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ABSTRACT 

We study the expected number of zeros for random linear combination 

of orthogonal polynomials with respect to measures supported on the 

real line. The counting measures of zeros for these random 

polynomials converge weakly to the corresponding equilibrium 

measures from potential theory. We quantify this convergence and 

obtain asymptotic results on the expected number of zeros located in 

various sets of plane. Random coefficients may be dependent and need 

not have identical distributions in our results. 

KEYWORDS: polynomials, random coefficients, expected number of 

zeros, uniform distribution, random orthogonal polynomials. 
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1. Asymptotic equidistribution of zeros 

Zeros of polynomials of the form (z) = , where  are random coefficients, 

have been studied by Bloch and Pόlya, Littlewood and Offord, Erdős and Offord. Kac, Rice, 

Hammersley, Shparo and Shur, Arnold, and many other authors. It is well known that, under 

mild conditions on the probability distribution of the coefficients, the majority of zeros of 

these polynomials accumulate near the unit circumference, being equidistributed in the 

angular sense. Let be the zeros of a polynomial of degree n, and define the zero 

counting measure. 
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=  

 

Equidistribution for the zeros of random polynomials is expressed via the weak convergence 

of  to the normalized arclength measure  with probability 1 (abbreviated as a.s. or almost 

surely). More recent work on the global distribution of zeros of random polynomials include 

papers of Ibragimov and Zaporozhets
[3]

, Kabluchko and Zaporozhets
[4,5]

, etc. In particular 

Ibragimov and Zaporozhets
[3]

 proved that if the coefficients are independent and identically 

distributed, then the condition E < ∞ is necessary and sufficient for   almost 

surely. Here, E[X] denotes the expectation of a random variable X. 

 

A major direction in the study of zeros of random polynomials is related to the ensembles 

spanned by orthogonal polynomials. The classical case also falls in this category as 

monomials are orthogonal with respect to  on the unit circumference, which may be 

used as explanation for clustering of zeros on T. These questions were considered by Bloom 

and Levenberg
[2]

, Bayraktar
[1]

, the author
[7]

 and others. Many of the mentioned papers used 

potential theoretic approach to study the limiting zero distribution including that multivariate 

polynomials. 

 

Let , k = 0, 1, 2,……., be complex valued random variables. We state results on the 

asymptotic zero distribution under general assumptions that do not require independence or 

identical distribution of random coefficients. Let the distribution function of | | be defined 

by (x) = P , x . Suppose that there is N ℕ, a decreasing function f:[a, 

∞)→[0, 1], a>1, and increasing function g:[0, b]→[0, 1], 0<b<1, such that  

dx < ∞ and 1 ≤ f(x), x [a, ∞),                                                                         (1.1) 

dx < ∞ and ≤ g(x), x [0, b],                                                                              (1.2) 

 

Hold for all k ≥ N. 

If F(x)is the distribution function of |X|, where X is a complex random variable, then  

E < ∞  dx < ∞, a ≥ 0, 

And 

E < ∞  dx < ∞, b ≥ 0, 
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Hence, when all random variables | , k = 0,1,2,……, are identically distributed, 

assumptions (1.1)-(1.2) are equivalent to E <  ∞. 

 

Define a sequence of orthonormal polynomials  with respect to a positive Borel 

measure  supported on E ⸦ ℝ and possessing finite moments, where (z) = 

…….and  > 0. We consider orthonormal polynomials with respect to a general 

measure with compact support, and the Freud polynomials orthonormal over E = ℝ with 

respect to an exponential weight. The goal of this paper is the study of zeros for the 

ensembles of random orthogonal polynomials. 

(z)                                                                                                         (1.3) 

 

Our first ensemble is spanned by orthogonal polynomials with respect to a measure   

with compact support E ⸦ ℝ that is regular in the sense of logarithmic potential theory. We 

use the notation for the class of measures regular in the sense of Stahl, Totik and Ullman. 

In particular, the class  is characterized by the following asymptotic property for the 

leading coefficients of orthonormal polynomials : 

 =  

 

Where  is the logarithmic capacity of E. Since E is a regular set in our case, the above 

limit is equivalent to the following: 

 = 1         (1.4) 

 

Where  denotes the supremum norm of  on E. We first show that the counting 

measures of zeros converge weakly to the equilibrium measure of E denoted by , which is 

a positive unit Borel measure supported on E. 

 

Theorm 1.1. Suppose that the measure  defining the orthonormal polynomials 

 has compact support E ⸦ ℝ that is regular in the sense of logarithmic potential 

theory. If the random coefficients  satisfy (1.1)-(1.2), then the zero counting measures 

of the random orthogonal polynomials (1.3) converge almost surely to  as n→∞. 
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The condition of regularity for  is standard in the theory of general orthogonal polynomials. 

If E ⸦ ℝ is a finite union of compact intervals, and if dv(x) = w(x)dx with w(x) > 0 a.e. on E, 

then  . 

If E = [a, b] ⸦ ℝ then it is well known that  

d (x) =  , x (a,b), 

 

which is the Chebyshev (arcsin) distribution. More generally, if E =  for N ≥ 2, 

where < <  <………< <  are real numbers, then there exist  ( , ), 

l=1,…..,N  1, such that the equilibrium measure of E is given by  

d (x) =  , x   

 

Theorem 1.1 allows to find asymptotics for the expected number of zeros in various sets. 

 

Corollary 1.2. Suppose that all assumptions of Theorm 1.1 hold, and denote the number of 

zeros for the random orthogonal polynomials (1.3) in a set S ⸦ ℂ by (S). If S ⸦ ℂ is a 

compact set satisfying ( ) = 0, then  

E[ (S)] =  

 

A typical example of a set  is given by any rectangle of the form {x + iy  ℂ: a ≤ x ≤ b, c ≤ y 

≤ d}, where a < b and c < 0 < d are real numbers. Note that Corollary 1.2 is not directly 

applicable to sets S ⸦ E. Lubinsky, the author and Xie
[6]

 proved for random orthogonal 

polynomials with real Gaussian coefficients that 

E[ (S)] = , S ⸦ E. 

 

We now turn to the second family of orthogonal polynomials related to the Freud 

(exponential) weights 

W(x) = , x  ℝ,                                                                                                        (1.5) 

 

Where c > 0 and  > 1 are constants. It is customary to define the orthogonality relation in 

this case by 

 = . 
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We need to introduce a scaling parameter to study the asymptotic distribution of zeros for 

random Freud orthogonal polynomials. Define the constants. 

 =  and  =  , 

and consider the contracted version of  from (1.3): 

:= , n  N.                                                                                                     (1.6) 

 

Consider the normalized zero counting measure for the scaled polynomial 

 of (1.6) where  are its zeros, and  denotes the unit point mass at z. The 

limiting measure for  is described by the Ullman distribution  

d (s) =  , s  [ . 

 

Note that  is the weighted equilibrium measure for the weight (x) = on ℝ. 

 

Theorm 1.3. If the random coefficients  satisfy (1.1)-(1.2), and  are Freud 

orthogonal polynomials, then the normalized zero counting measures for the scaled 

polynomials  of (1.6) converge weakly to  with probability one. 

 

Zeros distribution for random orthogonal polynomials with varying weights was studied by 

Bloom and Levenberg (see Section 6 of
[2]

). It might be possible to extend the above result to 

the class of superlogarithmic weights considered in.
[2]

 As before, we find asymptotics for the 

expected number of zeros in sets that do not have significant overlap with the real line. 

 

Corollary 1.4. Let the number of zeros for the polynomials (1.6) in a set S ⸦ ℂ be denoted by 

. If the assumptions of Theorem 1.3 are satisfied, and S ⸦ ℂ is a compact set such 

that ( ) = 0, then  

E[ ] = (S), S ⸦ ( ) . 

 

2. Expected Number of Zeros: Union of Compact Intervals 

The main results of this paper provide quantitative estimates for the weak convergence of the 

zero counting measures of random orthogonal polynomials (1.3) to the corresponding 

equilibrium measure. In In particular, we study the expected deviation of the normalized 
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counting measure of zeros  from the equilibrium measure  on certain sets, which is often 

called the discrepancy between those measures. We use a discrepancy result of Blatt and 

Grothmann for deterministic polynomials to obtain the following. 

 

Theorm 2.1. Suppose that E ⸦ ℝ is a finite union of compact intervals, and that the 

polynomials  are orthonormal over E with respect to a weight w ≥ 0. Let  be 

complex random variables satisfying E  < ∞, k = 0,…….,n, for a fixed t  (0, 1], and 

E >  ∞. If I ⸦ ℝ is any interval and S(I) := , then we have for 

the zero counting measure  of the random polynomials (1.3) that 

E  ≤ 8 

,         (2.1) 

 

Where B is a constant that depends only on E and w. 

 

One can replace the strip S(I) with other sets containing the interval I, e.g., with rectangles or 

sets bounded by the level curves of the Green function for ℂ\E. This gives essentially the 

same estimate as in (2.1), but with constant 8 replaced by a different one. 

 

In order to obtain more effective bounds, we consider the orthonormal polynomials  that 

satisfy  

 = O( ) as n → ∞,                                                                                                    (2.2) 

 

for a fixed positive constant p. This condition holds for many important classes of weights, as 

discussed below. 

 

Corollary 2.2. Under the assumptions of Theorem 2.1, suppose that fort (0, 1] we have  

< ∞                (2.3) 

And 

>       (2.4) 

 

If the orthogonal polynomials satisfy (1.4), then  

 = 0        (2.5) 

 = O  as n → ∞.      (2.6) 
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Since (S) = (S) is the number of zeros for  in S, (2.6) can be restated as  

E  = n (S(I)) + O . 

 

It is well known from the original work of Erdős and Turán that the order  of the 

right hand side in (2.6) is optimal in the deterministic case. Growth condition (2.2) holds true 

for polynomials orthogonal with respect to the generalized Jacobi weights of the form w(x) = 

v(x) , where v(x) ≥ c > 0 a.e. on E. Other classes of weights that generate 

orthogonal polynomials satisfying (2.2) can be obtained from a Nikolskii type inequality for 

algebraic polynomials : 

≤ C , 

 

where the integral on the right is equal to 1 for .  

 

We conclude this section by showing that the expected number of zeros for random 

orthogonal polynomials located at a positive distance from E is essentially negligible. 

 

Theorm 2.3. Suppose that the assumptions of Theorem 2.1 are satisfied. If S ⸦  is any 

closed set, then  

E ≤      (2.7) 

 

Where B depends only on E and w, and b > 0 depend only on E and S. In fact, b: =   

where  is the Green function for the complement of E with pole at infinity. 

 

Uniform assumptions give the following quantitative results for large n  ℕ. 

 

Corollary 2.4. If under the assumptions of Theorem 2.3 equations (2.2), (2.3) and (2.4) hold 

true, then 

E  = O  as n → ∞                                                                                              (2.8) 

E  = O  as n → ∞                                                                                            (2.9) 

 

It is now easy to modify the vertical strip S(I) of Theorm 2.1 into rather arbitrary set 

containing the interval I, by removing parts of this strip that are separated from I by a positive 
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distance. Indeed, the expected number of zeros in those parts is of the order , which is 

absorbed by the right hand side terms in (2.1) and (2.6). 

 

3. Expected number of zeros: Freud weights on ℝ 

We study the same questions on the expected number of zeros for random orthogonal 

polynomials as in the previous section, but the spanning polynomials  are now orthogonal 

with respect to a Freud weight (1.5) defined on the whole real line. Theorem 1.3 shows that 

the normalized zero counting measures  for the scaled polynomials (S) of (1.6) 

converge weakly to the Ullman distribution  with probability one. Our next result gives an 

estimate for the rate of this convergence in terms of expected deviation of from  on 

certain test sets. Note that our assumptions on random coefficients are the same as in the 

previous section, and are different from those of Theorem 1.3. 

 

Theorm 3.1. Let  be complex random variables satisfying E  < ∞, k=0,……,n, 

for a fixed t  (0,1], and  >  ∞. If I ⸦ ℝ is any interval and S(I) 

:= , then the zero counting measures  of the random polynomials (1.6) 

satisfy 

E  ≤ ,  (3.1) 

 

Where ,  > 0 depend only on the constants c > 0 and  > 1 in the weight W of (1.5). 

 

Corollary 3.2. If under the assumptions of Theorm 3.1 we have 

 < ∞        (3.2) 

 > ,         (3.3) 

E  = O  as n → ∞                                             (3.4) 

 

Letting (S) be the number of zeros for  in a set S ⸦ ℂ, we give an alternative form for 

(3.4): 

E  = n  + O . 

 

It is also possible to establish analogs of Theorem 2.3 and Corollary 2.4 for closed sets S ⸦  

\ [  ,but we do not develop this direction. 
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Proofs 

4.1. Proofs for Section 1 

We need to first develop results on the n-th root limits of random coefficients. These results 

are mostly known, but we include the proofs for convenience. Let  be a sequence of 

complex valued random variables, and Let  be the distribution function of , n  . Our 

assumptions for below are stated in (1.1) and (1.2). 

 

Lemma 4.1. If there is N   and a decreasing function f : [a,∞)→[0,1], a > 1, such that  

dx <∞ and (x) ≤ f(x),  x  [a,∞), 

holds for all n ≥ N, then 

≤1  a.s.       (4.1) 

 

Furthermore, if there is N   and an increasing function g: [0,b] → [0,1], 0 < b < 1, such 

that 

dx < ∞ and (x) ≤ g(x),  x  [0,b], 

holds for all n ≥ N , then 

1 a.s.             (4.2) 

 

Hence, if both assumptions (1.1) and (1.2) are satisfied for , then 

 1                a.s.      (4.3) 

 

The almost sure limits of (4.1)-(4.3) follow from the first Borel-Cantelli lemma. 

 

Lemma (Borel-Cantelli Lemma). Let  be a sequence of arbitrary events. If 

 < ∞ then ( occurs infinitely often) = 0. 

 

Proof of Lemma 4.1. We first prove (4.1). For any fixed  > 0, define events = 

, n  ℕ. Using the first assumption and letting m:=  + 2 , we 

obtain  =  = ≤  ≤ 

dt ≤ dx < ∞. 
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Hence ℙ(  occurs infinitely often) = 0 by the first Borel-Cantelli lemma, so that the 

complementary event   must happen for all large n with probability 1. This means that 

for all sufficiently large n∈N almost surely. We obtain that  

≤  a.s., 

and (4.1) follows because  may be arbitrarily small. 

 

The proof of (4.2) proceeds in a similar way. For any given , we set 

. Using the second assumption and letting m: 

= + 2, we have  

 =  ≤ ≤ dt ≤  dx < ∞. 

 

Hence  = 0, and  holds for all sufficiently large n  ℕ almost surely. 

We obtain that  

≥  a.s., 

And (4.2) follows by letting . 

 

We also need the following simple consequence of (4.3). 

 

Lemma 4.2. If (1.1) and (1.2) hold for the coefficients  of random polynomials, then 

 = 1 a.s.            (4.4) 

 

Proof. We deduce (4.4) from (4.3). Let w be any elementary event such that 

1, 

which holds with probability one. We immediately obtain that 

≥ = 1. 

 

On the other hand, elementary properties of limits imply that 

≤ 1. 

 

Indeed, for any  > 0 there exists  ℕ such that ≤ 1+  for all n ≥ by 

(4.3). Hence, 

≤  as n → ∞, 
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And the result follows by letting  → 0. 

 

We state a special case of Theorem 2.1 from Blatt, Saff and Simkani, which is used to prove 

Theorem 1.1. 

 

Theorem BSS. Let E ⸦ ℂ be a compact set of positive capacity cap(E), with empty interior 

and connected complement. If a sequence of monic polynomials  of degree n satisfy 

≤ cap(E),      (4.5) 

 

then the zero counting measures  of converge weakly to  as n → ∞. 

 

Proof of Theorem 1.1. Let the leading coefficient of the orthogonal polynomial  be  > 

0. Then 

 = (z) = + …….,  n  ℕ. 

 

Theorem 1.1 is proved by applying Theorem BSS to the monic polynomials 

 := ,    n  ℕ. 

 

We first estimate the norm 

≤ ≤ (n+1)  . 

 

Note that (1.4) implies by an elementary argument (already used in the proof of Lemma 4.2) 

that 

≤ 1. 

 

Combining this fact with (4.4), we obtain that 

 ≤ 1         a.s.       (4.6) 

 

Since   , the leading coefficients of the orthonormal polynomials  satisfy 

 = .         (4.7) 

 

Applying (4.2) and (4.7), we obtain that 

≥    a.s. 
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Using this together with (4.6), we conclude that (4.5) holds for our monic polynomials = 

 with probability one. 

 

Proof of Corollary 1.2. Theorem 1.1 implies that the counting measures converge weakly 

to  with probability one. Since  = 0, we obtain that  S converges weakly to  S 

with probability one. In particular we have that the random variables (S) → (S) a.s. 

Hence this convergence holds in  sense by the Dominated Convergence Theorem, as (E) 

are uniformly bounded by 1. It follows that 

 = 0 

 

For any compact set E such that  = 0, and  

≤ E → 0   as n → ∞. 

 

But E  = E , which immediately gives the result. 

 

we call a sequence of monic polynomials , with deg  = n, asymptotically 

extremal with respect to the weight  if it satisfies 

= , 

 

Where  is the supremum norm on ℝ and =  +  is the modified Robin constant 

corresponding to  It states that any sequence of such asymptotically extremal monic 

polynomials have their zeros distributed according to the measure . More precisely, the 

normalized zero counting measures of converge weakly to . Denote the leading 

coefficient of the Freud orthonormal polynomial  by . Recall the scaling paremeter  = 

 used to define the polynomials  in (1.6). We show that the monic polynomials  

(x): = ,   n  ℕ, 

are asymptotically extremal in the above sense with probability one, so that the result of 

Theorem 1.3 follows. 

Using orthogonality, we obtain for the polynomials defined in (1.3) that 

(x) dx = . 
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Hence, 

≤ ≤ (n+1) , 

and Lemma 4.2 implies that 

= = 1  

with probability one. Applying the Nikolskii-type inequalities, we obtain that the same holds 

for the supremum norm: 

 =  = 1 

with probability one. Recall that the leading coefficients of the Freud orthonormal 

polynomials  satisfy  

 = 2  

 

We also use below that 1 with probability one by (4.3). It follows that      

 =    = 

 =  =  = . 

 

Proof of Corollary 1.4. This result is proved in exactly the same way as Corollary 1.2, only 

replacing  with , and  with . The weak convergence of  to  with probability one 

is provided by Theorm 1.3. 

 

4.2. Proofs for Section 2 

We need the following consequence of Jensen's inequality. 

Lemma 4.3. If , k = 0,….., n, are complex random variables satisfying E  < ∞, k = 

0,….., n, for a fixed t  (0, 1], then  

E  ≤  .          (4.8) 

 

Proof. We first state an elementary inequality. If  ≥ 0, I =0,……., n, and  = 1, then 

 ≥  = 1 

For t  (0, 1]. Applying this inequality with   = , we obtain that  

≤  

And 

E  ≤  E . 
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Jensen's inequality and linearity of expectation now give that 

E  ≤   =  . 

 

Proof of Theorem 2.1. Observe that the leading coefficient of  is . Since E  > 

∞, the probability that = 0 is zero, and  is a polynomial of exact degree n with 

probability one. It gives the following estimate: 

 ≤ 8                                                                    (4.9) 

 

Using this estimate and Jensen's inequality, we obtain that 

E  ≤ 8  . 

 

It is clear that 

≤ . 

 

Hence, (4.8) yields 

  E  +   + 

. 

 

The leading coefficient  of the orthonormal polynomial  provides the solution of the 

following extremal problem: 

 = . 

 

We use a monic polynomial (z) that satisfies   C , where C > 0 depends 

only on E. Existence of such polynomial for a set E composed of finitely many smooth arcs 

and curves was first proved by Widom. Hence we estimate that 

 ≥ ≥ ≥ 

. 

 

It follows that  

 ≥ , 
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Where C depends only on E. Thus (2.1) follows by combining the above estimates. 

 

Proof of Corollary 2.2. We estimate the right hand side of (2.1). For this purpose, we make 

two immediate observations that (2.3) implies 

 = O  as n → ∞. 

 

While (2.4) implies 

 ≤ O  as n → ∞. 

 

If (1.4) is satisfied, then  

=  ≤ 1, 

Which implies that  

 ≤ 0. 

 

Hence, (2.5) follows from the above inequalities and (2.1). On the other hand, if (2.2) is 

satisfied, then  

 = O  as n → ∞, 

And (2.6) follows in the same manner. 

 

Proof of Theorem 2.3. Let (z) =  be an arbitrary monic polynomial of degree 

n with the zero counting measure  = . Since  is a unit measure supported on E, 

we have that  

 ≤ . 

 

We need the well known representation of the Green function  for the complement of E 

with logarithmic pole at infinity: 

  . 

 

Recall that  ≥ 0, z ℂ, and that  is a positive harmonic function in . Using 

Fubini’s theorm and the above identity, we obtain that 
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 =  =  = 

 =   ≥  

. 

 

Denoting b:= > 0, we arrive at the inequality 

b ≤ . 

 

If we set  =  and take the expectation, then the estimate becomes 

E ≤ . 

 

The rest of this proof is identical to that of Theorem 2.1. 

 

Proof of Corollary 2.4. We follow the same lines as in the proof of Corollary 2.2, but using 

(2.7) instead of (2.1). Namely, we again obtain from (2.2). (2.3) and (2.4) that 

 = O  as n → ∞, 

 = O  as n → ∞, 

And 

≤ O    as n → ∞. 

Hence, (2.8) and (2.9) are immediate from (2.7). 

 

4.3. Proofs for Section 3 

Proof of Theorem 3.1. Recall that the leading coefficient of  given by  does not 

vanish almost surely. Indeed, assumption E  >  ∞ gives the probability of  = 0 is 

zero, and  > 0. Hence, has exactly n zeros with probability one denoted by . We 

project the zeros of  onto the real line to construct the monic polynomial 

(z):= ,  = Re , 1 ≤ k ≤ n. 

 

It is obvious that the zero counting measures  =  for satisfy  = 

. 
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Note also that   

 ≤  , x  ℝ.                                                                                      (4.10) 

 

We use the discrepancy estimate for the signed measure  =   on a sufficiently large 

interval L ⸦ ℝ such that  and . In the notation of that result, we have that = 

 and =  are positive unit measures supported on L. We need to verify that the 

inequality  ≤ holds for all intervals I ⸦ L with a fixed constant C > 0, where 

 = ) is the equilibrium measure of . This inequality is satisfied 

because both  and  are supported on , the density of  is uniformly 

bounded above for  > 1, and the density of  is uniformly bounded below by a 

positive constant. We obtain that  

 = ≤ D  ≤ ,         (4.11) 

 

Where > 0, and  is expressed through the logarithmic potential of  denoted by . 

 =  =  =  

 

Since the function  is subharmonic in  \ , we obtain that 

 = . 

 

Recall that  is the weighted equilibrium measure corresponding to the weight (x) = 

on ℝ. This implies that  

 =  , x  , 

 

Where =  is the modified Robin constant corresponding to . Hence, we 

obtain from the above and (4.10) that 

 = ≤  

  =    =    . 
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Combining this estimate with (4.11), we arrive at 

 ≤  

 

Jensen's inequality now gives that 

E ≤ .        (4.12) 

 

It follows that 

 = 1. 

Since = , we obtain that 

 =  = O , 

 

where the constant in the O-term depends only on c and λ. 

It remains to estimate the term E  in (4.12). 

 

We obtain that  

 =  = ≤ ≤ 

. 

 

Hence, (4.8) gives 

E  ≤ E    

≤ + . 

 

Applying the Nikolskii-type inequality, we estimate 

 ≤ O  ≤ O , 0 ≤ k ≤ n, 

 

where we used that the polynomials  are orthonormal with respect to W on ℝ. Thus (3.1) 

follows from (4.12) and the above estimates. 

 

Proof of Corollary 3.2. Equation (3.4) follows from (3.1) by essentially the same argument as 

in the proof of Corollary 2.2, where we deduce (2.6) from (2.1). 
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