Lax-Fredrich’s (HP-CN-LF) Hybrid Scheme 

The Hopscotch Crank-Nicholson-Lax Fredich’s Hybrid Scheme is obtained by replacing  

and  by  and 

 in the equation (4) and (5) respectively to get 

HP-CN-LF: 

 

 (6)  
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 (7) 

 

5. NUMERICAL RESULTS 

Taking: to obtain the results. 

 

Here we take:  and the initial and boundary conditions for the velocity 

components and  are taken from the proposed Kweyu et. al. (2012) scheme. 

 

5.1 Absolute Errors in Solutions of  and  

Figures 1 and 2 show the absolute error in solutions of  and  respectively plotted against 

the  values for three hybrid schemes with . 

 

 

Figure 1: Absolute error in Solution of  

for HP-CN, HP-CN-LF & HP-CN-DF 

 

Figure 2: Absolute error in Solution of 

for  HP-CN, HP-CN-LF & HP-CN-DF. 

 

The errors are the variation of the HP-CN, HP-CN-DF and HP-CN-LF when compared with 

values generated by the solution of the scheme proposed by Kweyu et. al. (2012). The figure 

clearly shows that the hybrid HP-CN-LF has the least error than HP-CN and HP-CN-DF. 

This shows that HP-CN-LF is the most accurate. 

 

5.2 Solutions of  and for HP-CN-LF 

Figure 3 and 4 below shows a three dimensional plot of solutions of and  when  for 

HP-CN-LF plotted against x and y variables. 
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Figure 3: HP-CN-LF Solution of u at t=1. 

 

Figure 4: HP-CN-LF Solution of v at t=1 

 

The figures shows that the results for the HP-CN-LF schemes developed are consistent. 

 
Table 1: Solution of u for the 2-D Burgers equation at t = 1 for the different schemes. 

X Y Kweyu et. al. (2012) 

Proposed scheme 

solution(*exp-0.006) 

HP-CN  

 (*exp-0.006) 

HP-CN-DF  

(*exp-0.006) 

HP-CN-LF  

(*exp-0.006) 

0.1 0.1 -0.45210681629561 -0.45212809683860 -0.45210729075647 -0.45210468063855 

0.2 0.2 -0.90666175924746 -0.90707726837174 -0.90667102335393 -0.90662005931782 

0.3 0.3 -1.36301183011581 -1.36362293690697 -1.36302545536009 -1.36295049960099 

0.4 0.4 -1.81993778965255 -1.82074210344674 -1.81995572275460 -1.81985706836629 

0.5 0.5 -2.27602700265147 -2.27702783812104 -2.27604931747869 -2.27592655811940 

0.6 0.6 -2.72986139439426 -2.73106779914542 -2.72988829257710 -2.72974031908276 

0.7 0.7 -3.18025559498377 -3.18168135576848 -3.18028738376313 -3.18011250601133 

0.8 0.8 -3.62646733993825 -3.62812910745055 -3.62650439036687 -3.62630056721496 

0.9 0.9 -4.06834558851241 -4.07026042802845 -4.06838828086325 -4.06815342045898 

1 1 -4.50639373341364 -4.50857649857835 -4.50644239865479 -4.50617468038073 

 

Table 2: Solution of v for the 2-D Burgers equation at t = 1 for the different schemes. 

X y 

Kweyu et. al.(2012) 

Proposed scheme 

solution(*exp-0.006) 

HP-CN 

(*exp-0.006) 

HP-CN-LF 

(*exp-0.006) 

HP-CN-DF 

(*exp-0.006) 

0.1 0.1 -4.91659648501478 -4.91661159189801 -4.91659682145726 -4.91659497061011 

0.2 0.2 -4.93021949923746 -4.93053010322735 -4.93022641672314 -4.93018836200184 

0.3 0.3 -4.89143745710773 -4.89192178335778 -4.89144824368021 -4.89138890414022 

0.4 0.4 -4.84860678586601 -4.84928319580011 -4.84862185048505 -4.84853897632459 

0.5 0.5 -4.80113941328106 -4.80202839659612 -4.80115921225686 -4.80105029321574 

0.6 0.6 -4.74893329120019 -4.75005517398268 -4.74895827713826 -4.74882082337100 

0.7 0.7 -4.69237703046003 -4.69374975282673 -4.69240760276388 -4.69223941713768 

0.8 0.8 -4.63229606978619 -4.63393334321813 -4.63233253363041 -4.63213193741768 

0.9 0.9 -4.56984942066285 -4.57175950062964 -4.56989195968453 -4.56965794277907 

1 1 -4.50639373341364 -4.50857892118299 -4.50644239865479 -4.50617468038073 
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6. CONCLUSION 

We have developed hybrid Hopscotch-Crank-Nicholson-Lax-Fredrich scheme (HP-CN-LF) 

to solve two-dimensional Burgers’ equation. The errors are within acceptable range of less 

than 0.003%. The solution to the scheme is not changing suddenly with time and space. Thus 

our scheme is stable and convergent which implies consistency. 

 

LIST OF ABBREVIATIONS 

HP  : Hopscotch 

HP-CN : Hopscotch Crank-Nicholson  

HP-CN-DF : Hopscotch Crank-Nicholson- Du-Fort and Frankel  

HP-CN-LF : Hopscotch Crank-Nicholson-Lax-Friedrich’s  

  : Reynolds number 

  : Fluid velocity in the -direction  

  : Fluid velocity in the -direction. 
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