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ABSTRACT 

The research discussed the graphically analysis of the probability 

density function (pdf), cumulative distribution function (cdf), and 

power and size of hypothesis testing (minimum) of the parameter 

shape on the Lognormal distribution. In this research, we derived the 

formula of the power and figured their curve using R code. The result 

showed that the power Lognormal distribution depended on the degree 

of freedom n and bound of the rejection area, and parameter shape (). 

The curves of the power are sigmoid and they increase and more faster 

to be one on the small parameter shape () and large n. 

 

KEYWORDS AND PHRASES: Lognormal distribution, the power  

function of the hypothesis testing, R-code. 

 

1. INTRODUCTION 

Following Wackerly, et al.
[5]

, there are three important concepts of the hypothesis testing in 

rejecting or accepting null hypothesis (H0), namely (1) probability error type I (), (2) a 

probability error type II () and (3) a power. Here, the power is a significant method to test 

the testing on the parameter hypothesis testing. Therefore, we then studied more detail the 

power of the hypothesis testing on some various continuous distributions. One of them 

is Lognormal distribution. Note that, the power is defined as a probability to reject H0 
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under H1 in testing hypothesis H: versus H:, for parameter  (Wackerly, et al.
[5]

). 

From the previous research, we noted many authors, such as Pratikno
[2]

, Khan and 

Pratikno
[24]

 and Khan
[14]

, already studied the power in testing intercept with non-sample prior 

information (NSPI). They used the probability integral of the cumulative distribution function 

(cdf) of the continuous distributions to calculate the power. Moreover, Pratikno
[2]

 and Khan 

et al.
[13]

 used the power and size to compute the cdf of the bivariate noncentral F (BNCF) 

distribution in multivariate and multiple regression models. Here, we also noted that many 

authors, such as Khan
[14, 15, 16]

, Khan and Saleh
[17,18,19, 22, 23]

, Khan and Hoque
[21]

, Saleh
[1]

, 

Yunus
[6]

, and Yunus and Khan
[9, 10, 11, 12]

, have contributed to the research of the power in the 

context of the hypothesis area. In the context of the hypothesis testing with NSPI on 

multivariate and multiple regression models, Pratikno
[2]

 and Khan et al.
[13]

 used the BNCF 

distribution to compute the power using R-code. This is due to the computational of the 

probability integral of the probability distribution function (pdf) and cdf of the BNCF 

distribution are very complicated and hard (see Pratikno
[2]

 and Khan et al.
[20]

), so the   R code 

is used. Here, we noted that the probability density function (pdf) and cumulative 

distribution function (cdf) really significant contributed to analysis the power and size 

function as well as on continuous lognormal distribution. 

 

From the previous research, we noted that many papers already discussed the power of the 

hypothesis testing on the continuous distribution, but here we focused on lognormal 

distributions. To investigate the power, we have to follow some steps, namely : (1) we must 

determine the sufficiently statistics, (2) we then create the rejection area using uniformly 

most powerful test (UMPT), (3) we then derive the formula of the power of the lognormal 

distribution, and (4) finally we simulate graphically analysed of the power using generate 

data. 

 

In this paper, the introduction and objective are given in Section 1 and 2. The literature 

review and research methods are then presented in Section 3 and 4, respectively. The result 

and discussion is obtained in Section 5. The conclusion is provided in Section 6. 

 

2. OBJECTIVES 

The research focused to graphically analyses of the probability density function (pdf), 

cumulative distribution function (cdf), and derived the formula of the power function and size 

of the hypothesis testing of the parameter shape on the Lognormal distribution. 
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3. Literature Review 

To illustrate the power function, we follow Pratikno
[2]

, Khan
[14, 15, 16]

, Khan and Saleh
[17,18,19, 

22, 23]
, Khan and Hoque

[21]
, Saleh

[1]
, Yunus

[6]
, and Yunus and Khan.

[9,10,11, 12]
 Here, we noted 

that the maximum power and minimum size of the tests are used to test the eligible testing 

(among tests). Here, the power is defined as a probability to reject H0 under H1 in testing 

hypothesis, and the size is a probability to reject H0 under H0(see Wackerly, et al.
[5]

 and 

Pratikno
[2]

). Detail of the power and size on several continuous distributions and testing 

coefficient parameters on the regression model are found Pratikno et al.
[2, 3, 4]

 To illustrate the 

formula of the power function and their graph, we used the power function on case of 

the Binomial distribution (see Pratikno
[2]

), in testing H0: pp0 0.6versus H: p0.6, 

with rejection area  for several n7,9,20 and 30. The formula of the 

power function of this distribution is given as , 

and their simulation graphs are then given at Figure 1. 

 

 

Figure 1. The power of Binomial distribution on several n. 

 

From Figure 1, we see that the curve is sigmoid and tend to be zero more faster for large n. 

From the previous research, we then choose the blue (n=30) and red (n=20) curves are more 

suitable curve then others. They are quickly to be one for small p, we therefore recommend 

them as the significant curves of the power function of the Binomial distribution. 

 

4. Research Methods 

Step 1. We studied and simulated the pdf and cdf curves of the Lognormal Distributions. 

Step 2. Following to the previous research, we then derived the formula of the power and size 

of the Lognormal Distribution. Firstly, we find the sufficiently statistics. We then checked the 

monotonic maximum likelihood ratio (MLR) of the sufficiently statistics. Finnaly, we use the 
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uniformly most powerful test (UMPT) to get the rejection area (RR). 

Step 3. Based on step 2, we then produced graphically analysis of the power function and size 

Step 4. The conclusion is drawn by choosing the maximum power and minimum size. 

 

5. RESULTS 

5.1. The Graphs of the pdf and cdf of the Lognormal Distribution 

Following Hines, et al.
[25]

, Bain and Engelhardt
[7]

 and Balakrishnan and Lai
[8]

, the pdf 

formula of the random variable X of the Lognormal distribution (as bell-shape curve) is 

given as  with parameter 

, and 0, and the X is then notated as X~LOGN,2. Taking the equation (1) 

into ln, we then get lnX~N,2. The cdf of the lognormal distribution of X~LOGN,2,is 

then written as  where  is the cdf 

of the normal standard, X is random variable of the lognormal distribution, and lnX is 

random variable of the normal distribution. Using the equation (1), (2) and R-code, the graphs 

(curves) of their pdf and cdf are then presented in Figure 2. 

 

  
Figure 1.a. The pdf curve on several  Figure 1.b. The pdf curve on several  
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Figure 2.a. The cdf curve on several  Figure 2.b. The cdf curve on several  

 

5.2. The Power and Size of the Lognormal Distribution 

Following the technique in deriving the formula of the power function the Section 2, with an 

example on the binomial distribution case, and also referring to many previous research have 

already discussed the power of the hypothesis testing on the continuous distribution (but not 

in lognormal distributions). We then focused to conduct graphically analysis of the pdf, cdf 

and its power-size on lognormal distribution. The procedure to derive the formula of the 

power are: (1) determine the sufficiently statistics, (2) create the rejection area using 

uniformly most powerful test (UMPT), (3) derive the formula of the power of the lognormal 

distribution, and (4) finally simulate graphically analysed of the power using generate data 

on R-code. 
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Using the equation (4), the graphs of the power function of the lognormal distribution are 

presented in Figure 3. 

 

 

Figure 3: The power curve of the lognormal distribution at 0.05. 

 

We see from Figure 3. that the curves decrease as the increase, but they are more faster to 

be one when the n increases. Therefore, we note that both n and significantly affect to the 

skew-ness of their curves. Here, we also compute (and plot) the value of the size with 

different *, 0.01 and 0.05.Both size are constant, and they are different values, namely 

0.10 and 0.049.Following the rule of the previous research, we must choose the lower value 

of the size (usually close to the level of the significance,).The graphs of the size are then 

given in Figure 4. 

 

 
Figure 4: The size of the tests on 0.01 & 0.05. 
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From Figure 4., it is clear that the lower (small) size is around 0.049 and occurred on alpha is 

0.05, but not on alpha 0.01, the size is around 0.10. It means that we prefer to choose the 

minimum size when alpha is 0.05. 

 

6. CONCLUSION 

To derive the power of the lognormal distribution, we must consider sufficient statistics 

and UMP test for getting the rejection area. The result showed that the curves decrease as 

the increases, but they are more faster to be one when the n increases. The size is always 

constant, and the eligible size is 0.049 close to level of significance, and it is occurred when 

0.05. 
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