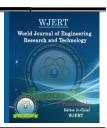
World Journal of Engineering Research and Technology

<u>WJERT</u>

www.wjert.org

SJIF Impact Factor: 5.218



FUZZY ALGEBRAIC STRUCTURE IN Z-ALGEBRAS

S. Sowmiya*¹ and P. Jeyalakshmi²

¹Research Scholar, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-43.

²Professor & Head, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-43.

Article Received on 15/05/2019 Article Revised on 05/06/2019 Article Accepted on 26/06/2019

*Corresponding Author S. Sowmiya Research Scholar, Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-43.

ABSTRACT

In this paper, we introduce the notion of Fuzzy Z-Subalgebra of a Z-algebra and investigate their properties. We describe how to deal with the Z-homomorphism of image and inverse image of fuzzy Z-Subalgebras. We have also proved that the Cartesian product of fuzzy Z-Subalgebras is a fuzzy Z-Subalgebra.

KEYWORDS: Z-algebra, Z-Subalgebra, Z-homomorphism, Level Z-Subalgebras, Fuzzy Z-Subalgebras, Cartesian product of Z-algebras

AMS Classification 2010: 03B47, 03B52.

INTRODUCTION

Imai and Iseki introduced two new classes of abstract algebras: BCK algebras and BCI algebras (Imai and Iseki, 1966; Iseki, 1980). It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. In 2017, (Chandramouleeswaran et al., 2017) introduced the concept of Z-algebras as a new structure of algebra based on propositional calculus. By Propositions 3.7 and 3.8 of (Chandramouleeswaran et al., 2017), the Z-algebra is not a generalization of BCK/BCI-algebras.

In 1965, (Zadeh, 1965) introduced the fundamental concept of a fuzzy set which is a generalization of an ordinary set. In 1971, (Rosenfeld , 1971) introduced the notion of fuzzy groups. Following the idea of fuzzy groups, in 1991 (Xi, 1991) introduced the notion of fuzzy

BCK-algebras. In 2015, (Christopher Jefferson and Chandramouleeswaran, 2015) applied fuzzy algebraic structures in BP-algebras. In this paper, we study the fuzzy subalgebraic structures in Z-algebras and investigate some of their properties.

Preliminaries

In this section we recall some basic definitions.

Definition 2.1: (Iseki and Tanaka, 1978) A BCK- algebra (X,*,0) is a nonempty set X with constant 0 and a binary operation * satisfying the following conditions:

(i) $(x * y) * (x * z) \le (z * y)$ (ii) $x * (x * y) \le y$ (iii) $x \le x$ (iv) $x \le y$ and $y \le x \Rightarrow x=y$ (c) $0 \le x \Rightarrow x = 0$ where $x \le x$ is defined

(v) $0 \le x \Rightarrow x=0$, where $x \le y$ is defined by x * y = 0, for all $x, y, z \in X$.

Definition 2.2: (Iseki ,1980) A BCI-algebra (X,*,0) is a nonempty set X with constant 0 and a binary operation * satisfying the following conditions:

(i) $(x * y) * (x * z) \le (z * y)$ (ii) $x * (x * y) \le y$ (iii) $x \le x$ (iv) $x \le y$ and $y \le x \Rightarrow x = y$ (v) $x \le 0 \Rightarrow x = 0$, where $x \le y$ is defined by x * y = 0, for all $x, y, z \in X$.

Definition 2.3: (Chandramouleeswaran et al., 2017) A Z-algebra (X,*,0) is a nonempty set X with constant 0 and a binary operation * satisfying the following conditions:

- (Z1) x * 0 = 0
- (Z2) 0 * x = x
- (Z3) x * x = x
- (Z4) x * y = y * x when $x \neq 0$ and $y \neq 0 \forall x, y \in X$.

Definition 2.4: (Chandramouleeswaran et al., 2017) Let S be a nonempty subset of a Z-algebra X. Then, S is called Z-Subalgebra of X if $x * y \in S$ for all $x, y \in S$.

Definition 2.5: (Chandramouleeswaran et al., 2017) Let (X,*,0) and (Y,*',0') be two Z-algebras. A mapping $h:(X,*,0) \rightarrow (Y,*',0')$ is said to be a **Z-homomorphism of Z-algebras** if h(x * y) = h(x) *' h(y) for all $x, y \in X$.

Definition 2.6: Let h be a Z-homomorphism from the Z-algebra (X,*,0) to the Z-algebra (Y,*',0'). Then

- 1. h is called
- i) a **Z-monomorphism** of Z-algebras if h is 1-1.
- ii) an **Z-epimorphism** of Z-algebras if h is onto.

2. h is called an **Z-endomorphism** of Z-algebras if h is a mapping from (X,*,0) into itself. Note: If $h: (X,*,0) \rightarrow (Y,*',0')$ is a Z-homomorphism then h(0) = 0'.

Definition 2.7: (Zadeh, 1965) Let X be a nonempty set. A fuzzy set A in X is characterized by a membership function $\mu_A(x)$ which associates with each point x in X, a real number in the interval [0,1] with the value of $\mu_A(x)$ at x representing the "grade of membership" of x in A.

That is, a fuzzy set A in X is characterized by a membership function $\mu_A : X \rightarrow [0,1]$.

Definition 2.8: (Zadeh, 1965) The intersection of two fuzzy sets A and B with respective membership functions $\mu_A(x)$ and $\mu_B(x)$ is a fuzzy set C, written as $C = A \cap B$, whose membership function is related to those of A and B defined by,

 $\mu_{A \cap B}(x) = \mu_C(x) = \min\{\mu_A(x), \mu_B(x)\}, \text{ for all } x \in X \text{ or, in abbreviated form}$

 $\mu_{\rm C} = \mu_{\rm A} \wedge \mu_{\rm B}$.

Definition 2.9: (Das P S, 1981) Let A be a fuzzy set of X. For a fixed $t \in [0,1]$, the set U(A;t)= { $x \in X | \mu_A(x) \ge t$ } is called an upper level subset (upper level cut, upper t-level subset) of A.

Definition 2.10: (Das P S, 1981) Let A be a fuzzy set of X. For a fixed $t \in [0,1]$, the set $L(A;t) = \{x \in X | \mu_A(x) \le t\}$ is called a lower level subset (lower level cut, lower t-level subset) of A.

Note: (i) If $t_1 \leq t_2$, $U(A;t_2) \subseteq U(A;t_1)$ and $L(A;t_1) \subseteq L(A;t_2)$.

(ii) $U(A;t) \cup L(A;t) = X$ for all $t \in [0,1]$.

Definition 2.11: (Rosenfeld A, 1971) A fuzzy set A in X with a membership function μ_A is said to have the sup property if for any subset $T \subset X$ there exists $x_0 \in X$ such that $\mu_A(x_0) = \sup_{t \in T} \mu_A(t)$.

Definition 2.12: (Rosenfeld A, 1971) Let h be a mapping from X into Y.

i) Let A be a fuzzy set in X with a membership function μ_A . Then the image of A under h, denoted by h(A) is the fuzzy set in Y with a membership function $\mu_{h(A)}$ defined by

$$\mu_{h(A)}(y) = \begin{cases} \sup_{z \in h^{-1}(y)} \mu_A(z) & \text{if } h^{-1}(y) = \left\{ x \mid h(x) = y \right\} \neq \phi \\ 0 & \text{, otherwise} \end{cases}$$

ii) Let B be a fuzzy set in Y with a membership function μ_B . The inverse image (or preimage) of B under h, denoted by $h^{-1}(B)$ is the fuzzy set in X with a membership function $\mu_{h^{-1}(B)}$ defined by $\mu_{h^{-1}(B)}(x) = \mu_B(h(x))$ for all $x \in X$.

Definition 2.13: (Bhattacharya P and Mukherjee N P, 1985) Let A and B be the fuzzy sets of X and Y with a membership functions μ_A and μ_B respectively. Then, the Cartesian product $A \times B$ with membership function $\mu_{A \times B} : X \times Y \rightarrow [0,1]$ is defined as $\mu_{A \times B}(x, y) = \min \{\mu_A(x), \mu_B(y)\}$ for all $x \in X$ and $y \in Y$.

Definition 2.14: (Bhattacharya P and Mukherjee N P, 1985) Let A and B be the fuzzy sets of a set X with a membership functions μ_A and μ_B respectively. Then, the Cartesian product $A \times B$ with membership function $\mu_{A \times B} : X \times X \rightarrow [0,1]$ is defined as $\mu_{A \times B}(x, y) = \min \{\mu_A(x), \mu_B(y)\}$ for all $x, y \in X$

Definition 2.15: (Bhattacharya P and Mukherjee N P, 1985) A fuzzy relation A on a nonempty set X is a fuzzy set A with a membership function $\mu_A : X \times X \rightarrow [0,1]$.

Definition 2.16: (Bhattacharya P and Mukherjee N P, 1985) If A is a fuzzy relation with a membership function μ_A on a set X and B is a fuzzy set of X with a membership function μ_B then A is a fuzzy relation on B if for all $x, y \in X$, $\mu_A(x, y) \le \min \{\mu_B(x), \mu_B(y)\}$.

Definition 2.17(Bhattacharya P and Mukherjee N P, 1985) Let B be a fuzzy set on a set X with a membership function μ_B then the strongest fuzzy relation A_B on X, that is, a fuzzy relation A on B whose membership function $\mu_{A_B}: X \times X \rightarrow [0,1]$ is given by $\mu_{A_B}(x,y) = \min{\{\mu_B(x),\mu_B(y)\}}.$

Theorem 2.18: Let (X,*,0) and (Y,*',0') be two Z-algebras. Then $(X \times Y,*'',0'')$ is a Z-algebra where $(x_1, y_1)*''(x_2, y_2) = (x_1 * x_2, y_1 *' y_2)$ for all $(x_1, y_1), (x_2, y_2) \in X \times Y$, with 0'' = (0,0') as constant element.

1. Fuzzy Z-Subalgebras in Z-algebras

In this section, we define the notion of Fuzzy Z-Subalgebra of a Z-algebra and prove some simple but elegant results.

Definition 3.1: Let (X,*,0) be a Z-algebra. A fuzzy set A in X with a membership function μ_A is said to be a fuzzy Z- Subalgebra of a Z-algebra X if, for all x, $y \in X$ the following condition is satisfied : $\mu_A(x*y) \ge \min\{\mu_A(x), \mu_B(y)\}$.

Example 3.2: Let $X = \{0, 1, 2, 3\}$ be a set with the following Cayley table:

*	0	1	2	3
0	0	1	2	3
1	0	1	3	2
2	0	3	2	1
3	0	2	1	3

Then (X,*,0) is a Z-algebra.

Define a fuzzy set A in X with a membership function μ_A is given by

$$\mu_{A}(x) = \begin{cases} 0.6 & \text{if} \quad x = 0\\ 0.4 & \text{if} \quad x = 1\\ 0.3 & \text{if} \quad x = -2,3 \end{cases}$$

Then A is a fuzzy Z-Subalgebra of X.

Theorem 3.3: Intersection of any two fuzzy Z-Subalgebras of a Z-algebra X is again a fuzzy Z-Subalgebra.

Proof: Let A_1 and A_2 be fuzzy Z-Subalgebras of X. Let $x, y \in A_1 \cap A_2$.

Then x, $y \in A_1$ and A_2 . Since A_1 and A_2 are fuzzy Z-Subalgebras of X,

$$\begin{split} \mu_{A_1 \cap A_2}(x * y) &= \min\{\mu_{A_1}(x * y), \mu_{A_2}(x * y)\}\\ &\geq \min\{\min\{\mu_{A_1}(x), \mu_{A_1}(y)\}, \min\{\mu_{A_2}(x), \mu_{A_2}(y)\}\}\\ &= \min\{\min\{\mu_{A_1}(x), \mu_{A_2}(x)\}, \min\{\mu_{A_1}(y), \mu_{A_2}(y)\}\}\\ &= \min\{\mu_{A_1 \cap A_2}(x), \mu_{A_1 \cap A_2}(y)\} \end{split}$$

That is $\mu_{A_1 \cap A_2}(x * y) \ge \min\{\mu_{A_1 \cap A_2}(x), \mu_{A_1 \cap A_2}(y)\}$

Hence $A_1 \cap A_2$ is a fuzzy Z – Subalgebras of X.

The above result can be generalized for a family of fuzzy Z-Subalgebras.

Corollary 3.4: Let $\{A_i | i \in \Omega\}$ be a family of fuzzy Z-Subalgebras of X. Then $\bigcap_{i \in \Omega} A_i$ is also a fuzzy Z-Subalgebra of X.

Theorem 3.5: A fuzzy set A of a Z-algebra X is a fuzzy Z-Subalgebra if and only if every $t \in [0,1]$, U(A;t) is either empty or Z-Subalgebra of X.

Proof: Assume that A is a fuzzy Z-Subalgebra of a Z-algebra X and $U(A;t) \neq \phi$

To prove: U(A;t) is a Z-subalgebra of X.

For any x, $y \in U(A;t)$, we have $\mu_A(x) \ge t$ and $\mu_A(y) \ge t$.

Then $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\}$

```
\geq \min\{t, t\}
= t
```

This implies $x * y \in U(A;t)$

That is, U(A;t) is a Z-subalgebra of X.

Conversely, assume that U(A;t) is a Z-Subalgebra of X.

To prove: A is a fuzzy Z-subalgebra of a Z-algebra X.

Let $x, y \in X$ and let $\mu_A(x) = t_1$ and $\mu_A(y) = t_2$. Then $x \in U(A; t_1)$ and $y \in U(A; t_2)$.

If $t_1 \le t_2$, then $U(A;t_2) \subseteq U(A;t_1)$ and so $y \in U(A;t_1)$.

Since $U(A;t_1)$ is a Z-Subalgebra of X, $x * y \in U(A;t_1)$.

Thus $\mu_A(x * y) \ge t_1 = \min\{\mu_A(x), \mu_A(y)\}$, proving that A is a fuzzy Z-Subalgebra of X.

Definition 3.6: Let A be a fuzzy Z-Subalgebra of X. For any $t \in [0,1]$, Z-Subalgebras U(A;t) are called Upper level Z-Subalgebras of A.

Remark 3.7: Henceforth, the Upper level Z-Subalgebras will be referred as level Z-Subalgebras.

Theorem 3.8: Any Z-Subalgebra of a Z-algebra X can be realized as a level Z-Subalgebra of some fuzzy Z-Subalgebra of X.

Proof: Let S be a Z-Subalgebra of a Z-algebra X and A be a fuzzy set in X defined by

$$\mu_A(x) = \begin{cases} t \text{ if } x \in S \\ 0 \text{ if } x \notin S \end{cases}$$

where $t \in [0,1]$ is fixed. Clearly U(A; t)=S.

To prove: A is a fuzzy Z- Subalgebra of a Z-algebra X.

We consider the following cases:

Case (i): If $x, y \in S$ then $x * y \in S$.

Hence $\mu_A(x) = \mu_A(y) = \mu_A(x * y) = t$ and

 $\mu_{A}(x * y) \geq \min\{\mu_{A}(x), \mu_{A}(y)\}.$

Case (ii): If $x, y \notin S$ then $\mu_A(x) = \mu_A(y) = \mu_A(x * y) = 0$.

Then $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\} = 0.$

Case (iii): If at most one of x, $y \in S$ then at least one of $\mu_A(x)$ and $\mu_A(y)$ is equal to 0.

Hence $\mu_A(x * y) \ge \min\{\mu_A(x), \mu_A(y)\} = 0.$

This shows that S is a level Z-Subalgebra of X corresponding to the fuzzy Z-Subalgebra A of X.

Theorem 3.9: Let X be a Z-algebra. Then given any chain of Z-Subalgebras $S_0 \subset S_1 \subset \cdots \subset S_r = X$, there exists a fuzzy Z-Subalgebra A of X whose upper t-level Z-Subalgebras are exactly the Z-Subalgebras of the chain.

Proof: Consider a set of numbers $t_0 > t_1 > t_2 > \cdots > t_r$, where each $t_i \in [0,1]$.

Let A: X \rightarrow [0,1] be a fuzzy set defined by $\mu_A(S_0) = t_0$ and $\mu_A(S_i - S_{i-1}) = t_i$, i = 1, 2, ..., r.

Claim: A is a fuzzy Z-Subalgebra of X.

Let $x, y \in X$. Then we classify it into two cases as follows:

Case (1): Let $x, y \in S_i - S_{i-1}$. Then by the definition of A, $\mu_A(x) = t_i = \mu_A(y)$.

Since S_i is a Z-Subalgebra of X, it follows that $x * y \in S_i$ and so either $x * y \in S_i - S_{i-1}$ or $x * y \in S_{i-1}$. In any case, we conclude that $\mu_A(x * y) \ge t_i = \min \{\mu_A(x), \mu_A(y)\}$.

Case (2): For i > j, Let $x \in S_i - S_{i-1}$ and $y \in S_j - S_{j-1}$.

Then $\mu_A(x) = t_i$; $\mu_A(y) = t_j$ and $x * y \in S_i$, since S_i is a Z-Subalgebra of X and $S_j \subset S_i$.

Hence $\mu_{A}(x * y) \ge t_{i} = \min{\{\mu_{A}(x), \mu_{A}(y)\}}.$

Thus A is a fuzzy Z-Subalgebra of X.

From the definition of A, it follows that $Im(A) = \{t_0, t_1, \dots, t_r\}$.

Hence the upper t-level Z-Subalgebras of A are given by the chain of Z-Subalgebras.

 $U(A;t_0) \subset U(A;t_1) \subset U(A;t_2) \subset \cdots \subset U(A;t_r) = X.$

Now $U(A;t_0) = \{x \in X \mid \mu_A(x_0) = t_0\} = S_0$.

Finally, we prove that $U(A;t_i) = S_i$ for i = 1, 2, ..., r.

Clearly $S_i \subseteq U(A;t_i)$.

If $x \in U(A;t_i)$, then $\mu_A(x) \ge t_i$ which implies that $x \notin S_i$ for j > i.

Hence $\mu_A(x) \in \{t_1, t_2, \dots, t_i\}$ and so $x \in S_k$ for some $k \le i$.

As $S_k \subseteq S_i$, it follows that $x \in S_i \implies U(A;t_i) = S_i$ for i = 1, 2, ..., r.

This completes the proof.

Note: If X is a finite Z –algebra, then the number of Z-Subalgebras of X is finite whereas the number of level Z- Subalgebras of a fuzzy Z-Subalgebra A appears to be infinite. But since every level Z-Subalgebra is indeed Z-Subalgebra of X, not all these Z-Subalgebras are distinct. The next theorem characterizes this aspect.

Theorem 3.10: Let A be a fuzzy Z-Subalgebra of a Z-algebra X. Two level Z-Subalgebras U(A;t) and U(A;s) (with t < s) of A are equal if and only if there is no $x \in X$, $t \le \mu_A(x) < s$.

Proof: Let A be a fuzzy Z-Subalgebra of a Z-algebra X.

Assume that U(A;t) = U(A;s) for some t < s and there exists $x \in X$ such that $t \le \mu_A(x) < s$. Then U(A;s) is a proper subset of U(A;t) which is a contradiction.

Hence there is no $x \in X$ such that $t \le \mu_A(x) < s$.

Conversely, Suppose that there is no $x \in X$ such that $t \le \mu_A(x) < s$. Since t < s, we get $U(A;s) \subseteq U(A;t)$ (1)

If $x \in U(A;t)$ then $\mu_A(x) \ge t$ and so $\mu_A(x) > s$, because $\mu_A(x)$ does not lie between t and s. Hence $x \in U(A;s)$.

Hence $U(A;t) \subseteq U(A;s)$ (2)

From (1) and (2) we get U(A;t) = U(A;s).

Remark 3.11: As a consequence of **Theorem 3.10**, the level Z-Subalgebras of a fuzzy Z-Subalgebra A of a finite Z-algebra X form a chain and so we have the chain $U(A;t_0) \subset U(A;t_1) \subset \cdots \subset U(A;t_r) = X$, where $t_0 > t_1 > t_2 > \ldots > t_r$.

Corollary 3.12: Let X be a finite Z-algebra and A be a fuzzy Z-Subalgebra of X. If $Im(A) = \{t_1, \dots, t_n\}$, then the family of Z-Subalgebras $U(A;t_i), i = 1, 2, \dots, n$, constitutes all the level Z-Subalgebra of A.

Proof: Let $t \in [0,1]$ and $t \notin Im(A)$. Suppose $t_1 < t_2 < \cdots < t_n$ without loss of generality. If $t \le t_1$, then $U(A;t_1) = X = U(A;t)$. If $t > t_n$, then $U(A;t) = \phi$ obviously.

If $t_{i-1} < t < t_i$, then $U(A;t) = U(A;t_i)$ by **Theorem 3.10**. Thus for any $t \in [0,1]$, the level Z-Subalgebra is one of $\{U(A;t_i) | i = 1, 2, \dots, n\}$.

Lemma 3.13: Let X be a Z-algebra and A be a fuzzy Z-Subalgebra of X. If Im(A) is finite, say $\{t_1,t_2,...,t_n\}$ then for any $t_i, t_j \in Im(A), U(A;t_i) = U(A;t_j)$ implies $t_i=t_j$.

Proof: Assume that $t_i \neq t_i$ and $t_i < t_i$.

If $x \in U(A;t_i)$ then $\mu_A(x) \ge t_i > t_i$.

Hence $x \in U(A;t_i)$

Let $x \in X$ such that $t_i < \mu_A(x) < t_i$.

Then $x \in U(A;t_i)$ but $x \notin U(A;t_i)$

Hence $U(A;t_i) \subset U(A;t_i)$ and

 $U(A;t_i) \neq U(A;t_i)$ a contradiction.

Then, $U(A;t_i) = U(A;t_j)$ Therefore $t_i = t_j$.

Theorem 3.14: Let A and B be two fuzzy Z-Subalgebras of a Z-algebra X with identical family of level Z-Subalgebras. If $Im(A) = \{t_1, t_2, ..., t_r\}$ and $Im(B) = \{q_1, q_2, ..., q_k\}$ where $t_1 \ge t_2 \ge ... \ge t_r$ and $q_1 \ge q_2 \ge ... \ge q_k$. Then

- i) k = r
- ii) $U(A; t_i) = U(B;q_i)$, i = 1, 2, ..., r
- iii) If $x \in X$ such that $\mu_A(x) = t_i$ then $\mu_B(x) = q_i$ i = 1, 2, ..., r.

Proof: Let A and B be two fuzzy Z-Subalgebras of X with identical family of level Z-Subalgebras with F(A)=F(B) where $F(A)=\left\{U(A;t_i) | i=1,2,...,r\right\}$ and

$$F(B) = \{ U(B;q_i) | i = 1,2,...,k \}.$$

Let Im(A) = {
$$t_1, t_2, ..., t_r$$
} where $t_1 \ge t_2 \ge ... \ge t_r$ (1)

and let Im(B) = $\{q_1, q_2, ..., q_k\}$ where $q_1 \ge q_2 \ge ... \ge q_k$ (2)

From (1) we get
$$U(A;t_1) \subseteq U(A;t_2) \subseteq ... \subseteq U(A;t_r) = X$$
 (3)

From (2) we get
$$U(B;q_1) \subseteq U(B;q_2) \subseteq ... \subseteq U(B;q_k) = X$$
 (4)

To prove (i): k = r

Suppose $k \neq r$, then consider the following cases:

Case (i): k > r

Let k > r then U(A; t_i)= U(B; q_i) i=1,2,...,r

This shows that both t_i and $q_i \in Im(A)$

For i > r we observe that $t_i \notin Im$ (A) and hence,

 $U(A; t_i) \neq U(B; q_i), i = r+1, r+2,...,k.$

Case (ii): r > k

Let r > k then U(A; t_i) = U(B; q_i) i=1,2,...,k

This shows that both t_i and $q_i \in \text{Im}(B)$.

For i > k we observe that $q_i \notin Im(B)$ and hence

 $U(A; t_i) \neq U(B; q_i), i=k+1,k+2,...,r.$

From (3) and (4) we get $t_i \neq q_i$ for all i=1,2,...,r.

Hence we can find some i such that $U(A; t_i) \neq U(B; q_i)$.

This contradicts that F(A)=F(B).

Hence we conclude that k = r.

To prove (ii): By part (i), we have proved that k = r. Since A and B have identical family of level Z-Subalgebras, we have

 $U(A;\,t_i) \equiv U(B;\,q_i)$, i=1,2,...,r.

To prove (iii): Let $x \in X$ such that $\mu_A(x) = t_i$ and $\mu_B(x) = q_i$

From (ii) follows that $x \in U(B;q_i)$, thus

 $\mu_{\rm B}(\mathbf{x}) \ge q_{\rm i}$ and $q_{\rm j} \ge q_{\rm i}$

Therefore $U(B;q_i) \subseteq U(B;q_i)$

Since $x \in U(B;q_i) = U(A;t_i)$, we get $t_i = \mu_A(x) \ge t_i$, this

gives $U(B;q_i) = U(A;t_i) \subseteq U(A;t_i) = U(B;q_i)$

Thus $U(B;q_i) = U(B;q_i)$ and by above **lemma:3.13** we get $q_j = q_i$.

Hence $\mu_{\rm B}(x) = q_{\rm i}$.

Hence the proof.

Corollary 3.15: Let A and B be two fuzzy Z-Subalgebras of X with identical family of level Z-Subalgebras. Then Im(A)=Im(B) implies A = B.

Proof: Let $Im(A) = Im(B) = \{q_1, q_2, ..., q_r\}$ where $q_1 \ge q_2 \ge ... \ge q_r$.

By **Theorem 3.14**, for any $x \in X$ there exists q_i such that $\mu_A(x) = q_i = \mu_B(x)$.

Thus $\mu_A(x) = \mu_B(x)$ for all $x \in X$.

This implies A=B.

4. Z -Homomorphism on Fuzzy Z-Subalgebras of Z-algebras:

In this section, we prove some simple theorems on fuzzy Z-Subalgebras under Z-homomorphisms in Z-algebras.

Theorem 4.1: Let h be a Z-homomorphism from a Z-algebra (X,*,0) onto a Z-algebra (Y,*',0') and let A be a fuzzy Z-Subalgebra of X with the supremum property. Then the image of A denoted by h(A) is a fuzzy Z-Subalgebra of Y.

Proof: Let $a, b \in Y$ with $x_0 \in h^{-1}(a)$ and $y_0 \in h^{-1}(b)$ such that $\mu_A(x_0) = \sup_{t \in h^{-1}(a)} \mu_A(t)$;

$$\begin{split} \mu_{A}(y_{0}) &= \sup_{t \in h^{-1}(b)} \mu_{A}(t). \\ \mu_{h(A)}(a *' b) &= \sup_{t \in h^{-1}(a *' b)} \mu_{A}(t) \\ &\geq \mu_{A}(x_{0} * y_{0}) \\ &\geq \min \left\{ \mu_{A}(x_{0}), \mu_{A}(y_{0}) \right\} \\ &= \min \left\{ \sup_{t \in h^{-1}(a)} \mu_{A}(t), \sup_{t \in h^{-1}(b)} \mu_{A}(t) \right\} \\ &= \min \left\{ \mu_{h(A)}(a), \mu_{h(A)}(b) \right\} \end{split}$$

Hence h(A) is a fuzzy Z-Subalgebra of Y.

Theorem 4.2: Let $h: (X,*,0) \to (Y,*',0')$ be a Z-homomorphism of Z-algebras. If A is a fuzzy Z-Subalgebra of Y then the pre-image of A denoted by $h^{-1}(A)$ is a fuzzy Z-Subalgebra of X. Converse is true if h is an Z-epimorphism.

Proof: Let $h: (X,*,0) \to (Y,*',0')$ be a Z-homomorphism of a Z-algebra (X,*,0) into a Z-algebra (Y,*',0') and let A be a fuzzy Z-Subalgebra of Y.

To prove: $h^{-1}(A)$ is a fuzzy Z-Subalgebra of X.

Let x, y \in X. Then, $\mu_{h^{-1}(A)}(x * y) = \mu_{A}(h(x * y))$ $= \mu_{A}(h(x) *' h(y))$ $\geq \min\{\mu_{A}(h(x)), \mu_{A}(h(y))\}$ $= \min\{\mu_{h^{-1}(A)}(x), \mu_{h^{-1}(A)}(y)\}$

Hence $\mu_{h^{-1}(A)}(x * y) \ge \min \left\{ \mu_{h^{-1}(A)}(x), \mu_{h^{-1}(A)}(y) \right\}$

Therefore, $h^{-1}(A)$ is a fuzzy Z-Subalgebra of X.

On the other hand, assume that h is an Z-epimorphism and $h^{-1}(A)$ is a fuzzy Z-Subalgebra of X.

Let $y_1, y_2 \in Y$. Since h is an Z-epimorphism, there exists $x_1, x_2 \in X$ such that $h(x_1) = y_1$ and $h(x_2) = y_2$.

www.wjert.org

This implies $x_1 = h^{-1}(y_1)$ and $x_2 = h^{-1}(y_2)$. Now, $\mu_A(y_1 *' y_2) = \mu_A(h(x_1) *' h(x_2))$ $= \mu_A(h(x_1 * x_2))$ $= \mu_{h^{-1}(A)}(x_1 * x_2)$ $\ge \min \{\mu_{h^{-1}(A)}(x_1), \mu_{h^{-1}(A)}(x_2)\}$ $= \min \{\mu_A(h(x_1)), \mu_A(h(x_2))\}$ $= \min \{\mu_A(y_1), \mu_A(y_2)\}$

Hence A is a fuzzy Z-Subalgebra of Y.

Definition 4.3: Let h be an Z-endomorphism of Z-algebras and A be a fuzzy set in X. We define a new fuzzy set A^h in X as $\mu_{A^h}(x) = \mu_A(h(x))$ for all $x \in X$.

Theorem 4.4: Let h be an Z-endomorphism of Z-algebra (X,*,0). If A be a fuzzy Z-Subalgebra of X. Then A^h is also a fuzzy Z-Subalgebra of X.

Proof: Let h be an Z-endomorphism of Z-algebra (X,*,0). Let A be a fuzzy Z-Subalgebra of X.

To prove: A^h is also a fuzzy Z-Subalgebra of X. Let x, $y \in X$. Then $\mu_{A^h}(x * y) = \mu_A(h(x * y))$ $= \mu_A(h(x) * h(y))$ $\ge \min\{\mu_A(h(x)), \mu_A(h(y))\}$ $\Rightarrow \quad \mu_{A^h}(x * y) \ge \min\{\mu_{A^h}(x), \mu_{A^h}(y)\}$

Hence A^h is a fuzzy Z-Subalgebra of X.

5. Cartesian Product of Fuzzy Z-Subalgebras of Z-algebras

In this section, we discuss the concept of Cartesian product of fuzzy Z-Subalgebras in Z-algebras.

Theorem 5.1: If A and B be fuzzy Z-subalgebras of a Z-algebra X then $A \times B$ is also a fuzzy Z-Subalgebra of $X \times X$.

Proof: Let A and B be fuzzy Z-subalgebras of a Z-algebra X.

To prove: A×B is also a fuzzy Z-Subalgebra of X×X. For any $(x_1,x_2), (y_1,y_2) \in X \times X$, we have $\mu_{A\times B} ((x_1,x_2)*(y_1,y_2)) = \mu_{A\times B} (x_1*y_1, x_2*y_2)$ $= \min \{ \mu_A (x_1*y_1), \mu_B (x_2*y_2) \}$ $\ge \min \{ \min \{ \mu_A (x_1), \mu_A (y_1) \}, \min \{ \mu_B (x_2), \mu_B (y_2) \} \}$ $= \min \{ \min \{ \mu_A (x_1), \mu_B (x_2) \}, \min \{ \mu_A (y_1), \mu_B (y_2) \} \}$ $= \min \{ \mu_{A\times B} (x_1, x_2), \mu_{A\times B} (y_1, y_2) \}$

Hence $A \times B$ is also a fuzzy Z-Subalgebra of $X \times X$.

We can generalize the above theorem as follows.

Theorem 5.2: Let $\{X_i | i = 1, 2, ..., n\}$ be a finite collection of Z-algebras and $X = \prod_{i=1}^{n} X_i$. Let A_i , i = 1, 2, ..., n be fuzzy Z-Subalgebras of X_i respectively. Then $A = \prod_{i=1}^{n} A_i$ is also a fuzzy Z-Subalgebra of X.

Theorem 5.3: If B is a fuzzy Z-subalgebra of a Z-algebra X then the strongest fuzzy relation A_B is a fuzzy Z-Subalgebra of X×X.

Proof: Let B be a fuzzy Z-Subalgebra of a Z-algebra X .Then for all $(x_1, y_1), (x_2, y_2) \in X \times X$, Then $\mu_{A_B}((x_1, y_1) * (x_2, y_2)) = \mu_{A_B}(x_1 * x_2, y_1 * y_2)$

$$= \min \{ \mu_{B}(x_{1} * x_{2}), \mu_{B}(y_{1} * y_{2}) \}$$

$$\geq \min \{ \min \{ \mu_{B}(x_{1}), \mu_{B}(x_{2}) \}, \min \{ \mu_{B}(y_{1}), \mu_{B}(y_{2}) \} \}$$

$$= \min \{ \min \{ \mu_{B}(x_{1}), \mu_{B}(y_{1}) \}, \min \{ \mu_{B}(x_{2}), \mu_{B}(y_{2}) \} \}$$

$$= \min \{ \mu_{A_{B}}(x_{1}, y_{1}), \mu_{A_{B}}(x_{2}, y_{2}) \}$$

Therefore A_B is a fuzzy Z-subalgebra of X×X.

CONCLUSION

In this article, we have introduced fuzzy Z-Subalgebras in Z-algebras and discussed their properties. In future, we will study fuzzy ideals on Z-algebras and related results.

ACKNOWLEDGEMENT

Authors wish to thank **Dr.M.Chandramouleeswaran**, Professor & Head, PG Department of Mathematics, Sri Ramanas College of Arts and Science for Women, Aruppukottai, for his valuable suggestions to improve this paper a successful one.

REFERENCES

- Bhattacharya P and Mukherjee N P Fuzzy relation and fuzzy group, Inform. Sci., 1985; 36: 267-282.
- Chandramouleeswaran M, Muralikrishna P, Sujatha K and Sabarinathan S A note on Z-algebra, Italian Journal of Pure and Applied Mathematics, 2017; 38: 707-714.
- 3. Christopher Jefferson Y and Chandramouleeswaran M, Fuzzy Algebraic Structure in BP-algebras, Mathematical Sciences International Research Journal, 2015; 4(2): 336-339.
- 4. Das P S Fuzzy groups and level subgroups, J. Math. Anal. Appl, 1981; 84: 264-269.
- 5. Imai Y and Iseki K On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy, 1966; 42: 19-22.
- Iseki K, On BCI-algebras, Mathematics Seminar Notes, Kobe University, 1980; 8: 125-130.
- Iseki K and Tanaka S An introduction to the theory of BCK- algebras, Math. Japon, 1978;
 23: 1-26.
- 8. Rosenfeld A Fuzzy groups, J. Math. Anal. Appl, 1971; 35: 512-517.
- 9. Xi O G Fuzzy BCK-algebras, Math. Japon., 1991; 36(5): 935-942.
- 10. Zadeh. L.A Fuzzy Sets, Information and Control, 1965; 8338-353.