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ABSTRACT  

Victor Namis provided an elegant generalization of the Fourier 

transform (FT) to the fractional Fourier transform (FRFT) by deriving 

the FRFT from the Eigen function of the FT. The idea of using the 

FRFT for fundamental Signal Processing procedures such filtering, 

estimation and rotation is particularly interesting applications 

involving optical information processing. The FRFT has applied to 

transient motor current signature analysis. Also FRFT has applications 

in the field of radar system which use for focusing SAR/ISAR images. 

FRFT can be used in terms of differential equation. Namis solve 

several Schrodinger equations using this. Now, the researchers define  

various simplified form of FRFT known as simplified fractional Fourier transform (SFRFT). 

The reason behind that they are simplest for the digital computation, optical implementation, 

graded index medium implementation and radar system implementation with the same 

capability as the conventional FRFT. The aim of this paper is to provide generalization of 

SFRFT. Also derived some operational formulae as derivative, modulation, scaling property, 

linearity property and shifting property for simplified fractional Fourier transform. 
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INTRODUCTION 

The idea of Fourier transform was first suggested by French mathematician Joseph Fourier in 

1807. The fractional Fourier transform is a generalization of the ordinary Fourier transforms. 

Every property and application of the common Fourier transform becomes a special case of 

the fractional Fourier transform. The fractional Fourier transform was introduced by 

Wiener
[1] 

as a way to solve certain types of ordinary and partial differential equations arising 

in quantum mechanics. Unaware of Wiener’s work, Victor Namias
[2]

 proposed the fractional 

Fourier transform also to solve differential equations in quantum mechanics from classical 

quadratic Hamiltonian. His results were later refined by McBride, and Kerr
[3]

 developed an 

operational calculus for the transform. The fractional Fourier transform can be used to solve 

ordinary and partial differential equations as well as fractional and integral equations. 

 

The fractional Fourier transform is generalization of the ordinary Fourier transform.
[4]

 The 

FRFT implements the so called order parameter  which acts as ordinary Fourier operator. 

The order fractional Fourier transform represents the  power of the ordinary Fourier 

operator. When , we obtain the Fourier transform, while for , we obtain the 

signal itself. Any intermediate value of ) produces signal representation that 

can be considered as a rotated time-frequency of the signal.
[5]

 

 

PRELIMINARIES 

We define the Fourier transform of a function f(t) 

 

The inverse Fourier transform is 

 

The simplified fractional Fourier transform with angle  of a signal f(t) is defined as  

. 

 

Generalization of Simplified fractional Fourier transform 

The Generalization of simplified fractional Fourier transform with parameter  of  

denoted by  performs a linear operation given by the integral transform, 
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where, Kα  

 

The Test Function Space 

if 

for each compact  

    

 

 

Note that the space E is complete and therefore a Frechlet’s space. Moreover, we say that 

Generalization of simplified fractional Fourier transform if it is a member of  , the dual 

space of E. 

 

Properties 

A) Differential Property 

Prove That  

 

Proof 
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B) Linearity Property 

Prove that  

 

Proof 

 

 

 

 

 

 

C) First Shifting Property 

Prove that  

 

Proof 

 

 

 

 

 

 

D) Scaling Property 

Prove that  

 

Proof 
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E) Modulation Property 

I) Prove that  

 

Proof 

 

 

 

 

 

 

 

II) Prove that  

 

Proof 
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CONCLUSION  

In this paper, generalization of SFRFT provided. Also derived some operational formulae as 

derivative, modulation, scaling property, linearity property and shifting property for 

simplified fractional Fourier transform. 
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