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ABSTRACT 

The paper is devoted to an estimation of the role of the reactive power 

in electrical systems considered as the determining factor in the course 

of all electromagnetic processes. To find its value, we use the area of 

the phase portrait of the voltages and current forming it. We have 

shown its connection with force functions, which, in accordance with 

Hamilton’s principle, determine the character of the changes in the 

mode of an electrical system. Since the force functions are based on 

the formulas containing the values of the energies of reactive elements, 

the above said holds also in the case of reactive power. We establish a relation between the 

magnitude of reactive power and a new concept, negentropy of the system defined as the 

density of the reactive power in time. The magnitude of negentropy is considered as a factor 

that in the general case reduces the entropy character of modes both from the point of view of 

the dissipation of active power and of its ordering. In this sense, the processes in electrical 

systems are considered to be similar to thermodynamic processes, where in order to ensure 

reversible (periodic) processes, negentropy processes should be present along with entropy 

ones. This paper, in order to support this affirmation, on an example of the processes in the 

Current Mode Control (CMC) Boost Converters, analyzes, on the one hand, relations 

between various bifurcation modes and subsequent chaotic modes, and , on the other hand, 

changes of the reactive power of the pulsations of the input current. Two different CMC 

modes have been considered – with the input current bounded from above, and from below 

(bottom). The converters have been run through all the bifurcations stages with passing into 
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chaotic modes, and in each of these modes the values of negentropy have been calculated. 

After that, the same evaluations have been conducted for various methods of mode 

synchronization. In all these cases, as well as some others, the magnitude of the reactive 

power, and the system’s negentropy have been evaluated and it was shown that synchronized 

modes occur due to an essential increase of negentropy. Our analysis has been accompanied 

by computer modeling of the said modes and illustrated by the necessary diagrams and plots. 

Our final conclusion is that it is negentropy that is the determining energy factor that brings 

order in the processes in converters. 

 

KEYWORDS: Reactive Power, Negentropy, Boost converter, Bifurcations, Chaos, 

Synchronization. 

 

1. INTRODUCTION 

In the recent decades, the phenomenon of determined chaos manifesting itself in non-linear 

dynamic systems is attracting special attention of the researchers in various areas of science 

and technology. This phenomenon is instrumental in better understanding of the course of 

complex transformation processes of very different nature (Hagen, 1983; Prigozhin, 1994). 

The determined chaotic modes are also observed in the power electronics machines which, as 

a rule, are nonlinear dynamic systems, and a vast literature is devoted to their research. 

Firstly, note the three important reviews devoted to the basics of nonlinear dynamics, the 

research methods and the laws of determined chaos (Tse, et. al., 2002, Nagy, 2001, Aroudi, 

et. al., 2005).  

 

The CMC boost converters have attracted the greatest attention of the researchers of 

determined chaos and bifurcation modes in the oscillations of the input power preceding it. 

The first detailed research of that phenomenon was given in (Deane, Hamill, 1990, 1992) 

which caused an increased interest, and was followed by a multitude of research publications. 

First of all, one should note the paper (Tse, 2003) and his monograph (Tse, 2004). Two basic 

aims were pursued in these works: preventing this phenomenon (or putting it in use) in the 

functioning of boost converters (or other converters) as pieces of machinery, or scientific 

research of this phenomenon of nonlinear dynamics. 

 

Of significant interest are the works of a group of authors (Baranovski, et. al., 1999, 2000, 

2003, Woywode, et. al., 2003], which – on the basis of the whole set of instruments of 

nonlinear dynamics – gives a qualitative analysis of the functioning of the CMC boost 
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converters, The authors put a special emphasis on the possibility to practically use the work 

of boost converters in chaotic mode in order to obtain a wide frequency spectrum more 

convenient for Electromagnetic Interference (EMI). Along with manifestations of nonlinear 

effects in a boost converter, the bifurcations and chaos in buck converters have also been 

researched (Aroudi, et. al., 2001). The work (Benadero, et. al., 2003) considered 

simultaneously manifestations of nonlinearity in three classic converters and emphasized 

similarities in their courses.  

 

The main methods of evaluation of the courses of chaotic modes are related to infinitesimally 

small variations in a system and the differentiation operations, like the formation of the 

Jacobi matrix. Along with that, another approach to the research of the dynamics of systems 

of various origins is known. It consists in optimizing (most often, minimizing) a force 

function connected with the system’s energy. In that case, the dynamic trajectory of the 

system is determined by the obtaining the extrema of some integral functions by variational 

calculus, that is the principles related to large movements of the system (White, Woodson, 

1959, Hasen, 1998, Berkovich, Moshe, 2021). On the other hand, a change of the force 

function and energy in a system will result in a change of the trajectory of motion. In our 

case, it means either exiting from the chaotic mode, or, vice versa, entering it. Therefore, it 

seems to be interesting to find a force, energy variable, whose changes would result in such 

changes in a strictly defined direction. The present paper proposes to take the time density of 

the reactive power circulating in the system as such a variable. It should be noted that this 

concept is based on (Emde, 1930, Mayevsky, 1978, Krogeris, et. al., 1993), where the authors 

proposed the term Entohmung (German) или de-Ohmization. In more detail, the influence of 

the time density of reactive power has been considered in (Berkovich, 2022) and earlier in 

(Berkovich, et. al., 1998), where, basing on similarities between cyclic processes in 

thermodynamic systems and electric circuits, this variable is represented as negentropy. The 

influence of the reactive (non-active) power circulating through supply source has been 

considered in an analysis of oscillatory modes in the Van der Pol oscillator based on not a 

tube amplifier, but on a transistor one, whose nonlinear character differs significantly from 

that based on tubes (Berkovich, et. al., 2021, 2024). 

 

In order to analyze the influence of the time density of the reactive power circulating in a 

system (negentropy) we have considered its action in a number of different occurrences of 

chaotic mode in CMC boost converters and shown a possibility of exiting (synchronization) 
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from a chaotic mode upon its increase. In all of the cases considered, we introduced into the 

system an additional sequence of pulses carrying certain information, but it is the negentropy 

character of the action of the reactive (non-active) power leads eventually to the stabilizing 

the processes in the system. 

 

The paper has the following structure. Section 2 considers some theoretical aspects related to 

the reactive power. Section 3 analyzes the processes in a CMC boost converter along the 

entire range of change of the kind of bifurcations and the subsequent chaotic mode. Further, 

Section 4 determines the magnitude of the time density of the reactive power – negentropy – 

in all of the modes considered. In Section 5 this magnitude has been determined after the 

elimination of anomalous modes by one of the types of synchronization: by periodic short-

duration shunting of the input inductivity. In Section 6 the synchronization has been achieved 

with the help of a stepwise form of the input voltage, and the character of the changes in 

negentropy is determined anew. Section 7 analyzes the changes of negentropy for current-

mode control with ramp compensation. And finally, Section 8 performs an analysis similar to 

that in Sections 2-4 for CMC boost converter bound from below. 

 

2. Estimating the magnitude of negentropy in electric circuits 

2.1.An approach to calculating the reactive power 

The variable called Entohmung (de-Ohmization) introduced in (Emde, 1930) is given by a 

following relation between the voltage sv and current si : 

1

2

s s
s s

di dv
M v i

dt dt

 
  

 
    (1) 

Assuming sin( )s m uv V t   , sin( )s m ii I t    and substituting these expressions into (1), 

we get: 

sin( ) cos( )1 1
sin

sin( ) cos( )2 2

m u m is s
s s

m i m u

V t I tdi dv
M v i VI Q

I t V tdt dt

    
  

    

    
      

     
 (2) 

where u i    .  

 

Thus, the quantity M equals the reactive power multiplied by the circular frequency, or 

divided by the period T with the coefficient 2 . In the case of non-sinusoidal forms of 

voltage and current the formula of M has two members, one a constant, and the second is a 

sum of sinusoidal time functions, whose average value over the period equals zero (Krogeris, 

et. al., 1993). The constant member will be equal 
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sink k k k

k k

M kV I kQ         (3) 

where ,k kV I are the effective voltage values on the inductivity and the pulsation current on it, 

k  is the angle of phase shift between them, k is the number of the harmonic of these 

magnitudes. 

 

Along with this, an integral method to determine the magnitude of the reactive power is also 

known 

(Emde, 1921, Mayevsky, 1978, Berkovich, 2022) 

0

1

2

T

Q idv


    or 
0

1

2

T

Q vdi


        (4) 

 

The minus sign before the integral is inserted in order that a positive value of Q corresponded 

to the consumption of the reactive power, and a negative, to its generation. On the basis of 

(4), integrating with respect to the voltage over the entire contour of the volt-ampere 

characteristic curve ( )s si f v , we get the reactive power to be equal to the area circumvented 

by the curve divided by 2 . The definition of the reactive power by (4) makes it possible to 

avoid finding the harmonic composition of the voltage and current. Note that the values of the 

reactive power found by (3) or (4) are equal. 

 

2.2. The reactive power and force functions 

The generation and circulation of the reactive power are closely connected with the so-called 

force functions. To consider that, let us dwell upon the optimization principle of Hamilton 

analysis.(Hasen, 1998). If in the integral formula (5) 

2

1

( , , )

t

i i

t

S q q t dt L      (5) 

 

a certain force function L is implemented, then the actual dynamic trajectory described by the 

function L is determined by finding an extremum (usually, minimum) of the function S. This 

means that the independent of time variation  of the function S must be equal zero (6)  

2

1

( , , ) 0

t

i i

t

S q q t dt  L     (6) 
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and satisfy the boundary conditions  

1( ) 0iq t   and 2( ) 0iq t  for 1,2,3,..., .i N  

 

In other words, Hamilton’s principle determines the character of changes of processes in 

electric circuits, the changes in voltages and currents. As the force functionL , we will 

consider the Lagrangian whose great value is that it can be used both for conservative and 

non-conservative systems. Moreover, it is very important that in the case of a non-

conservative system the Lagrange function can be applied only to its conservative part, while 

the influence of non-conservative elements can be taken into account separately. The 

independent coordinates of the system, ( )iq t  and the same number of coordinates ( )iq t are 

introduced; in a mechanical system they are respectively a space coordinate and its 

momentum; in an electric circuit they are the electric charge and flux linkage. Note in 

advance that depending of the goal, these two quantities may change roles. 

 

For a conservative system, the Lagrange function is the difference of the kinetic qW and 

potential qW energies of the entire system: 

q qW W L     (7) 

 

Consider a basic conservative circuit consisting of a capacitor C and a parallel connected 

inductivity L. In a most general form the Lagrangian assumes the form: 

22

2 2

CL CvLi
 L     (8) 

 

In such a circuit, implied by the initial conditions, the following values of the voltage or 

current are established:
 

cosC mv V t , sinL mi I t
    

 (9) 

 

The derivative of the Lagrangian multiplied by 
1

2
  yields: 

1 1 1 1

2 2 2 2

C CL L
L C L C

dv dvdi di
Li Cv v i

dt dt dt dt
  

 
     

 
L  (10) 
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The general structure of this formula is similar to M . Substituting (9) into (10) gives a 

sinusoidal function with double frequency whose amplitude equals the reactive power.  

* 1
2sin cos sin 2

2
m mM V I t t Q t          (11) 

 

Along with this, on the basis of the integral formula (4), we get 

2

0

1 1

2 2
L L Lm Lmv di V I




  , 

2

0

1 1

2 2
C C Cm Cmi dv V I




      (11a) 

 

i.e., we obtain the values of reactive power Q on inductance and capacitance.  

A similar formula we get by considering only the derivative L : 

1 1 1 1

2 2 2 2

C CL L
L C L C

dv dvdi di
Li Cv i L v C

dt dt dt dt

 
     

 
L   (12) 

 

or after substituting the values of the voltage and current according to (9) we get 

* 1
2sin cos sin 2

2
m mM V I t t Q t       (13) 

 

By making use of the integral method (4), we again directly obtain Q. 

In a more complex case, when the input voltage of the LCR circuit (C and R are connected in 

parallel) equals sins mv V t , the input current of the inductivity sin( )s L mi i I t    , and 

the voltage on the capacitor equals Cv , substituting these values into 
1

2
L  and applying the 

integral method makes it also possible to find Q. 

 

Obviously, it equals the consumed reactive power and, in accordance to (2), we get  

1
sin

2

s s
s s

di dv
M v i VI Q

dt dt
  

 
    

 
    (14) 

 

Note yet another connection between the Lagrangian (7) and the value of the reactive power,  

 . .
4 L Cav av

Q f W W       (15) 

 

where ..
,L Cav av

W W are the average values of the energy. Indeed, 

2

.m.

0

1 1
( sin )

2
L Lav

W L I t d t



 


  , or

 

2

.m.

1

4
L Lav

W LI  and, similarly, 
2

..

1

4
C C mav

W CV . After 
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multiplying the difference of the average values of the energy by 2 , we get 

 .m .m .m .m

1
sin

2
L L C CQ VI V I V I   , since the resulting reactive power is defined by the sum 

of the powers of the reactive elements of the circuit. 

 

The expression of the optimization Hamilton’s principle (5), not accidentally denoted by S, in 

(Hazen, 1998) is considered as the value of the entropy-information in mechanics. The 

dimension of this quantity (in mechanics also known as action) is J s . We see that the 

dimension of the mechanical entropy-information differs from the dimension of entropy in 

thermodynamics in that the inverse value of time plays the role of temperature. 

 

2.3.The magnitude of negentropy of an electric circuit 

As we have shown, the magnitude of Entohmung is related to the Lagrangian force function, 

which in accordance with Hamilton’s principle determines the changes in the trajectory of 

motion. As noted before, in the case of electric circuits, this function determines the values of 

voltages and currents. Entohmung will further be considered as negentropy (information) for 

electric circuits  

( )

( )
E

Q VAr
S

T s


     
(16) 

 

Note several specific features of that concept. 

1. In electric circuits only when there occurs the production and circulation of reactive 

power, electric energy could be transformed into other forms with transformations of its 

parameters and types; without the reactive power only the transformation of electric 

energy into the thermal one is possible, that is the production of entropy only. So, the 

reactive power may be considered as negentropy, which makes it possible to transform 

the system into another ordered low-probable state. A basis for such a definition was also 

provided by an analogy between thermodynamic and electric cyclical processes 

discovered in (Berkovich, 2022). 

 

2. The reactive power is produced by the reactive elements of a system which set the 

components of the energies in the force function and which, in accordance with 

Hamilton’s principle, determine changes in the modes of an electric circuit. That is, the 

magnitudes of these energies and theirs derivatives, the reactive powers, determine the 

magnitudes of voltages and currents in a system. 
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3. The reactive power may have the same value in the systems functioning at different 

frequencies. Therefore, in order to make it possible to compare different modes, 

negentropy is defined as the time density of the reactive power over a period, which is 

given by the Entohmung value divided by 2 : ( ) / ( )Q VAr T s . 

 

4. The form of the negentropy formula is similar to that of the thermodynamic entropy, in 

which, the role of the thermal energy ( )Q J is played by the magnitude of the reactive 

power, and the temperature 
0( )T K , a time interval is taken. 

 

5. In order to check the given theory, in the subsequent sections of this paper we give the 

results of the action of increasing negentropy on the ordering (synchronization) of various 

modes in CMC boost converters. 

 

3. The CMC mode in Boost Converters upon bounding from above without 

synchronization 

This mode of the functioning of boost converters has been considered in detail in (Beck, et. 

al., 2020), and here we give only a brief summary. Fig. 1a gives a simplified diagram of the 

well-known CMC principle when the current is bounded from above, Fig. 1b when the 

current is bounded from below, and Fig. 1c and Fig. 1d, the pulse diagrams when the current 

is bounded from above and below respectively.  

 

Fig. 2 shows in relative units bifurcations with transition to a chaotic mode for a specific 

example of a converter with the parameters Vin=20V; Lin o  

f=50kHz and the range of the bounding current Iref from 1.5A to 6.5A. In order to calculate 

relative units VB=Vin, IB= Vin/Ro. were taken as the base units. From now on the numerical 

values of the variables will be given in relative units, that is divided by the base values of VB 

or IB denoted by a capital letter with an asterisk (
*X ). In Fig. 2 *

.mininI denotes the values of 

the input current at the moments of arrival of pulse on the switch S (Fig. 1с). We see that the 

normal functioning of the converter remain preserved until the value *

refI  =4.5, followed by a 

bifurcation mode which transforms into a chaotic one *

refI =7.3A. 
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Fig. 1: Boost converter with CMC (a) CMC-above, (b) CMC-bottom, and currents 

diagrams for CMC- (c) CMC-above, (d) CMC-bottom. 

 

 

Fig. 2: Plot bifurcation diagrams for different values of 
*

refI  (CMC-above). 

 

4. Changes in the reactive power of the pulsations of the input current and negentropy 

in the processes of bifurcations (CMC-above). 

The characteristic feature of a pulsation of the input current is the consumption and 

circulation of the reactive power, which plays an important role in the converter’s 

functioning. These current pulsations and the voltage on the inductivity related to them 

determine the magnitude of the reactive (non-active) power circulating between the input 

source and the converter. To determine the magnitude of this power we will use the integral 

approach.
[4]

 

 

Based on,
[4]

 performing voltage integration along the entire contour of the volt-ampere 

characteristic curve of the input voltage and current values ( )s sv f i , we obtain that the 
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reactive power is equal to the area described by this curve divided by 2  . In a classic case of 

sinusoidal voltage and current, the volt-ampere characteristic would be an ellipse (Fig. 3a), 

whose area divided by 2 , the reactive power of the active-inductive load. 

 

Going back to the modes of the boost converter working, we will denote the pulsation current 

*

in
i  and, respectively, the pulsation voltage * *

inL inv L i . Obviously, the pulsation of the input 

current of the converter coincides with the pulsation of the inductivity current, but in the 

present case, the situation with the input voltage is more complicated. On the interval where 

the switch is closed the input voltage equals the source voltage. On the next interval – 

although formally the same voltage remains on the input, it is irrelevant for the determination 

the reactive power, therefore we will consider the voltage o inv v , as the input voltage, the 

more so that it coincides with the voltage on the inductivity, which in this case is the main 

consumer of the reactive power. Since further we will deal with non-sinusoidal magnitudes of 

the voltages and currents, with breaks of continuity and jump-wise changes, the integration in 

(4) must be replaced by summation, which results in 

1

1

2

N

n n

n

Q i v
 

    or 
1

1

2

N

n n

n

Q v i
 

     (17) 

 

As noted above, and shown in (Beck, et. al., 2020), one could make correspond to the 

magnitude of pulsations on the inductivity and voltage a limiting cycle in the plane * *

in Li v , 

whose area divided by 2  gives the value of that power calculated by the formula (3). 

 

Fig. 3b-3f shows a number of limiting cycles built up for various values of the current *

refI . In 

particular, the limiting cycle in Fig. 3b is constructed for the normal mode of the converter at 

*

refI =4.2. The subsequent cycles in Fig. 3c,d,e,f were obtained respectively: for *

refI  =5.4, the 

mode of the doubling of the period, for *

refI  =6.3, its quadrupling, further, for *

refI  =6.7, its 

octupling, and finally, for *

refI  =12.2, working in a chaotic mode. 

 

Further in this paper we will be interested in how this power and the magnitude of negentropy 

(16) related to it changes with varying *

refI . Eventually our aim is to pursue the mutual 

influence of the quantity ES of the bifurcation processes and the appearance of the chaotic 



www.wjert.org                         ISO 9001: 2015 Certified Journal       

Berkovich.                                      World Journal of Engineering Research and Technology 

  

 

 

 

144 

mode, as well as the related possibilities of synchronization of the processes and the 

prevention of anomalous modes. 

 

Table 1 shows the changes of the electric negentropy 
ES  with varying *

refI . Its upper row 

gives the values of the current *

refI , while the second, the relative values of the pulsations 

periods of the input current with bifurcations taken into account. For the chaotic mode we 

have taken thirty two periods of switching frequency which conditionally define its own 

period. The numerical values of the reactive powers found by the areas of limiting cycles in 

Fig. 3 are given in the third row, *

1,aQ . The same powers calculated by (3) through the 

harmonic composition are given in the next row of that table, *

1,bQ , from which we see a good 

coincidence of their values.  

 

Table 1 

Regime 
*

refI  4.2 5.4 6.3 6.7 10 12.0 

Bifurcations 

and Chaos 

*T  1 2 4 8 32 32 
*

1,aQ  0.5242 1.2388 2.7709 5.947 - - 

*

1,bQ  0.5207 1.2209 2.7150 5.6879 27.1801 33.5764 

*

ES  0.5207 0.6104 0.6787 0.7109 0.8493 1.0492 

 

 
Fig. 3: (a) - limit cycle in the plane s si v  for sinusoidal voltage and current, (b), (c), (d), 

(e) and (f) - limit cycle in the plane * *

in Li v  for respectively 
*

refI =4.2, 
*

refI =5.4, 
*

refI =6.3, 

*

refI =6.7, 
*

refI =12.2. 
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Correspondingly, the lower row gives the values of electric negentropy which in accordance 

with the definition * * */
E

S Q T have been calculated using the values of the reactive power in 

the fourth roe. As is seen from the table, in the process of deviation from the normal mode, a 

decrease in the bifurcation frequency and transition into the chaotic mode the reactive power 

increases. However, the magnitude of the electric negentropy 
*

ES  increases considerably less. 

 

To compare the possible influence of this quantity when it assumes increased values on the 

functioning modes of the converter, in the next section we consider the work of a boost CMC 

converter with prevented bifurcation modes and the transition into the chaotic mode due to 

the synchronization by periodic shunting of the input inductivity for a short period of time 

0.05 sT  (Beck, et. al., 2020). 

 

5. Changes in the reactive power and electric negentropy when oscillations are 

synchronized by periodic shunting of the input inductivity 

Consider named in heading of the section method of preventing the chaotic mode 

independently of the changes in the bounding current Iref and, correspondingly, of the value of 

the duty cycle D. The diagram for its realization is given in Fig. 4a.  

 

 
Fig. 4: Boost converter with synchronization of chaotic process, (a) circuit for CMC-

above, (b) current and pulse diagram. 

 

The diagram shows that a switch is connected in parallel to the input inductivity which is 

switched on for brief periods of time (approx. 0.05 sT ) when the inductivity current reaches 

the lower bound value of some current 1refI , which approximately equals its value when 
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functioning in a usual VMC mode. The current 1refI changes with the variations in the 

current refI  , that is increases or decreases simultaneously with it. The system of control of the 

boost converter is supplemented by yet another RS trigger (Fig. 4a, RS1), which forms a 

pulse on the output Q1 when the inductivity current reaches 1refI  and changes its state when a 

clock pulse reaches another input, as a result the additional switch opens.  

 

Fig. 4b shows the diagram of the input current of the converter. As in previous Section 3, we 

take the voltage vL as the input voltage, with a difference that during the shunting of the 

inductivity and the equality of the input current to zero, it also equals zero.  

 

Fig. 5 gives, in relative units, a diagram of the variations of the minimal values of the 

inductivity current in the process of variation of the current refI and, correspondingly, the 

current 1refI , in a sufficiently wide range, which do not result in the occurrence of bifurcations 

and transition into the chaotic mode due to the functioning of the switch S1. 

 

 

Fig. 5: Plot of variations of the lower limit values of the current I*L.min with 

synchronization of the CMC-above. 

 

Let us see how the input reactive power and negentropy, which were determined on the basis 

of limiting cycles and harmonic analysis vary in these conditions. The final results of our 

calculations are given in Table 2 for the CMC mode with the periodic shunting of the input 

inductivity. 

 

Table 2  

Regime *

refI  4.2 5.4 6.3 6.7 10 12 

Synchronization by 

inductance shunting 
*

ES  0.5207 1.4745 1.81 1.9714 3.4418 4.487 
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Note that in the case under consideration the relative frequency equals one, since no 

bifurcation modes have been observed. We also see that in this mode in all cases negentropy 

is considerably higher than in a mode without synchronization, due to which the mode was 

fully synchronized. For * 4.2refI   synchronization was not needed, therefore, there are no 

changes here. 

 

6. Variations of the reactive Power and Electric negentropy when oscillations are 

synchronized by a stepwise input voltage 

In the previous section we have achieved the synchronization of oscillations by short-duration 

shunting of the input inductivity resulting in an increase of the reactive power of the input 

current due to an obvious increase of the area of the limiting cycle of the pulsation of the 

input current - the input voltage, or in harmonic analysis, increasing the harmonic 

composition. A question arises, whether is it possible to reach the same aims by feeding the 

input with a stepwise voltage periodically changing with the frequency of switching of the 

converter with preserving its average value practically unchanged. A possible diagram of 

such an input voltage and its form are shown in Fig. 6а, 6b. Below we consider the modes of 

functioning when the input is supplied with a stepwise voltage formed with respect to its 

duration and the length of the steps according to Fig. 6b, so that the average value of the 

supplied voltage remains practically equal *

inV , or more precise, *1.05 inV .  

 

Fig. 6c gives in relative units a diagram of variations of the minimal values of the inductivity 

current in the process of variations of the current refI in a sufficiently wide range. One can see 

that due to the introduced stepwise form of the input voltage, the occurrence of bifurcations 

has been excluded, and thus no transition into the chaotic mode occurs. 
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Fig. 6: Boost converter with synchronization of chaotic process with step input voltage-

(a), circuit for CMC-above and input voltage diagram -(b), current curve I*L.min =f(
*

refI ) 

–(c). 

 

Fig. 7 shows two limiting cycles constructed for two different values of the current *

refI , one, 

which is close to the initial, * 4.2refI  , (Fig. 7а) and the second, close to the final one, 

* 12.52refI  , (Fig.7b).  

 

 

Fig. 7: Limit cycles in the plane * *

in Li v , for (a) 
*

refI =4.2, (b) 
*

refI =12.52. 

 

Table 3 gives the values of negentropy in the case of synchronization of oscillations with a 

stepwise input voltage and in particular, for the two above values of *

refI  Fig. 7. We see that 

in this case negentropy is considerably greater than the values in Table 1 for a usual CMC 
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mode, thus explaining the normal functioning of the converter. And we also see that these 

values are lower than in the shunting of the input inductivity except the first value, for it is of 

no great meaning, since here no synchronization is needed.  

 

Table 3  

Regime *

refI  4.2 5.4 6.3 6.7 10.0 12.52 

Synchronization by 

step voltage supply 
*

ES  0.89621 1.1863 1.3934 1.4824 2.1585 2.622 

 

Especially clearly seen is the decrease of the value of negentropy is observed in the last mode 

when * 12.52refI  . Note that when we attempted to additionally decrease the amplitudes of 

steps, especially in this mode there appear signs of the chaotic mode while the normal mode 

was still present at all the other points.  

 

It is interesting to check which limiting values of negentropy are needed for various values of 

*

refI  in order to exclude the subsequent occurrence of the chaotic mode. We have checked the 

action of the stepwise voltage in the form given in Fig. 6b while gradually decreasing the 

height of the step *

axV  (in the relative units, from the value 1.1 to the value 0.1 by regular 

steps equal 0.1) while keeping the average value of power supply unchanged by increasing 

the constant component (in Fig. 6a this component is denoted *

ayV  and * *1 0.4ay axV V  ). As the 

height of the step *

axV  decreased, the system passed jump-wise into the chaotic mode at the 

corresponding value of *

refI . Typical jump-wise transitions into the chaotic mode with the 

decrease of the steps are shown in Fig. 8, where there are also the values *

axV  и *

ayV for which, 

beginning with some boundary value *

.ref bI , the chaotic mode starts. Obviously, the value of 

negentropy at that point could be considered minimal for ensuring normal modes for all 

* *

.ref ref bI I .  

 

In their turn, for each *

refI  the magnitudes *

.ref bI and negentropy differ at the corresponding 

point, and decrease with decreasing *

refI . As a result, we obtain the limit curve of the minimal 

values of negentropies, Fig. 9, Curve 1. In the same figure, for comparison, we give Curve 2, 

that has been obtained using Table 3 for the unchanging form of the stepwise voltage. 
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Fig. 8: Current plots I*L.min =f(
*

refI ) for various forms of stepped input voltage. 

 

 
Fig. 9: 1- boundary curve of minimum values of negentropies, 2- negentropy values 

according to table 3. 

 

A similar picture is observed upon the checking of synchronization when using a supply 

voltage on the input, which is a sum of the constant voltage * *

.1in inv V  and a sinusoidal 

component * *

.2 cos((2 / ) )in in sv V T t , that is, * * * cos((2 / ) )in in in sv V V T t  . Such a form of the 

input voltage ensures the preservation of synchronization up to * 10refI  , and, for the sake of 

comparison, note that for * 10refI  , 
* 2.0722ES  , and that turns out to be insufficient for 

ensuring synchronization for * 12refI  . But for Vin=25 synchronization in ensured over the 

entire range of variation of Iref. Note that in this Section we did not aim at the optimization of 

the forms and amplitudes of the steps, it was important for us to show the possibility in 

principle of ensuring synchronization and to evaluate the changes in negentropy.  
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7. Changes in the reactive power of the input current pulsations for the Current-Mode 

Control with Ramp Compensation 

The work (Tse, 2004) considers in detail the possibility of expanding the zone of thee normal 

functioning of a boost converter in the СМС mode by delaying the moment of the occurrence 

of the doubling of the period. It is achieved by the simultaneous use, along with the linear 

level Iref , also of a saw-tooth voltage ( Fig. 10). 

 

 

Fig. 10: Diagram of Current-Mode Control with Ramp Compensation. 

 

As is shown in (Tse, 2004), such a CMC mode makes it possible to shift the moment of the 

occurrence of the doubling of the period from the value D=0.5 in the direction of 

significantly greater values of the duty cycle up to the elimination of bifurcations over the 

entire working range of the converter, which is achieved by increasing the slope of the saw-

tooth voltage mc. In particular, In the example under consideration of a converter with the 

CMC-above for mc*=1.5 the normal working mode is preserved until Iref*=9 and D=0.625 

(Fig. 11). Correspondingly, the values of negentropy in the zone of values *

refI , where chaos 

earlier occurred, increased from the third to the sixth value (Table 4).  

 

Table 4 

Regime 
*

refI  4.2 5.4 6.3 6.7 9.0 12.0 

CMC with Ramp 

Compensation 

*

ES  0.4688 0.5906 0.7069 0.7572 1.0253 - 

 

 

Fig. 11: Сurrent plot I*L.min =f(
*

refI ) with Ramp Compensation. 
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7.1 Note 

It can be noted here that to shift the moment of occurrence of the doubling of the period 

followed by its quadrupling cold be achieved by decreasing inductivity when as a result 

negentropy increases. Thus in the example of a converter considered here, a decreasing of the 

inductivity by half results in the shifting of the doubling point to * 4.9refI  (instead of 

* 4.36refI  ) and of the quadrupling point to * 7.9refI   (instead of * 5.92refI  ). And the values 

of the first two values of negentropy in Table 4 have practically doubled. 

 

In (Dongale, et. al., 2015) the authors have checked the influence of the magnitude of the 

capacitor on the moments of doubling or quadrupling of the period and the durations of these 

intervals. It has been shown that the increasing of the capacitor magnitude leads to delaying 

(shifting) of the moments of bifurcations’ occurrence. The verification of the changes of the 

magnitude of negentropy has shown its decrease at the points of bifurcation upon decreasing 

the magnitude of the capacitor. Until now, we did not consider the issue of the reactive power 

of the capacitor pulsations, since its magnitude is negligibly small as compared to the power 

of pulsations of the inductivity current. Thus, for the parameters of the converter assumed 

here ( ) and the magnitude of negentropy for * 4.36refI   SE=0.521 the magnitude of 

the capacitor’s negentropy is only SEC=-0.044. However, upon the decreasing of the 

capacitor’s magnitude to , the negentropy that is, changes little, SE=0.501, while the 

capacitors’ negentropy yet increases to SEC=-0.218 and reduces its summary magnitude do to 

the negative value. и снижает суммарную ее величину за счет отрицательного значения. 

This fact explains the more early arrival of the doubling of the period when the magnitude of 

the capacitor decreases to  for * 3.1refI  . 

 

8. The CMC-bottom mode. The changes of the reactive power of the pulsations of the 

input current and of negentropy in the processes of bifurcations and for various 

principles of synchronization 

Below, using the some example of a converter with the same parameters, but working in the 

CMC mode but bounded from below (CMC-bottom, Fig. 1b, 1d) (Beck, et. al., 2020), we will 

analyze its functioning mode when the bounding current Iref varies within the limits from the 

higher value 2.5Ato the lower 0.5А. Fig. 10 shows the diagram of bifurcations followed by 

the transition to the chaotic mode expressed in the relative units while the values of 

negentropy for various zones are given in Table 5. 
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Table 5 

Regime 
*

refI  3.5 2 1.5 1.35 1.1 

Bifurcations and 

Chaos 

*T  1 2 4 8 32 
*

ES  0.73 0.63 0.53 0.50 0.34 

Synchronization by 

inductance shunting 
*

ES  
-0.6247 -0.2065 -0.1260 -0.1048 -0.0718 

Synchronization by 

step voltage supply 
*

ES  
1.7631 1.4896 1.3829 1.3446 1.2723 

 

Let us further consider an application of the synchronization method by periodical shunting 

of the input inductivity on a short time interval 0.05 sT (Beck, et. al., 2020). Unlike the use of 

this method in Section 4 in the CMC-above mode here the shunting is performed not when 

the inductivity current reaches the minimal value, but vice versa when it approaches the 

maximal level; in that zone the main switch opens and the shunting switch closes for a short 

time. 

 

This results in the complete elimination of the bifurcation mode and the transition to the 

chaotic mode over the entire range of variation of *

refI  (Fig. 11a). The fourth row of Table 5 

gives for comparison the values of negentropy obtained in this case for the same values of 

*

refI . From being of inductive character (consuming reactive power), they pass into a 

capacitance mode (generation of reactive power). 

 

 

Fig. 10: Plot bifurcation diagrams for different values of 
*

refI  (CMC-bottom). 

 

We will also carry out the checking of the elimination of anomalous modes by feeding the 

converter with a stepwise voltage of the form Vinx=Vin+Vax, where Vin=13, and Vax=40((-

0.8+(t/Ts -floor(t/Ts)))>0).  
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Fig. 11: Plot of variations of the lower limit values of the current I*L.max of the CMC-

bottom, a)with pulse synchronization, b) with stepped input voltage. 

 

This change of the input voltage results also in the complete elimination of the bifurcation 

mode and transition into chaotic mode over the entire range of variations of *

refI  (Fig. 11b). 

The values of negentropy obtained in this case for the same values of *

refI , are given for 

comparison in the fifth row of Table 5; one can see that are considerably greater than the 

corresponding values in anomalous modes.  

 

9. CONCLUSIONS 

1. The reactive power in electric circuits is determining factor in the course of all 

electromagnetic processes. Being related to the force functions whose formulas contain 

the magnitudes of the energies of reactive elements, it is the reactive power which 

according with Hamilton’s principle determines the character of the changes of the modes 

of the electric circuit and is the stabilizing factor in the elimination of the chaotic modes, 

while reducing the system’s entropy. 

2. The direct indicator of this effect is the magnitude of negentropy which is the density of 

the reactive power in the course of the period.  

3. In order to verify these assumptions, we have analyzed various methods of 

synchronization and elimination of chaotic modes in CMC boost converters in two cases 

– bounded from above and below – and confirmed them The negentropy was determined 

by the magnitudes of pulsations of the input current.. 
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4. In the CMC mode-above the comparison of the magnitudes of negentropy upon 

bifurcations and chaotic modes on the one hand and upon the synchronization of them 

and total elimination by short-duration shunting of the input inductivity shows a 

considerable increased of the magnitude of negentropy, thus explaining the stabilization 

of the functioning modes.  

5. We have proposed a method of synchronization by the supplying to the converter a 

stepwise voltage, which also confirms the resulting increase of negentropy ensuring the 

synchronization process. 

6. Besides a stepwise voltage, the possibility of synchronization is pointed out, when a 

constant voltage is supplied to the converter on which a cosine wave is superimposed 

whose frequency equals the frequency of the converter’s switching, which also is 

accompanied with an increase of negentropy. 

7. In the CMC-bottom mode a comparison of the magnitudes of negentropy in a usual mode 

and upon the synchronization by short-duration shunting of the input inductivity shows 

that the reactive power of pulsations assumes a capacitance character instead of an 

inductive one, that is the reactive power is being generated. We have also shown the 

possibility of synchronization when a stepwise voltage is supplied to the circuit, and that 

is accompanied by an essential increase of negentropy. 
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