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ABSTRACT 

The present paper is a study of dynamic modes in DC-DC converters 

on the basis of energy principles. As is known, the dynamic modes in 

converters are usually analyzed by forming differential equations 

systems according to Kirchhoff’s laws – also using commutation 

functions – and subsequently solving them. This leads to non-linear  

equations of high orders, solved by the averaging method and that by small signal analysis. 

The analysis turns out to be work consuming and its results are cumbersome and non-

transparent, so in practice they can be only applied to the simplest converters. At the same 

time, with the progress in power electronics the converters’ designs are becoming 

considerably more complicated, making it relevant to seek others, more efficient methods of 

study. In the present paper the analysis of converter dynamics is based on an approach, which 

long ago has become classical in mechanics and other fields, yet is still rarely used in 

electrical engineering. It is based on the use of a function containing the values of the 

magnetic and electrical energy in a circuit, that is, the function called the Lagrangian which 

makes it possible to rather easily obtain linearized equations for the averaged voltages and 

currents values, as well as corresponding linear circuits, the dynamic processes in which are 

identical with those going on in original converters. In order to illustrate the opportunities and 

efficiency of the approach, we have made an analysis of the dynamics of all the base 

converters: the buck-, boost- and buck-boost converters, as well as the Cuk, Sepik and Zeta 

converters. We also have analyzed a number of converters with more complex structures 
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having an increased number of reactive elements, which more clearly exemplify the 

advantages of the present approach. All our theoretical results have been confirmed by 

computer experiments and, in addition, many of the converters under consideration were 

realized as laboratory models and tested experimentally. The results of the experiments 

completely confirm our theoretical conclusions. 

 

KEYWORDS: DC-DC Converters, Dynamic Modes, Energy Functions, Lagrangian, 

Hamiltonian, Linearization. 

 

I. INTRODUCTION 

The analysis of the dynamic modes in DC-DC converters occupies an important place in their 

designing, allowing to identify in transient states possible excesses of the voltages and 

currents, to determine the durations of non-stationary modes, and, most important, to consider 

the converter as a link in an automatic control system. At present, such analyses are based on 

the groundbreaking work (Middlebrook, et al., 1976), which assumed the formation of 

differential equations systems based of Kirchhof’s laws, their adjustment using the 

commutation functions, transitions to smooth components by averaging, and subsequently, 

their solutions for small increments by the Laplace transform. The approach given in 

(Middlebrook, et al., 1976) is a completely universal one, but even for the circuits of the 

second order it becomes cumbersome and non-transparent. Examples of the analysis of 

various types of converters are given in vast literature, in particular, in (Tripathi, et al., 2019, 

Vratislav, et al., 2016, Hayes, 2016, Axelrod, 2015). 

 

While in the quoted approach, the continuous smooth components of the quantities are being 

selected, in another, also widespread approach, a lattice function of these quantities is taken, 

and the perturbations are written as δ-functions with subsequent solutions of the equations 

thus obtained by the z-transform (Axelrod, et al., 2005, Bahravar, et al., 2012). 

 

It should be noted that in the last decades computer modeling is widely used for the study of 

converter dynamics (Hsu, et al., 1979, Agrawal, et al., 2014). It allows one to avoid many 

assumptions and simplifications which are inevitable in the above approaches based on 

linearization, averaging, or selection of lattice functions. This is especially valuable in the 

cases when the linearization of a system is inadmissible in principle, and it is necessary to 

preserve the non-linear character of the processes, in particular in the study of chaotic modes 

(Tse, 2004, Beck, et al., 2020, 2019, Zhioua, et al., 2014). However, for all its great 

https://www.researchgate.net/scientific-contributions/Sepideh-Bahravar-2046139900?_sg%5B0%5D=nzf3J2v9fAKG2OxystYRnf-cg4MXNdkq0uEp_k3F1UyKBFflX0rqpZgPXifcwZuKtN6x2SM.-IaJBoaOd0xJ8QNP2SWL66zYCOEye8GJ7dCigxWp7H00X2Ty_cKUwERPAs0drAuDYmTUPyUfyhIVzrTEeGtg0w&_sg%5B1%5D=GEHkWVmfv5HOVMUhuHhQ7sSDcmRaBDRMD2_wsKTitnoj-KSbxI2IK4ZZ8BJ7FzAq8DXSRc0.Uwo9E8_gkiNOrYnD3KDAIrX9cIuGnezh4Ufu58Hj93byxSXWyykwvHGearINrK7SgqbH70-D6FaSngHlca6fmw
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opportunities, the computer modeling remains an efficient, but an experimental approach. It 

suits less for establishing general patterns and relations, which is possible in the analytical 

approaches mentioned above. 

 

At the same time, as early as in the 18-19 centuries in the analysis of dynamic modes in 

mechanics, basing on Newton’s laws, on the works by J.R d’Alembert, J.L. Lagrange, L. 

Euler, W.R. Hamilton and other outstanding mathematicians, the important optimization 

principles were developed, which made it possible to determine the trajectories of motion of 

the most various nature: in mechanics, thermodynamics, quantum electrodynamics, electrical 

engineering (Gantmakher, 2005, Prigogine, et al., 1994, Siмonyi, 1956,  Wells, 1938). These 

principles are not only a reflection of the deep unity of nature’s laws, but also they give new 

opportunities in the dynamic analysis modes of the very different nature phenomena. And 

they turn out to be very useful in the devises of power electronics, as will be illustrated in this 

paper on many examples. 

 

As noted in (Dennis, 1959), as early as 1873, J.C. Maxwell determined optimization 

principles in electrical engineering noting that in electrical circuits that contain voltage or 

current sources and resistors, the distribution of currents that lead to minimal release of active 

power abides by Kirchhoff’s laws. Maxwell’s observation thus set another approach to the 

investigation of electrical circuits: when determining currents one should base not on 

Kirchhoff’s laws, but on the condition of minimization of the released active power. This 

feature of electrical circuits has been used in many works for modeling the principles of 

minimizing the production of entropy as formulated by I. Prigogine, or its maximization, 

according to L. Onsager (Dennis, 1959, Martyushev, 2006, Landauer, 1975, Axelrod, et al., 

2005). 

 

It should be noted that despite the fact that in a more general case the optimization features of 

dynamic systems, including, of course, those in electrical engineering were formulated at 

least as early as in the 19th century, they, however, did not find their serious implementation 

in electrical engineering. Nevertheless, a number of publications did appear, which dealt with 

various aspects of electrical circuits on the basis of Hamilton’s principle, Lagrange’s energy 

functions (Hamiltonians, Lagrangians), and respective canonical equations. 

 

As one of the first works in that direction, we may point out (Wells, 1938), which gives a 

short introduction into the formulation of the canonical equations of the Lagrangian and 

https://aip.scitation.org/author/Wells%2C+D+A
https://aip.scitation.org/author/Wells%2C+D+A
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quotes some examples of its use in the analysis of electrical circuits. In (Russer, et al., 2012), 

the application of Lagrange and Hamilton methods to classical electrical circuits and to 

circuit quantum electrodynamics circuits is presented. There is also a discussion on the 

formulation of the Lagrangian and Hamiltonian equations for lossless electrical circuits 

including linear and nonlinear circuit elements. Three examples of the application of 

optimization principles are given in (Mayer, 2001): a conservative electrical circuit with five 

capacitors basing on a Hamiltonian, and – using a Lagrangian – a non-conservative electrical 

circuit of the fourth order with two resistors, as well as an electromagnetic circuit, an 

electromagnetic actuator. In (Kadhim, 2016) the author studies different electrical circuits 

using the Lagrangian formalism: the LC-circuit, RL-circuit, coupled circuits and a simple 

example of a DC-DC power converter. In (Scherpen, et al., 1999, 2003, Yildiz, et al., 2009, 

Sira-Ramirez, et al., 1996) optimization methods based on a Lagrangian are used for 

analyzing various DC-DC power converters; this approach yielded Kirchhoff’s equations, 

which nevertheless contained a commutation function, and which were later solved with the 

use of averaging the quantities in the equations. In (Skandarnezhad, et al., 2016), we see the 

same approach to analyzing DC-DC converters. A number of works illustrate the efficiency 

of the application of the Lagrangian for analyzing electrical circuits, including the converters 

with magnetic elements, in particular, three-phase transformers, (Lee, 2004, Tan, et al., 2008, 

Dworakowski, et al., 2020, Noah, et al., 2017, Umetani, 2015). One should also note a 

number of interesting publications on the use of the Lagrangian in power electronics, 

published in a collection (Umetani, 2015). The collection’s seven sections analyze – with the 

use of the Lagrangian – the stationary modes of various converters, including their complex 

modifications with ZVS and ZCS, as well as those with complex magnetic systems. The 

collection’s conclusion notes that our knowledge on the applications of Lagrangian dynamics 

to power electronics is scarce, although Lagrangian dynamics is widely applied in the 

mechanics areas. A particular attention should be given to a solid book on the application of 

optimization methods, (White, et al., 1959), devoted to electromechanical systems, and to 

(Soudakov, 2014), which gives examples of using the optimization approach to the linear 

purely conservative systems. 

 

The present paper uses the optimization approach to analyzing dynamic modes in DC-DC 

converters of most various types and shows its essential advantages over those used now. The 

paper’s composition is as follows. Section II is a brief introduction into the technique of the 

dynamics system's analysis using the optimization method, and Section III gives examples of 
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such analysis for the classic types of converters: boost-, buck-boost and buck converters. The 

next Section IV considers more complex fourth order converter circuits: Cuk-, Sepic and Zeta 

converters, while Section V consider widely used converters, which contain additional 

elements insuring increasing the transform coefficient of the output voltage. The theoretical 

results are being confirmed by computer modeling, and for some circuits, by experiments on 

a physical model, which also confirms the efficiency of the method proposed. 

 

II. A brief introduction into the methods of analysis of dynamics system. Hamilton’s 

principle and Lagrange’s energy function 

As is well known, and as we emphasized above, the finding of voltages and currents in 

dynamic modes of electrical appliances and systems is based on the solution of Kirchhoff’s 

equations written in the form of differential equations. In that case, one could say that the 

finding of the unknown quantities is related to infinitely small changes in a system. At the 

same time, there is another approach to the dynamics study of various natures systems. It is 

based on the assertion that the sought quantities which form the trajectory of motion lead to 

optimization (more often, minimization) of an energy function of a system. In that case, the 

dynamic trajectory of a system is determined by the finding of an extremum of some integral 

functions by the methods of variational calculus, that is, with the principles connected, as was 

noted in (White, 1959), with a large-scale motion of a system. A physical system has the 

unique trajectory of motion independently of its description principle. 

 

Hamilton’s principle is considered to be the most fundamental integral principle of 

description. For its realization N independent coordinates of a system, ( )jq t , and the same 

number of the coordinates ( )jq t are introduced. In a mechanical system they are respectively 

the spatial coordinate and its momentum, in an electrical engineering system, they are the 

electrical charge and flux linkage. Note in advance that depending on the problem, the roles 

of these two quantities may replace one another. The common formulation of Hamilton’s 

principle is that the variation of the time integral of a energy function L  between two points, 

1( )jq t and 2( )jq t should equal zero. We begin with defining a function I as the integral of an 

energy functionL . 

2

1

1 1( ,..., ; ,..., ; )

t

N N

t

I q q q q t dt L
        

(1)
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One of the formulations of Hamilton’s principle is: the actual dynamic trajectory of the 

system described by the energy function L , is determined by finding an extremum (usually, 

minimum) of the function I. This means that the independent of time variation  of the 

function I must equal zero. 

2

1

1 1( ,..., ; ,..., ; ) 0

t

N N

t

I q q q q t dt  L
       

(2)
 

and must obey the boundary conditions: 

1( ) 0jq t   and 2( ) 0jq t   for 1,2,3,..., .j N  

 

Now, it must be emphasized that the search of an extremum according to(2) results in 

determining a number of relations in the form of differential equations with respect to the 

coordinates jq and their derivatives jq , satisfying.(2)
 

 

As the energy function, we choose the Lagrange function, the Lagrangian, whose great 

advantage is that it is suitable both for conservative and non-conservative systems. Moreover, 

it is important that, in the case of a non-conservative system, Lagrange’s function can be 

applied only to its conservative part, and the influence of the non-conservative elements can 

be taken into account separately. This fact simplifies greatly the solving of the problem, since 

when considering converters, we consider first the part of the circuit consisting only of its 

reactive elements – inductors and capacitors – and later take into account the influence of the 

input voltages and resistors. 

 

For a conservative system, Lagrange’s function is the difference between the kinetic, qW , and 

potential, qW , energies of the entire system. 

q qW W L
           

(3)
 

For a mechanical system, obviously, 
2 2

1 12 2

N N
j j j

q

j jj

q m v
W

m 

   , where jm  and jv are the mass 

and velocity of the variation of the coordinate jq  respectively, while 
2 2

1 12 2

N N
j j j

q

j jj

q k q
W

k 

   , 

where jk it is some coefficient, for example, the stiffness of a spring. For an electrical 

engineering system, when one choses the flux linkages j jL i as the coordinates jq , and the 
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charge of the capacitors j jC v  as the coordinates jq , they are respectively the energy of the 

electric and magnetic fields: 

2 2

1 1

( )

2 2

N N
j j j j

q

j jj

C v C v
W

C 

  
         

(4)
 

and 

2 2

1 1

( )

2 2

N N
j j j j

q

j jj

L i L i
W

L 

  
         

(5)
 

Here and hereafter jL  and ji  are respectively the inductance and the current through it, jC  

and jv  are respectively the capacitance and voltage on it. It is necessary to emphasize that in 

order for the energy qW to be the energy of the coordinate jq , the charges of the capacitances 

were of the form of the derivatives of the flux linkages. When one chooses, on the contrary, 

as the coordinate jq , the charge of the capacitors j jC v  and, as the coordinate jq  of the flux 

linkages j jL i , the latter should be written as the derivatives of charges. 

 

Basing on the concrete form of the energy function (3), using the solution of the integral 

equation
 
(2), we find a system of N differential equations whose solutions satisfy the 

requirements of the extremum of the function I. (1) Note that the equations obtained will 

coincide with Kirchhoff’s equations, and this is natural, since the result of the solution should 

be the same independently  of the approach to the solution. 

 

The criterion (3) for Lagrange’s function, which was defined for the conservative part of the 

system, yields the Euler-Lagrange equations. 

0
j j

d

dt q q

  
     

L L
,          (6)

 

 

basing on which it is easy to obtain the above mentioned system of N differential equations 

analogous to Kirchhoff’s equations. 

 

Further, it is necessary to take into account the non-conservative forces jV , which are 

independent of the generalized coordinates and its momentums (in the case of mechanics). 

They are considered only as forces applied to the conservative part of the system at the points 

where these non-conservative forces act. In our case the examples of these forces are the 
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voltages applied to the clamps of electrical circuits, that is, the Euler-Lagrange equations will 

take on the form: 

j

j j

d
V

dt q q

  
     

L L

          

(7)
 

 

In order to take into account the resistance losses, that is, the forces of dissipation in the 

system, we introduce the Rayleigh function: 

2

1

1
( )

2

N

j j

j

F R q



          

(8)
 

 

Now, finally, for the entire non-conservative system, the Euler-Lagrange equations are 

written through the conservative Lagrangian as: 

j

j j j

d F
V

dt q q q

   
       

L L

         

(9)
 

 

Note some important features of the approach under consideration to the DC-DC converters 

dynamics analysis: 

1) An important simplification of our analysis is that the Lagrangian is defined only for the 

conservative part of the circuit. 

2) When forming the Lagrangian, for the time being, we may not accentuate our attention on 

the preserving in an unchanged form the magnitudes of the voltage on the capacitors and 

the currents trough the inductances, or on their averaging. Indeed, the energies on these 

elements little differ for both representations of the quantities mentioned. This equivocal 

attitude towards the form of these quantities can be preserved also on the stage of the 

formation of the systems of differential equations by the Euler-Lagrange formulas, and it 

is only at later stages that we will need to clarify that we deal with the averaged 

quantities. However, to be more specific in the further analysis, we will from the start 

keep in mind the transition to the averaged quantities without additional changes in the 

notation of these quantities. 

3) The equations of the circuit obtained basing on the Euler-Lagrange equations are linear, 

thus making it possible to represent the converter in the form of a simple linear circuit 

whose dynamics coincides with the dynamics of the original converter. 

4) The equations obtained are linear, and do not contain commutation functions. The latter 

were not needed in the course of all the procedures described above. At the same time, 
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when determining the Lagrangian, we will need to consider the topologies coming into 

being in the process of the functioning of the converter and to fix on that which defines 

the trajectory of the system’s motion. 

5) Note also that when analyzing the system, we will assume that the relations between 

voltages and currents in the stationary mode are known. As is known, they are derived 

from the volt-second balance equations of the inductances, or the ampere-second 

characteristics of the capacitors. 

Below, all these assertions are illustrated by many examples. 

 

III. Analysis of the dynamics of the three base DC-DC converters: boost, buck-boost 

and buck converters. 

III-1. Boost converter. The diagram of a classical boost converter is given in Fig. 1a, while 

the two topologies of its conservative part, in Fig. 1b and 1c. Note that we obtain the 

conservative part of its design by short-circuiting the voltage source Vin and by disconnecting 

the load R. In the first topology Fig. 1b (the switch is closed, the diode does not conduct) 

there are no energy changes on the reactive elements, therefore it does not create motion in 

the interpretation under consideration. The second topology in Fig. 1c (the switch is open, the 

diode conducts) provides an exchange of energy. The magnetic energy of the inductance 

2( )

2

in in
q

in

L i
W

L
 , but since the average value of current in the topology Fig. 1c in the steady 

state of an actual converter equals 
1ini i D , so by expanding this relation also to the current 

instant values (as usually is done in the averaging process) 
2 2( ) ( )

2 2

in in

in

L i Li

L L
 , 

where
2

1/inL L D , D , the duty cycle, 1 1D D  . Note that the value of the inductance 

energy did not change. We will call these changes of the inductance current and its value, 

which occur simultaneously, their reduction to the load. With accounting for the above said, 

the Lagrangian (3) of the conservative part takes on the form ( ov v ). 

2 2( ) ( )

2 2

Cv Li

C L
 L

                    
(10)

 

 

Let us write the charge on the capacitor through the derivative of the flux linkage 

di
Cv LC

dt
  , then the Lagrangian is  

2 2( / ) ( )

2 2

LCdi dt Li

C L
 L

              
(11)

 



Berkovich et al.                              World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001 : 2015 Certified Journal       

    

68 

S+
- C

L D

i

a) c)
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i
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+

-

in in

in
in

o

in

o

i

 

Fig 1: Boost converter, (a) diagram, (b) and (c), the conservative parts of the diagram at 

the closed and open switch respectively. 

 

1) The transition process under the jump-like action of the input voltage. 

Let us perform on (11) the Euler-Lagrange transform according to (6), obtaining ( ,q Li  

di
Cq LC

dt
 ). 

2

2
0

d i
LC i

dt
                       (12)

 

Basing on the dimensions in (12), we will assume as the force action the input voltage 

1

1o inV V

R D R
 , while the Rayleigh function of the power dissipation will be written in the form 

22

2 2

( ) 1

2 2

Cv di
F LC

RC RC dt

 
   

 
. Therefore, on the basis of (9), after dividing all the members 

of Eq. (12) by LC , we obtain: 

2

2

1

1 1inVd i di i

dt RC dt LC D RLC
  

                     

(13)
 

 

The equation obtained corresponds to the linear diagram in Fig. 2a, the transition process in 

which – under the jump-like action of the input voltage – in averaged quantities – is in 

complete correspondence with the transition process in the original boost converter design. 

While deriving the equation, we neglected the influence of active resistances of the circuit 

elements, but on the final stage of our analysis, they may be taken into account basing on the 

energy conversion efficiency of the circuit. The power losses thus obtained make it possible 

to determine the equivalent input resistance inR , which should be included into the linear 

diagram in a transformed form, 
2

1/eq inR R D , that is, reduced to the load, as the inductance. 
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+
-

R

i

LReq

C

a)

+

-v

Vo
+
-

R

i

LReq

C

b)

+

- v

dIin
vD

 

Fig. 2: Equivalent linear diagrams of a boost converter, (a) under jump-like changes of 

the input voltage, (b) under jump-like changes of the duty cycle. 

 

It should be emphasized, that inV  is a function of time - ( )inv t , and ( ) 0inv t   at 0t   and 

( )in inv t V  at 0t  . This factor is automatically taken into account in modeling the circuit in 

Fig. 2a and therefore the designation inV  will be retained for simplicity. If we analyze the 

circuit analytically, for example, when solving its equation with respect to the current i , then 

an impulse function ( )t should appear in the derivative. 

 

2) The transient state at jump-like changes of the duty cycle. 

Basing on the fact that in (13)
 1ini i D , after introducing for the current ini  small changes 

ˆ
ini and, for the duty cycle D , its increment d̂ , we get. 

1 1 1 1
ˆ ˆ ˆ ˆˆ ˆ ˆ( )( ) ( )in in in in in in ini I i D d I D I d i D d I D I d i         

            
(13a) 

 

We also take into account that a change of the duty cycle D  will also cause a change in the 

input action in (13) by the quantity VD . 

11 1 1( )

in in inV V V d
V

DD d D D d
D   

                    

(14)
 

 

Now (13) is being transformed into the form, which makes it possible to determine the 

transition process at a jump-like change of D: 

2

2

1 1

ˆ ˆˆ ˆ ˆ1 1

ˆ( )

in inV d I dd i di i

dt RC dt LC RLC LCD D d
   

               

(14a) 

 

When obtaining this equation we took into account that 1

1

1in inI D V

LC D RLC
 , and these member 

cancel each other out. Besides, the value of the inductance in (14) with the change in D 
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should also be changed: 
2

1
ˆ/( )inL L D d  . All that has been said above regarding the function 

inV  equally applies to the value inI d . 

 

Eq. (14) is in correspondence with the linear diagram in Fig. 2b, whose transition process 

under the jump-like action of the duty cycle is also in full correspondence in averaged values 

with the transition process in the initial circuit of the boost converter. In the two previous 

approaches to the analysis of transient states, for simplicity sake, we also spoke of a jump-

like action of the input voltage, or the duty cycle, however, the analysis will remain 

unchanged if these actions are functions of time. Note that Eqs. (13) and (14a) may be – as is 

usually done – subjected to the Laplace transform to describe a system of automatic control. 

We do not consider these procedures due to their trivial character. 

 

III-2. Buck-boost converter 

The diagram of a classic buck-boost converter is given in Fig. 3a. Obviously, the 

conservative part of the diagram in the two possible topologies will completely coincide with 

the latter for the boost converter in Fig. 1b,c. This means that the Lagrangians (10) and (11) 

remain valid in this case also, therefore the concluding Eq. (13) preserves its form, differing 

only in that, in order to preserve the actual value of the current through the load R , the power 

action – the input voltage – should be chosen equal to 
1

inV D

D
, that is, 

2

2

1

1 1inV Dd i di i

dt RC dt LC D RLC
  

                  

(15)
 

 

Obviously, this equation describes the transient state under the action of the input voltage. 
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Fig. 3: (a) boost converter, (b) buck converter. 
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Since Eq. (15) for the buck-boost converter differs from (13) only by the right-hand part, then 

in the mode of the action by the duty cycle, Eq. (14) remains in general preserved also for the 

buck-boost converter differing only by that instead of ˆ /inI d LC  there should be inserted the 

expression ˆ /LI d LC . 

The value 
1 1

ˆ 1

ˆ( )

inV d

RLCD D d
 has been preserved: 

11 1 1

ˆ ˆ( )1 1 1

ˆ ˆ( )

in in inV D d V D dV
V

RLC D RLC RLCD d D D d

 
D       

, that is. 

2

2

1 1

ˆ ˆˆ ˆ ˆ1 1

ˆ( )

in LdVd i di i I d

dt RC dt LC RLC LCD D d
   

                  

(16)
 

 

With accounting for this change of the source of current, the linear diagrams in Fig. 2a,b also 

keep their forms. 

 

III-3. Buck converter 

This converter (Fig. 3b) is a rather simple one from the point of view of the analysis of 

dynamics. In a purely formal approach, Eqs. (4)-(8) are being preserved, while in Eq. (9) the 

force action should obviously equal j inV DV , that is, Eq. (13) takes on the form. 

2

2

1 inDVd i di i

dt RC dt LC RLC
  

                   

(17)
 

 

and all the parameters of the diagram remain unchanged. Upon changing the duty cycle D for 

a new transient state, we get: 

2

2

ˆˆ ˆ ˆ1 indVd i di i

dt RC dt LC RLC
  

                   

(18)
 

 

IV. Analysis of the dynamics of three hybrid DC-DC converters: Cuk, Sepic and Zeta 

converters 

Analyzing the dynamics of these converters using the Lagrangian is of special interest, since 

these convertors contain four reactive elements, and analyzing them using usual methods 

leads to rather cumbersome formulae and non-transparent results. 

 

IV-1. Cuk converter. Fig. 4а shows the full diagram of the converter, while Fig. 4b, c, the 

conservative parts of its two topologies. The first topology is formed for the conductance of 
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the diode Do and shows the relations of the energies of the components L1 and C1, while the 

second, for the conductance of the switch S, and shows the connection between the energies 

of the elements L2, C1 and C2. This topology is a generalization of the right-hand part of the 

diagram in Fig. 4b, therefore, this right-hand part with the elements L2, C2 is left out of 

consideration. In Fig. 4b the current i1 is the input current iin reduced to the load, that is, 

1 1/( / )ini i D D , and the voltage 1v vD  also is the voltage on the capacitor C reduced to the 

load. Clearly, in order to preserve the energy on these components, the values of the 

inductance Lin and the capacitance C: 
2

1 1( / )inL L D D  and 
2

1 /C C D , should also be 

changed. In Fig. 4b,c indices of other values have also been changed, which themselves do 

not change. 

 

1) Transient response upon jump-like actions of the input voltage. Basing on the 

diagrams in Fig. 4b,c we write the values of the magnetic and electric energies of the 

conservative part of the converter. We take the flux linkages L1i1 and L2i2, as the generalized 

coordinates qj, like we did it in Section 3, while the voltages on the capacitors yield their 

derivatives jq and, respectively, the charges on the converters C1v1 and C2v2. With accounting 

for this, 

2 2

1 1 2 2

1 2

( ) ( )

2 2
q

L i L i
W

L L
           

           

(19)
 

2 2

1 1 2 2

1 2

( ) ( )

2 2
q

C v C v
W

C C
 

                   

(20)
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Fig. 4: Cuk converter, (a) diagram, (b) and (c), the conservative parts of the diagram at 

the open and closed switch respectively. 
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Further, we express the charges on the capacitors through the derivatives of the flux linkages. 

From Fig. 4b we find 1
1 1 1 1

di
C v L C

dt
  , and from Fig 4c, 1 2

2 2 1 2 2 2

di di
C v L C L C

dt dt
   . Thus, 

the sought Lagrangian takes on the form: 

2 2 2 2

1 1 1 1 2 1 2 2 2 1 1 2 2

1 2 1 2

( ( / )) ( ( / ) ( / )) ( ) ( )

2 2 2 2

L C di dt L C di dt L C di dt L i L i

C C L L


   L

             

(21)
 

 

Basing on the Euler-Lagrange equations, we obtain two equations of the conservative part: 

2

1
1 1 1 22

0
d i

L C i i
dt

    

2 2

1 2
1 2 2 2 22 2

0
d i d i

L C L C i
dt dt

  
                  

 (22)
 

 

As the energy function of power dissipation, we take the following equality. 

22

2 2 1 2
1 2 2 22 2

2 2

( ) 1

2 2

C v di di
F L C L C

RC RC dt dt

 
   

                  

 (23)
 

 

Action of forces will be determined by the output voltage of the converter divided by the 

resistivity of the load, 
1

1in oV D V

D R R
 . In the end, the equations for the averaged values of the 

currents i1 and i2 take on their final form. 

2

1
1 1 1 22

0
d i

L C i i
dt

    

2 2

1 2 1 1 2 2
1 2 2 2 22 2

oVd i d i L di L di
L C L C i

dt dt R dt R dt R
    

             

 (24)
 

 

The linear diagram given in Fig. 5a corresponds to this equations system. So, Eqs. (24) and 

the linear diagram in Fig. 5a are a solution of the problem of describing transient states in a 

Cuk converter upon a jump-like change of the input voltage. 
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Fig. 5: Equivalent linear circuit of a Cuk converter, (a) under jump-like changes of the 

input voltage, (b) under jump-like changes of the duty cycle. 

 

2) Transient response upon jump-like changes of the duty cycle. Let us introduce small 

increments into the first of Eqs. (22), and, replacing the current i1 with 

1 1
ˆ ˆ/(( ) /( ))ini i D d D d   , as well as taking into account the changed values of 

2

1 1
ˆ ˆ(( ) /( ))inL L D d D d    and 

2

1
ˆ/( )C C D d  , we get: 

2

1
1 1 1 2 22

ˆ
ˆ ˆ ˆˆ ˆ( ) ( )( ) ( )( ) 0in in

d i
D d L C I i D d I i D d

dt
       

              

 (25)
 

 

Since for a Cuk converter 1 2inI D I D  and also 1 1
ˆ ˆˆ ˆ/(( ) /( ))ini D d D d i   , we finally get: 

2

1 2
1 1 1 22

ˆ ˆˆ
ˆ ˆ

ˆ ˆ
inI dd i I d

L C i i
dt D d D d

   
                   

 (26)
 

 

Thus, with the help of this equation, we have taken into account the initial values of the 

currents i1 and i2 on the inductances by the moment of the change of the duty cycle. However, 

the circuit also contains two capacitors, and we must also take into account the initial values 

of the voltages on them. To do that, we take the linear circuit in Fig. 5a and write two 

equations through the voltages on the capacitors: 

1
1 1

2
2 2 1

,

0

o

di
L v V

dt

di
L v v

dt

 

  
         

          

 (27) 

 

Let us introduce small increments into the first equations in (27) replacing the voltage v1 with 

1v vD , and taking into account that in the steady-state the voltage on the capacitor 

C, 1/inV V D , and in an equivalent circuit in Fig. 5a, 1 1/inV V D D , we get: 
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1
1

1

ˆ
ˆˆ ( )in

o

Vdi
L v D d V V

dt D

 
    D 
 

        

          

 (28)
 

Accounting also for 
1

in
o

V D
V

D
 ,

11 1 1

ˆ ˆ( )

ˆ ˆ( )

in in inV D d V D V d
V

DD d D D d


D   

 
 and 1

ˆˆ ˆ( )v v D d  , Eq. 

(28) takes on the form. 

1
1 1

11 1

ˆ ˆˆ
ˆ

ˆ( )

in inV d V ddi
L v

dt DD D d
  

                  

 (29)
 

 

Treating the voltage v1 in the second equation in (27) in the very same manner, we get 

2
2 2 1

1

ˆˆ
ˆ ˆ inV ddi

L v v
dt D

  

                   

 (30)
 

 

Eqs. (26), (29), (30) are in correspondence with the linear diagram in Fig. 5b, which is totally 

equivalent to the Cuk converter as concerns the course of its dynamic mode upon jump-like 

changes of the duty cycle. 

 

IV-2. Sepic converter. Fig. 6а shows the complete design of the converter, while Fig. 6b 

shows the conservative part of its topology, which combines the energy exchanges on the 

conductance interval of the diode Do and on the interval of the closed state of the switch S. As 

in the case of the Cuk converter, in Fig. 6b the current i1 is the input current iin reduced to the 

load, that is, 1 1/( / )ini i D D , while the voltage 1 1( / )v v D D  also is the voltage on the 

capacitor C reduced to the load. For the preservation of energy on these components the 

values of inductance, Lin, and the capacitor, C, should also be changed: 
2

1 1( / )inL L D D   and 

2

1 1/( / )C C D D . The notation Lo, Co are replaced with L2, C2. 
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Fig. 6: Sepic converter, (a) circuit, (b) the conservative part of the diagram at the closed 

and open switch. 
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1) Transient state upon jump-like changes of the input voltage. As in previous sections, 

with accounting for the preservation of the form of the generalized coordinates Eqs. (19) and 

(20) for the values of the magnetic and electrical energies of the conservative part of the 

converter (Fig. 6) remain unchanged. And we find the charges on the capacitors through the 

derivatives of the flux linkages from Fig. 6b: 2
1 1 2 1

di
C v L C

dt
  and 1 2

2 2 1 2 2 2

di di
C v L C L C

dt dt
   . 

Thus the sought Lagrangian takes on the form 

2 2 2 2

2 1 2 1 2 1 2 2 2 1 1 2 2

1 2 1 2

( ( / )) ( ( / ) ( / )) ( ) ( )

2 2 2 2

L C di dt L C di dt L C di dt L i L i

C C L L


   L    

          

               (31) 

 

On the basis of the Euler-Lagrange equations, we get two equations of the conservative part. 

2

2
2 1 2 12

0
d i

L C i i
dt

    

2 2

1 2
1 2 2 2 12 2

0
d i d i

L C L C i
dt dt

  
        

          

 (32)
 

We still take Eq. (33) as the energy function F of the power dissipation, and 
1

1in oV D V

D R R
  as 

the force action. As a result, the equations for the determining the averaged values of the 

currents i1 and i2 upon jump-like actions of the input voltage take on the final form 

2

2
2 1 1 22

0
d i

L C i i
dt

    

2 2

1 2 1 1 2 2
1 2 2 2 12 2

oVd i d i L di L di
L C L C i

dt dt R dt R dt R
    

               

 (33)
 

 

This system of equation is in correspondence with the linear circuit in Fig. 7a. As compared 

with Fig. 5a, the inductances L1 and L2 switched places. 

 

2) Transient state upon jump-like changes of the duty cycle. 

Transforming Eqs. (32), (33) by analogy with the transformations(25)-(30), we will get for 

this mode an equivalent linear circuit in Fig. 7b. Eq. (33) differs from (34) in the signs at the 

currents i1, i2, as well as in the value of the voltage on the capacitor C1 in the steady state 

mode in the Sepic converter: Vc=Vin. Therefore, we have obtained relevant linear circuits 

both in the case of the transient state upon changes of the input voltage and in the case of 

changes in the duty cycle. 
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Fig. 7: Equivalent linear circuits of a Sepic converter, (a) under jump-like changes of 

the input voltage, (b) under jump-like changes of the duty cycle. 

 

IV-3. Zeta converter. Fig. 8а gives the full circuit of the converter, and Fig. 8b,c, the 

conservative parts of its two topologies: for the conductance of the diode Do and for the case 

of the closed switch S. 
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Fig. 8: Zeta converter, (a) circuit, (b) and (c), the conservative parts of the circuit at the 

open and closed switch respectively, (d) the equivalent circuit under jump-like changes 

of the input voltage. 

 

The first topology represents the relation of the energies of the components L1 and C1, and the 

second – upon the conductance of the switch S – represents the connection of the energies of 

the components L2, C1 and C2. This topology is a generalization of the right-hand part of the 

diagram Fig. 8b, so we do not consider this right-hand part with components L2 and C2. In 

Fig. 8b the current i1 is the input current iin reduced to the load, that is, 1 1/( / )ini i D D , and, 

as before, 
2

1 1( / )inL L D D  . 
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As a result, we see a full analogy with the processes in a Cuk converter, thus making it 

possible to base on the system of equations(22) in our further analysis. The equation of the 

energy function of power dissipation(23) also remains unchanged. However, in this case, as 

can be seen from the operation principle of the Zeta converter, the force effect acts only on 

the interval of the closed switch (interval D), i.e., in the mode of jump-like action of the input 

voltage, it should be equal to VoD. But since the output voltage in the equivalent circuit must 

remain Vo, it is necessary to introduce an additional source VoD1 which applied to the circuit 

L2-C2||R-C1. This makes it possible to represent an equivalent linear circuit for the Zeta 

converter in this mode as is shown in Fig. 8d. Since the voltage across the capacitor C is 

ov V , the condition 2

1 /C C D  must be satisfied to conserve its energy in the equivalent 

circuit. 

 

For jump-like changes of the duty cycle, the input source is already divided into two parts, as 

follows from Fig. 5b. The values and the mode of the activating of the sources of current, 

determined by the first equations of systems(22,23), remain unchanged. Therefore, the 

diagram in Fig. 5b will serve as an equivalent linear circuit of the Zeta converter in the mode 

of jump-like changes of the duty cycle. 

 

V. Dynamics analysis of some DC-DC converters with an improved output voltage 

gain. 

In the last decades, the main direction of new solutions in the field of DC-DC converters 

consisted in improving the output voltage gain both in the buck- and especially, in the boost 

converters. It dictated the introduction in the circuit of additional components, including 

inductors and capacitors. As a result, the orders of the differential equations of these 

converters increased, leading, in particular, to difficulties in analyzing dynamic modes 

making them more cumbersome and less transparent. 

 

The designs with magnetically connected inductors, with voltage multipliers, and with 

switched-capacitor/switched-inductor blocks became the mainstream directions in increasing 

the output voltage gain. Below we will quote some examples of the dynamics analysis of 

such enhanced converters basing on energy functions. The diagrams of these converters are 

shown in Fig. 9. 

 

Previously, on the basis of the Euler-Lagrange equations, using the Lagrangians, we got 

linear circuits described by identical dynamics under the action of the input voltage. In order 
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to get a linear circuit describing the dynamic state upon changes in the duty cycle, we needed 

to get another circuit with the sources of voltage and current, which take into account the 

initial conditions at the moment of the change of the duty cycle (see, for instance Fig. 5). We 

emphasize that like in the case of the boost converter in Section III-1 where an equivalent 

linear circuit of Fig. 2a was obtained, alike for the same linear circuit, on the contrary, can be 

set in correspondence with a conventional boost converter with the identical dynamics, both 

upon the action of the input voltage and changes in the duty cycle – without any changes of 

its parameters. Thus, more complex circuit of enhanced boost converters are reduced to the 

circuit on an equivalent conventional boost converter, with well-known dynamics. Consider 

this in more detail on four examples from Fig. 9. We will keep in mind the following notation 

of the parameters of the said boost converter: the input voltage vin, the input inductor L, its 

current i, the capacitor С, load R and its output voltage v. 

 

V-1. Fig. 9a gives the diagram of a modification of the boost converter with magnetically 

connected inductors L1 and L2, so that L2=n
2
L1 and n is the ratio of the turns of these 

inductors.[5] An additional diode D1 is designated for transmitting the dissipation inductance 

current to the load for the linkage coefficient k<1. For simplification and illustration, in this 

analysis we assume k=1, which yields (1 ) /(1 )out inV V nD D   . In order to write a 

Lagrangian, as before, we will take the flux linkage of the inductor as a generalized 

coordinate, and the charge of the capacitor as its “momentum”. This makes it possible to 

write the magnetic and electrical energies of the diagram, and respectively, its Lagrangian:
 

2 2( / ) / 2 ( ) / 2LCdi dt C Li L L . It is seen from the Lagrangian that the equivalent 

inductance of the conventional boost converter must be 
2

1( 1)L L n  , its input voltage 

source, (1 )in inv V nD  , and all the other parameters remain unchanged: C=Co, R=Ro. This 

we have obtained the design of a simple conventional boost converter with exactly the same 

dynamics of averaged values as in the far more complex original converter. 

 

V-2. Fig. 9b shows a widespread modification of the boost converter with a voltage multiplier 

based on the Dickson multiplier with three links (Axelrod, et. al., 2015). In such a converter 

with N links ( 1) /(2(1 ))out inV V N D   . Since, as is known, in such a design the voltages on 

the capacitors 1 2| | | | /(1 )inv v V D   , 3 1| | | 2 |v v , that is, the output voltage in this example 

12ov v , then at 1 2 3 oC C C C    the sum of energy on the capacitors, that is, electrical 
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energy, equals 2(3/ 2)q o oW C v . Since it is necessary to increase the input voltage in a 

conventional boost converter by the factor of ( 1) / 2 2N   , and respectively to decrease by 

the factor of two the input current, for energy conservation sake, the inductance in it must be 

increased by the four times. The Lagrangian will take the form as in paragraph V-1, where
 

(3/ 2) oC C ,  
2

/ 2 4in inL N L L    and
 

(( 1) / 2) 2in in inv V N V    . Also in that case of a 

rather complex design, we come to a less complex converter with the identical dynamics due 

to the choice of a correct energy function. Note that the number of links (three) in that 

example is not of paramount importance, since it, with correct accounting for the equivalent 

electrical energy, may be arbitrarily large. 

 

V-3. The Fig. 9c gives the design of a boost converter with a switched-inductor block, which 

makes it possible to get the output voltage (1 ) /(1 )out inV V D D    (Axelrod, et. al., 2020). 

For 1 2i i i  ,
 1 2 oL L L  , the magnetic energy of the design is 

2

q oW L i , while the 

corresponding Lagrangian also will take the form as in paragraph V-1. Obviously, the 

dynamics of the initial converter may be assessed by an equivalent boost converter whose 

input inductance equals 2 oL L , and the input voltage (1 )in inv V D  . In that example the 

input inductance is split into two parts, but our approach to the analysis will not change if it is 

split into N parts. 

 

V-4. As the last example, consider a boost converter with a switched-capacitor block, which 

also makes it possible to get the output voltage (1 ) /(1 )out inV V D D   (Axelrod, et. al., 

2020). To the conservative part of that design at the open switch, one can put into 

correspondence a Lagrangian  .  

 
2 2 2 2

1 1 1 1 1 2 1 2 2 2 2 1 1 1 2 2 2( / ) / 2 ( / / ) / 2 ( ) / 2 ( ) / 2LC di dt C LC di dt L C di dt C L i L L i L    L , (its 

parameters are explained below). Basing on it, we will write the Euler-Lagrange equations 

and obtain a linear design structurally coinciding with the design of the converter (naturally, 

without the switches and diodes, and with one capacitor instead of two, Ca and Cb: as in the 

second example, we accept the notation a bC C C  ). It coincides with Fig. 5a with the 

parameters
2

1 ((1 ) /(1 ))inL L D D   ,
2

1 2 /(1 )C C D   and unchanged L2=Lo, 2 oC C  and 

R= Ro. Since the original converter is based on the boost converter, so, as is shown in 

(Axelrod, et. al., 2020), this linear design can be simplified: the capacitors C1 and C2 can be 
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united, and the inductances L1 and 
' 2

2 2 /(1 )L L D   can also be united, where the latter is 

reduced to the former’s current, thus as a result, in an equivalent linear diagram 
'

12 1 2L L L   

and 12 1 2C C C  . 
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Fig. 9: The diagrams of four enhanced converters. 

 

In its turn, this three-element design can be put in correspondence with a conventional boost 

converter whose dynamics would be identical to the original more complex design, in which 

(1 )in inv V D  , inductance 
2

12(1 )L L D  , output capacitor 12C C  and load R . 

 

VI. Simulation and experiment results 

In order to check the results of the theoretical analysis, we carried out modeling in PSPICE of 

the transient states for all the converters considered above. The parameters of the modeled 

circuit for six types of classic converters are given in Attachment in Table 1A, while the 

modelling results, in Fig. 10. Respectively, the parameters of the modeled circuit of Fig. 9 for 

four types of converters with an improved the output voltage gain are shown in Table 2A, 

while the modeling results, in Fig. 11. 

 

For all the converter types in Fig. 10, we carried out the testing of the converter switching 

under consideration to the voltage Vin at the duty cycle D=0.5, with fixing the curves of the 

input inductance current iin and the output voltage vo. Then the duty cycle was jump-like 
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changed until reaching the value D=0.75, with continued fixing of the same values. 

Simultaneously, for D=0.5, we checked the curves of the input inductance i and the output 

voltage v for an equivalent linear circuit valid for jump-like changes of the input voltage, and 

for D=0.75, - for an equivalent linear circuit valid for jump-like changes of the duty cycle 

from D=0.5 to D=0.75. 

 

In the cases of the Cuk, Sepic and Zeta converters, we measured the currents of the input and 

output inductances iin, io, and output voltage vo, and in the equivalent linear circuit, the 

currents of two inductances: the current i1 on the input side, and the current i2 on the output 

side, as well as the voltages on the output capacitor, v2. In all the computer oscillograms we 

used the same color designation for the curves obtained: iin – green, i (or i1) - red, vo - blue, v 

(or v2 ) -purple, io – brown and i2 - yellow. 
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Fig 10: Modeling in PSPICE of the transient states for six types of classic converters, (a) 

boost, (b) buck-boost, (c) buck, (d) Cuk, (e) Sepic, (f) Zeta. 

 

Fig. 11 gives the results of the testing of the converters from Fig. 9 in the same modes of 

switching to the input voltage Vin at the duty cycle D=0.5 followed by a jump-like transition 

to the duty cycle D=0.75. In that case, the comparison was carried out with the processes in 

an equivalent boost converter. For a design under consideration, we measured the current in 
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the input inductance iin and the output voltage vo. Note that for the design in Fig. 9a we used 

the averaged value of the inductance L1 current, and for the design of Fig. 9с, the current in 

one of the inductances (the currents in both equal). 

 

In the model of an equivalent boost converter, we measured the current i of the inductance, 

and the output voltage v. The colors of the curves remained unchanged. The modeling results 

show that in all the cases considered there was observed a good coincidence transient states 

of the currents and voltages curves with the corresponding values in the equivalent linear 

circuits or with the values in an equivalent boost converter. 

 

0

2.0

4.0

5.0
 

           0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6

Time
(ms)

40

80

100

60

20

0

i(A),

iin

v

vo

           0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6
0

2.0

4.0

5.0
 

40

80

100

60

20

0

Time
(ms)

v
vo

iin

i

i

v

vo

i
iin

Time
(ms)

           
2.0 4.0 6.0 8.0 10.0

i(A) (V) ,v

0

12.0  

120

240

360

0

8.0

4.0

v(V)i(A),v(V)

                      0.2 0.4 0.6 0.8 1.0 1.2

Time
(ms)

vo

v

i

iin

0

8

2

10  

120

300

0

(A) i v

6

 , (V)

240

180

60

4

4.0

a) b)

c) d)
4.0

 

Fig. 11: Modeling in PSPICE of the transient states for four enhanced converters of Fig. 

9, (a), (b), (c), (d) –converters Fig. 9a, b, c, d respectively. 

 

We carried out experimental testing of the theoretical results on physical models of two types 

of converters, from basic groups in Sections III and IV, namely, the buck-boost converter and 

the Cuk converter. The parameters of the converters and the notation of the curves observed 

coincided with their values and notation upon the simulation. The results of the testing are 

given in the oscillograms in Figs. 12, which show the transient states when the converter 

under consideration is activated for D=0.5, and for the activation of the same voltage of the 

equivalent linear circuit valid for jump-like changes of the input voltage of the original 

converter. As is seen from the oscillograms, the curves illustrate the identity of the course of 

transient states in the converter under consideration and in an equivalent linear circuit. 



Berkovich et al.                              World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001 : 2015 Certified Journal       

    

84 

 

 

Fig 12: The process of switching on the investigated converters with a duty cycle of D = 

0.5 and their equivalent linear analogs, (a), (b) buck-boost converter, (c), (d) Cuk 

converter. 
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Attachment 

Table 1: A. 

Con- 

verter 

Parameters of initial 

converter 

Parameters of first equivalent linear 

circuit 
Parameters of second equivalent linear circuit 

Boost, 

Fig.1, 2 
24inV V  0.6inL mH 5C F 50R    

D=0.5 48inV V 2.4L mH  

5C F 50R    
0.75D  48inV V 0.5indI A  9.6L mH 5C F 50R    

Buck-

boost 
The parameters are the same. 

The parameters are the same, 

except 24inV V  
The parameters are the same, except 0.25dI A  

Buck 
The parameters are the same, except 

10R   . 

The parameters are the same, except 

for D=0.5 12inV V , for D=0.75 

18inV V  
 

Cuk 
24inV V 0.6in oL L mH   

10C F 10oC F 10oR    

D=0.5 

24inV V 1 2 0.6L L mH 
1 40C F  

2 10C F 10R    

0.75D  1 36inV V 2 12inV V 1 2 0.8I I A 
1 5.4L mH 2 0.6L mH  

1 18C F  2 10C F  10R    

Sepic 
24inV V 2inL mH  

1oL mH 20C F 50oC F 10oR    

D=0.5 24inV V 1 2L mH  

2 1L mH 1 20C F 2 50C F 10R    

0.75D  1 36inV V 2 12inV V 1 2 0.8I I A 
1 18L mH 2 1L mH  

1 2C F 2 50C F 10R    

Zeta 
24inV V 0.6in oL L mH   

20C F 10oC F 10R    

D=0.5 1 12inV V 2 12inV V 1 2 0.6L L mH   

1 80C F 2 10C F 10R    
The parameters of Cuk converter for 0.75D   
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Table 2A. 

Con- 

verter 
Parameters of initial converter 

Parameters of equivalent boost 

converter 

Fig. 9a 24inV V 1 2.4L mH 2 9.6L mH 2oC F 200oR    48(60)inV V 21.6L mH 2C F 200oR    

Fig. 9b 
24inV V 0.6inL mH  

1 2 3 0.5C C C F   200oR    
48inV V 2.4L mH 0.75C F 200R    

Fig. 9c 12inV V 1 2 0.6L L mH  1oC F 200oR    18(21)inV V 1.2L mH 1C F 200R    

Fig. 9d 
12inV V 1 0.6L mH  

1oL mH
1 2 0.5C C F  0.2oC F 200oR    

18(21)inV V 1.461L mH  

0.64C F 200R    

 

CONCLUSIONS 

1. The optimization method of dynamic modes analysis are now widely used in the studies 

of mechanical systems and in quantum electrodynamics. Their use in electrical 

engineering remains scarce. At the same time, as is shown in this paper, they turn out to 

be exceptionally suitable and laconic means in analyzing the dynamics of DC-DC 

converters, making it possible, by applying simple tools, find the Euler-Lagrange 

equations for voltages and currents averaged values and the corresponding linear designs 

whose dynamics is identical to the dynamics of voltages and currents averaged values of 

in the converters under consideration. 

2. Lagrange’s energy function, the Lagrangian, is the most suitable in the studies of the 

dynamics of DC-DC converters, which makes it possible to study non-conservative 

systems. 

3. This paper illustrates the use of optimization methods by the example of six base DC-DC 

converters. Along with that, we show the opportunities of its application on the example 

of four samples of enhanced converters with more complex designs including additional 

diodes and reactive components. Due to the analyzing of their Lagrangians, there arouses 

an opportunity to put in correspondence to them a conventional converter with the 

dynamics totally coinciding with that of the enhanced original converter. 
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