

World Journal of Engineering Research and Technology WJERT

www.wjert.org

SJIF Impact Factor: 7.029

OPTICAL COEFFICIENTS IN THE N(P)-TYPE DEGENERATE CdSe(1-x) Te(x)-CRYSTALLINE ALLOY, DUE TO THE NEW STATIC DIELECTRIC CONSTANT-LAW AND THE GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION (14)

Prof. Dr. Huynh Van Cong*

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 21/09/2024

Article Revised on 11/10/2024

Article Accepted on 01/11/2024

*Corresponding Author Prof. Dr. Huynh Van Cong

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

ABTRACT

In the n(p)-type $\mathbf{CdSe_{1-x}Te_x}$ - crystalline alloy, with $0 \le x \le 1$, basing on our two recent works^[1,2], for a given x, and with an increasing $\mathbf{r_{d(a)}}$, the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $\mathbf{r_{d(a)}}$, concentration x, and temperature T.

Those results have been affected by (i) the important new $\varepsilon(r_{d(a)},x)$ law, developed in Equations (8a, 8b), stating that, for a given x, due to
the impurity-size effect, ε decreases (Σ) with an increasing (\nearrow) $r_{d(a)}$,
and then by (ii) the generalized Mott critical d(a)-density defined in the
metal-insulator transition (MIT), $N_{CDn(NDp)}(r_{d(a)},x)$, as observed in

Equations (8c, 9a). Furthermore, we also showed that $N_{CDn(NDp)}$ is just the density of carriers localized in exponential band tails, with a precision of the order of **2.88** × **10**⁻⁷, as that given in Table 4 of Ref.^[1], according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by: $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$, as defined in Eq. (9d).

In summary, due to the new $\epsilon(r_{d(a)},x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands $N^*(N,r_{d(a)},x)$, for a given x, and with an

www.wjert.org ISO 9001: 2015 Certified Journal 306

increasing $r_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

KEYWORS: CdSe_{1-x}Te_x- crystalline alloy; impurity-size effect; Mott critical impurity density in the MIT, optical coefficients.

INTRODUCTION

Here, basing on our two recent works^[1,2] and also other ones^[3-8], all the optical coefficients given in the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{CdSe_{1-x}Te_x}$ - crystalline alloy, with $0 \le x \le 1$, are investigated, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $\mathbf{r_{d(a)}}$, concentration x, and temperature T.

Then, for a given x, and with an increasing $r_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

ENERGY BAND STUCTURE PARAMETERS

First of all, in the $n^+(p^+) - p(n) X(x)$ - crystalline alloy at T=0 K, we denote the donor (acceptor) d(a)-radius by $r_{d(a)}$, and also the intrinsic one by: $r_{do(ao)} = r_{Se(Cd)} = 0.114$ nm (0.148 nm).

A. Effect of x- concentration

Here, the intrinsic energy-band-structure parameters^[1], are expressed as functions of x, are given in the following.

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by:

$$m_{c(v)}(x)/m_0 = 0.095 (0.82) \times x + 0.11 (0.45) \times (1 - x).$$
 (1)

(ii)-The unperturbed relative static dielectric constant of the intrinsic of the single crystalline X- alloy is found to be defined by:

$$\varepsilon_0(x) = 10.31 \times x + 10.2 \times (1 - x).$$
 (2)

(iii)-Finally, the unperturbed band gap at 0 K is found to be given by:

$$E_{go}(x) = 1.62 \times x + 1.84 \times (1 - x).$$
 (3)

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values as:

$$E_{do(ao)}(x) = \frac{{}^{13600 \times [m_{C(v)}(x)/m_0]}}{[\epsilon_0(x)]^2} \text{ meV}, \tag{4}$$

and then, the isothermal bulk modulus, by:

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{3}\right) \times \left(r_{do(ao)}\right)^3}.$$
 (5)

B. Effect of Impurity $r_{d(a)}$ -size, with a given x

Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant $\varepsilon(r_{d(a)}, x)$, developed as follows.

At $r_{d(a)} = r_{do(ao)}$, the needed boundary conditions are found to be, for the impurity-atom volume $V = (4\pi/3) \times \left(r_{d(a)}\right)^3$, $V_{do(ao)} = (4\pi/3) \times \left(r_{do(ao)}\right)^3$, for the pressure $p, p_o = 0$, and for the deformation potential energy (or the strain energy) $\sigma, \sigma_o = 0$. Further, the two important equations^[1,7], used to determine the σ -variation, $\Delta \sigma \equiv \sigma - \sigma_o = \sigma$, are defined by: $\frac{dp}{dv} = \frac{B}{v}$ and $p = \frac{d\sigma}{dv}$. giving: $\frac{d}{dv}(\frac{d\sigma}{dv}) = \frac{B}{v}$. Then, by an integration, one gets:

$$\left[\Delta\sigma(r_{d(a)},x)\right]_{n(p)} \hspace{0.5cm} = \hspace{0.5cm} B_{do(ao)}(x) \hspace{0.5cm} \times (V- \hspace{0.5cm} V_{do(ao)} \hspace{0.5cm}) \times \hspace{0.5cm} \ln$$

$$\left(\frac{v}{v_{\text{do(ao)}}}\right) = E_{\text{do(ao)}}(x) \times \left[\left(\frac{r_{\text{d(a)}}}{r_{\text{do(ao)}}}\right)^3 - 1\right] \times \ln\left(\frac{r_{\text{d(a)}}}{r_{\text{do(ao)}}}\right)^3 \ge 0. \tag{6}$$

Furthermore, we also shown that, as $r_{d(a)} > r_{do(ao)}$ ($r_{d(a)} < r_{do(ao)}$), the compression (dilatation) gives rise to the increase (the decrease) in the energy gap $E_{gn(gp)}(r_{d(a)},x)$, and the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)},x)$ in absolute values, obtained in the effective Bohr model, which is represented respectively by: $\pm \left[\Delta \sigma(r_{d(a)},x) \right]_{n(p)}$,

$$\begin{split} E_{gno(gpo)}(r_{d(a)},x) - E_{go}(x) &= E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_0(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] \\ &= + \left[\Delta \sigma(r_{d(a)},x) \right]_{n(p)} \end{split}$$

 $\text{ for } r_{d(a)} \geq r_{do(ao)}, \text{ and for } r_{d(a)} \leq r_{do(ao)},$

$$\begin{split} E_{gno(gpo)}(r_{d(a)},x) - E_{go}(x) &= E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_0(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] \\ &= - \left[\Delta \sigma(r_{d(a)},x) \right]_{n(p)} \end{split} \tag{7}$$

Therefore, from Equations (6) and (7), one obtains the expressions for relative dielectric constant $\varepsilon(r_{d(a)},x)$ and energy band gap $E_{gn(gp)}(r_{d(a)},x)$, as:

$$\text{(i)-for } r_{d(a)} \geq r_{do(ao)} \text{, since } \epsilon(r_{d(a)}, x) = \frac{\epsilon_0(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_0(x) \text{, being a new}$$

 $\varepsilon(\mathbf{r}_{\mathbf{d}(\mathbf{a})},\mathbf{x})$ -law,

$$\begin{split} E_{gno(gpo)}\big(r_{d(a)},x\big) - E_{go}(x) &= E_{d(a)}\big(r_{d(a)},x\big) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \\ \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 &\geq 0, \end{split} \tag{8a}$$

according to the increase in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, with increasing $r_{d(a)}$ and for a given x, and

$$\text{(ii)-for } r_{d(a)} \leq r_{do(ao)}, \text{ since } \epsilon(r_{d(a)},x) = \frac{\epsilon_{o}(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \geq \epsilon_{o}(x), \text{ with a physical } \epsilon_{o}(x)$$

$$\text{condition:} \left[\left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 - 1 \right] \times \ln \left(\frac{r_{d(a)}}{r_{do(ao)}} \right)^3 < 1, \text{ being a new } \epsilon(r_{d(a)}, x) \text{-law},$$

$$\begin{split} &E_{gno(gpo)}\big(r_{d(a)},x\big)-E_{go}(x)=E_{d(a)}\big(r_{d(a)},x\big)-E_{do(ao)}(x)=-E_{do(ao)}(x)\times\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3-1\right]\times\ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3\\ &\leq 0, \end{split} \tag{8b}$$

corresponding to the decrease in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, with decreasing $r_{d(a)}$ and for a given x. It is interesting to note that, in the p-type case, since $r_a=r_B=0.088$ nm $\ll r_{ao}=r_{Cd}=0.148$ nm , the above physical condition is not satisfactory as: $\left[\left(\frac{r_B}{r_{Cd}}\right)^3-1\right]\times \ln\left(\frac{r_B}{r_{Cd}}\right)^3=1.2317701>1$. Thus, the B-acceptor can not be taken in the present p-type case.

Therefore, the effective Bohr radius $a_{Bn(Bp)}(r_{d(a)},x)$ is defined by:

$$a_{Bn(Bp)}(r_{d(a)},x) \equiv \frac{\epsilon(r_{d(a)},x) \times \hbar^2}{m_{c(v)}(x) \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)},x)}{m_{c(v)}(x)/m_0}. \tag{8c}$$

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the metal-insulator transition (MIT) at T=0 K, $N_{CDn(NDp)}(r_{d(a)},x)$, was given by the Mott's criterium, with an empirical parameter, $M_{n(p)}$, as:

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = M_{n(p)}, M_{n(p)} = 0.25,$$
 (9a)

depending thus on our **new** $\varepsilon(\mathbf{r}_{\mathbf{d}(a)}, \mathbf{x})$ -law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (WS) radius $r_{sn(sp)}$, characteristic of interactions, by:

$$r_{sn(sp)} \left(N, r_{d(a)}, x \right) \equiv \left(\frac{3}{4\pi N} \right)^{1/3} \times \frac{1}{a_{Bn(Bp)} (r_{d(a)}, x)} = 1.1723 \times 10^8 \times \left(\frac{1}{N} \right)^{1/3} \times \frac{m_{c(v)}(x)/m_0}{\epsilon (r_{d(a)}, x)}, \tag{9b}$$

being equal to, in particular, at $N=N_{CDn(CDp)}(r_{d(a)},x)$: $r_{sn(sp)}(N_{CDn(CDp)}(r_{d(a)},x), r_{d(a)},x)=$ **2.4814**, for any $(r_{d(a)},x)$ -values. So, from Eq. (9b), one also has:

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}} \times \frac{1}{2.4814} = 0.25 = (WS)_{n(p)} = M_{n(p)}.$$
 (9c)

Thus, the above Equations (9a, 9b, 9c) confirm our new $\epsilon(r_{d(a)},x)$ -law, given in Equations (8a, 8b).

Furthermore, by using $\mathbf{M}_{n(p)} = \mathbf{0.25}$, according to the empirical Heisenberg parameter $\boldsymbol{\mathcal{H}}_{n(p)} = \mathbf{0.47137}$, as those given in Equations (8, 15) of the Ref.^[1], we have also showed that $N_{\text{CDn(CDp)}}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail, with a precision of the order of $\mathbf{2.88} \times \mathbf{10^{-7}}$. Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined, as that given in compensated materials, by:

$$N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x).$$
 (9d)

C. Effect of temperature T, with given x and $r_{d(a)}$

Here, the intrinsic band gap $E_{gni(gpi)}(r_{d(a)}, x, T)$ at any T is given by:

$$E_{gni(gpi)}(r_{d(a)},x,T) \text{ in eV} = E_{gno(gpo)}(r_{d(a)},x) - 10^{-4} \times T^2 \times \left\{ \frac{3.065 \times x}{T+94 \text{ K}} + \frac{5.405 \times (1-x)}{T+204 \text{ K}} \right\}, \tag{10}$$

suggesting that, for given x and $r_{d(a)}$, $E_{gni(gpi)}$ decreases with an increasing T.

Then, in the following, for the study of optical phenomena, one denote the conduction (valence)-band density of states by $N_{c(v)}(T,x)$ as:

$$N_{c(v)}(T,x) = 2 \times g_{c(v)}(x) \times \left(\frac{m_{T}(x) \times k_{B}T}{2\pi\hbar^{2}}\right)^{\frac{3}{2}} (cm^{-3}), g_{v}(x) \equiv 1 \times x + 1 \times (1-x) = 1,$$
 (11)

where $m_r(x)/m_o$ is the reduced effective mass $m_r(x)/m_o$, defined by :

$$m_r(x) \equiv [m_c(x) \times m_v(x)]/[m_c(x) + m_v(x)].$$

D. Heavy Doping Effect, with given T, x and $r_{d(a)}$

Here, as given in our previous works^[1,2], the Fermi energy $E_{Fn}(-E_{Fp})$, and the band gap narrowing are reported in the following.

First, the reduced Fermi energy $\eta_{n(p)}$ or the Fermi energy $E_{Fn}(-E_{Fp})$, obtained for any T and any effective d(a)-density, $N^*(N,r_{d(a)},x)=N^*$, defined in Eq. (9d), for a simplicity of presentation, being investigated in our previous paper^[8], with a precision of the order of 2.11×10^{-4} , is found to be given by:

$$\eta_{n(p)}(u) \equiv \frac{E_{Fn}(u)}{k_B T} (\frac{-E_{Fp}(u)}{k_B T}) = \frac{G(u) + A u^B F(u)}{1 + A u^B}, \ A = 0.0005372 \ \text{and} \ B = 4.82842262, \eqno(12)$$

where u is the reduced electron density, $u(N, r_{d(a)}, x, T) \equiv \frac{N^*}{N_{C(v)}(T, x)}$

$$F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}} \right)^{-\frac{2}{3}}, a = \left[(3\sqrt{\pi}/4) \times u \right]^{2/3}, b = \frac{1}{8} \left(\frac{\pi}{a} \right)^2, c = \frac{62.3739855}{1920} \left(\frac{\pi}{a} \right)^4,$$

and $G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du}$; $d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{3}{16} \right] > 0$. Therefore, from Eq. (12), the Fermi energies are expressed as functions of variables : $N, r_{d(a)}, x, and T$.

Here, one notes that: (i) as $u\gg 1$, according to the HD [d(a)- X(x)- alloy] ER-case, or to the degenerate case, Eq. (12) is reduced to the function F(u), and in particular at T=0 and as $N^*=0$, according to the metal-insulator transition (**MIT**), one has: $+E_{Fn}(-E_{Fp})=\frac{\hbar^2}{2\times m_r(x)}\times (3\pi^2N^*)^{2/3}=0, \text{ and (ii) } \frac{E_{Fn}(u\ll 1)}{k_BT}(\frac{-E_{Fp}(u\ll 1)}{k_BT})\ll -1, \text{ to the LD}}$ [a(d)- X(x)- alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function

G(u), noting that the notations: **HD(LD)** and **ER(BR)** denote the heavily doped (lightly doped)-cases and emitter (base)-regions, respectively.

Now, in Eq. (9b), in which one replaces $m_{c(v)}(x)$ by $m_r(x)$, the effective Wigner-Seitz radius becomes as:

$$r_{sn(sp)}(N, r_{d(a)}, x) = 1.1723 \times 10^8 \times \left(\frac{g_{c(v)}(x)}{N^*}\right)^{1/3} \times \frac{m_r(x)}{\varepsilon(r_{d(a)}, x)},$$
 (13a)

the correlation energy of an effective electron gas, $E_{cn(cp)}(N, r_{d(a)}, x)$, is given as:

$$E_{cn(cp)}\big(N, r_{d(a)}, x\big) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67378876}} \,. \tag{13b}$$

Then, taking into account various spin-polarized chemical potential-energy contributions such as: exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy, and finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, the band gap narrowings are given in the following.

In the n-type HD X(x)- alloy, the BGN is found to be given by:

$$\begin{split} &\Delta E_{gno}(N,r_d,x) = a_1 \times \frac{\epsilon_0(x)}{\epsilon(r_d,x)} \times N_r^{1/3} + a_2 \times \frac{\epsilon_0(x)}{\epsilon(r_d,x)} \times N_r^{\frac{1}{3}} \times (2.503 \times [-E_{cn}(r_{sn}) \times r_{sn}]) + \\ &a_3 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_d,x)}\right]^{5/4} \times \sqrt{\frac{m_v}{m_r}} \times N_r^{1/4} + a_4 \times \sqrt{\frac{\epsilon_0(x)}{\epsilon(r_d,x)}} \times N_r^{1/2} \times 2 + a_5 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_d,x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}} \\ &N_r \equiv \left(\frac{N^*}{N_{CDR}(r_d,x)}\right), \end{split}$$

$$\Delta E_{gn}(N, r_d, x) = \Delta E_{gno}(N, r_d, x) \times \{1.8 \times x + 2.2 \times (1 - x)\}, \tag{14n}$$

where
$$a_1 = 3.8 \times 10^{-3} (eV)$$
 , $a_2 = 6.5 \times 10^{-4} (eV)$, $a_3 = 2.8 \times 10^{-3} (eV)$ $a_4 = 5.597 \times 10^{-3} (eV)$ and $a_5 = 8.1 \times 10^{-4} (eV)$, and in the p-type HD X(x)- alloy, as:

$$\begin{split} \Delta E_{gpo}(N,r_a,x) &= a_1 \times \frac{\epsilon_0(x)}{\epsilon(r_a,x)} \times N_r^{1/3} + a_2 \times \frac{\epsilon_0(x)}{\epsilon(r_a,x)} \times N_r^{\frac{1}{3}} \times \left(2.503 \times \left[-E_{cp}\left(r_{sp}\right) \times r_{sp}\right]\right) + \\ a_3 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_a,x)}\right]^{5/4} \times \sqrt{\frac{m_c}{m_r}} \times N_r^{1/4} + 2a_4 \times \sqrt{\frac{\epsilon_0(x)}{\epsilon(r_a,x)}} \times N_r^{1/2} + a_5 \times \left[\frac{\epsilon_0(x)}{\epsilon(r_a,x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}} \end{split}$$

$$N_r \equiv \left(\frac{N^*}{N_{CDp}(r_a,x)}\right),$$

$$\Delta E_{gp}(N, r_a, x) = \Delta E_{gpo}(N, r_a, x) \times \{50 \times x + 22 \times (1 - x)\},\tag{14p}$$

where
$$a_1=3.15\times 10^{-3} (eV)$$
 , $a_2=5.41\times 10^{-4} (eV)$, $a_3=2.32\times 10^{-3} (eV)$, $a_4=4.12\times 10^{-3} (eV)$ and $a_5=9.8\times 10^{-5} (eV)$.

One also remarks that, as $N^*=0$, according to the MIT, $\Delta E_{gn(gp)}\big(N,r_{d(a)},x\big)=0$.

OPTICAL BAND GAP

Here, the optical band gap is found to be defined by:

$$\begin{split} E_{gn1(gp1)}\big(N, r_{d(a)}, x, T\big) &\equiv \\ E_{gni(gpi)}(r_{d(a)}, x, T) - \Delta E_{gn(gp)}(N, r_{d(a)}, x) + (-)E_{Fn(Fp)}\big(N, r_{d(a)}, x, T\big), \end{split} \tag{15}$$

Where $E_{gin(gip)}$, $[+E_{Fn}, -E_{Fp}] \ge 0$, and $\Delta E_{gn(gp)}$ are respectively determined in Equations [10, 12, 14n(p)], respectively. So, as noted above, at the MIT, Eq. (15) thus becomes: $E_{gn1(gp1)}(r_{d(a)},x) = E_{gno(gpo)}(r_{d(a)},x)$, according to: $N = N_{CDn(NDp)}(r_{d(a)},x)$.

OPTICAL COEFFICIENTS

The optical properties of any medium can be described by the complex refraction index $\mathbb N$ and the complex dielectric function ε , $\mathbb N \equiv n-i\kappa$ and $\varepsilon \equiv \varepsilon_1-i\varepsilon_2$, where $i^2=-1$ and $\varepsilon \equiv \mathbb N^2$. Therefore, the real and imaginary parts of ε denoted by ε_1 and ε_2 can thus be expressed in terms of the refraction index n and the extinction coefficient κ as: $\varepsilon_1 \equiv n^2 - \kappa^2$ and $\varepsilon_2 \equiv 2n\kappa$. One notes that the optical absorption coefficient α is related to ε_2 , n, κ , and the optical conductivity σ_0 , by [2]

$$\begin{split} \alpha(E,N,r_{d(a)},x,T) &\equiv \frac{\hbar q^2 \times |v(E)|^2}{n(E) \times \epsilon_{free \, space} \times cE} \times J(E^*) = \frac{E \times \epsilon_2(E)}{\hbar c n(E)} \equiv \frac{2E \times \kappa(E)}{\hbar c} \equiv \frac{4\pi \sigma_O(E)}{c n(E) \times \epsilon_{free \, space}} \,, \\ \epsilon_1 &\equiv n^2 - \kappa^2 \text{ and } \epsilon_2 \equiv 2n\kappa, \end{split} \tag{16}$$

where, since $E \equiv \hbar \omega$ is the photon energy, the effective photon energy: $E^* = E - E_{gn1(gp1)} \big(N, r_{d(a)}, x, T \big) \text{ is thus defined as the reduced photon energy.}$

Here, -q, \hbar , |v(E)|, ω , $\epsilon_{free\,space}$, c and $J(E^*)$ respectively represent: the electron charge, Dirac's constant, matrix elements of the velocity operator between valence (conduction)-and-conduction (valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if the three

functions such as: $|v(E)|^2$, $J(E^*)$ and n(E) are known, then the other optical dispersion functions as those given in Eq. (16) can thus be determined. Moreover, the normal-incidence reflectance, R(E), can be expressed in terms of $\kappa(E)$ and n(E) as:

$$R(E, N, r_{d(a)}, x, T) = \frac{[n(E)-1]^2 + \kappa(E)^2}{[n(E)+1]^2 + \kappa(E)^2}.$$
(17)

From Equations (16, 17), if the two optical functions, ε_1 and ε_2 , (or n and κ), are both known, above other ones defined can thus be determined, noting also that: $\mathbf{E}_{gn1(gp1)}(\mathbf{N}, \mathbf{r}_{d(a)}, \mathbf{x}, \mathbf{T}) = \mathbf{E}_{gn1(gp1)}$, for a presentation simplicity.

Then, one has:

-at low values of $E \gtrsim E_{gn1(gp1)}$,

$$\begin{split} J_{n(p)}\big(E,N,r_{d(a)},x,T\big) &= \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E-E_{gn1}(gp_1))^{a-(1/2)}}{E_{gni}^{a-1}(gp_i)} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \\ &(E-E_{gn1(gp_1)})^{1/2} \end{split} , \text{ for } a=1, \end{split} \label{eq:Jn(p)}$$

and at large values of $E > E_{gn1(gp1)}$,

$$\begin{split} J_{n(p)}\big(E,N,r_{d(a)},x,T\big) &= \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E-E_{gn1(gp1)})^{a-(1/2)}}{E_{gn1(gp1)}^{a-1}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \\ &\frac{(E-E_{gn1(gp1)})^2}{E_{gni(gpi)}^{3/2}} & , \text{ for } a=5/2. \end{tabular}$$

Further, one notes that, as $E \to \infty$, Forouhi and Bloomer (FB)^[4] claimed that $\kappa(E \to \infty) \to a$ constant, while the $\kappa(E)$ -expressions, proposed by Van Cong^[2] quickly go to 0 as E^{-3} , and consequently, their numerical results of the optical functions such as: $\sigma_0(E)$ and $\alpha(E)$, given in Eq. (16), both go to 0 as E^{-2} .

Now, an improved Forouhi-Bloomer parameterization model (FB-PM), used to determine the expressions of the optical coefficients in the $n^+(p^+) - p(n) X(x) \equiv CdSe_{1-x}Te_{x-}$ crystalline alloy, is now proposed as follows. Then, if denoting the functions G(E) and F(E) and by: $G(E) \equiv \sum_{i=1}^4 \frac{A_i}{E^2 - B_i E + C_i}$ F(E) = $\sum_{i=1}^4 \frac{A_i}{E^2 \times (1+10^{-4} \times \frac{E}{c}) - B_i E + C_i}$, we propose:

$$\kappa(E, N, r_{d(a)}, x, T) = G(E) \times E_{gni(gpi)}^{3/2} \times (E^* \equiv E - E_{gn1(gp1)})^{1/2}, \text{ for } E_{gni(gpi)} \le E \le 2.3 \text{ eV},$$

$$= F(E) \times (E^* \equiv E - E_{gn1(gp1)})^2, \text{ for } E \ge 2.3 \text{ eV},$$
(20)

(20)

being equal to 0 for $E^* = 0$ (or for $E = E_{gn1(gp1)}$), and also going to 0 as E^{-1} as $E \to \infty$, and further,

$$n(E,N,r_{d(a)},x,T) = n_{\infty}(r_{d(a)},x) + \sum_{i=1}^{4} \frac{x_{i}(E_{gn1(gp1)}) \times E + Y_{i}(E_{gn1(gp1)})}{E^{2} - B_{i}E + C_{i}}. \tag{21}$$

going to a constant as E $\rightarrow \infty$, since $n(E \rightarrow \infty, r_{d(a)}, x) \rightarrow n_{\infty}(r_{d(a)}, x) = \sqrt{\epsilon(r_{d(a)}, x)} \times \frac{\omega_T}{\omega_L}$, $\omega_T = 5.1 \times 10^{13} \ s^{-1}$ and $\omega_L = 8.9755 \times 10^{13} \ s^{-1}$.

Here, the other parameters are determined by:

$$\begin{split} &X_i \big(E_{gn1(gp1)} \big) = \frac{A_i}{Q_i} \times \Big[-\frac{B_i^2}{2} + E_{gn1(gp1)} B_i - E_{gn1(gp1)}^2 + C_i \Big], \\ &Y_i \big(E_{gn1(gp1)} \big) = \frac{A_i}{Q_i} \times \Big[\frac{B_i \times (E_{gn1(gp1)}^2 + C_i)}{2} - 2 E_{gn1(gp1)} C_i \Big], \ Q_i = \frac{\sqrt{4 C_i - B_i^2}}{2}, \ \text{where, for i=(1, 2, 3, and 4)}, \ A_i = 1.154 \times A_{i(FB)} = 4.7314 \times 10^{-4}, \ 0.2314, \ 0.1118 \ \text{and } \ 0.0116, \end{split}$$

 $B_i \equiv B_{i(FB)} = 5.871, 6.154, 9.679$ and 13.232, and $C_i \equiv C_{i(FB)} = 8.619, 9.784, 23.803$, and 44.119.

Then, as noted above, if the two optical functions, \mathbf{n} and κ , are both known, the other ones defined in Equations (16, 17) can also be determined.

NUMERICAL RESULTS

Now, some numerical results of those optical functions are investigated in the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{CdSe_{1-x}Te_{x}}$ - crystalline alloy, as follows.

A. Metal-insulator transition (MIT)-case

As discussed above, the physical conditions used for the MIT are found to be given by:

$$T=0K$$
, $N^* = 0$ or $N = N_{CDn(CDp)}$, giving rise to:

$$E_{gn1(gp1)}\big(N^*=0,r_{d(a)},x,T=0\big)=E_{gn1(gp1)}\big(r_{d(a)},x\big)=E_{gno(gpo)}\big(r_{d(a)},x\big).$$

Then, in this MIT-case, if $E = E_{gn1(gp1)}(r_{d(a)},x) = E_{gno(gpo)}(r_{d(a)},x)$, which can be defined as the critical photon energy: $E \equiv E_{CPE}(r_{d(a)},x)$, one obtains: $\kappa_{MIT}(r_{d(a)},x) = 0$ from Eq. (20), and from Eq. (16): $\epsilon_{2(MIT)}(r_{d(a)},x) = 0$, $\sigma_{O(MIT)}(r_{d(a)},x) = 0$ and $\alpha_{MIT}(r_{d(a)},x) = 0$, and the other functions such as: $n_{MIT}(r_{d(a)},x)$ from Eq. (21), and $\epsilon_{1(MIT)}(r_{d(a)},x)$ and $R_{MIT}(r_{d(a)},x)$ from Eq. (16) decrease with increasing $r_{d(a)}$ and E_{CPE} , as those investigated in Table 1 in Appendix 1.

B. Optical coefficients, obtained as $E \rightarrow \infty$

Τ, the choice of In the real refraction index: $\mathrm{n} \big(\mathrm{E} \to \infty, \mathrm{r}_{\mathrm{d}(a)}, \mathrm{x}, \mathrm{T} \big) = \mathrm{n}_{\infty} \big(\mathrm{r}_{\mathrm{d}(a)}, \mathrm{x} \big) = \sqrt{\epsilon (\mathrm{r}_{\mathrm{d}(a)}, \mathrm{x})} \times \frac{\omega_T}{\omega_L} \ , \quad \omega_T = 5.1 \times 10^{13} \ \mathrm{s}^{-1} \quad ^{[5]}$ $\omega_L = 8.9755 \times 10^{13} \text{ s}^{-1}$, was obtained from the Lyddane-Sachs-Teller relation^[5], from which T(L) represent the transverse (longitudinal) optical phonon modes. Then, from Equations (16, 17, 20), from such the asymptotic behavior ($E \rightarrow \infty$), we obtain: $\kappa_{\infty}(r_{d(a)},x) \to 0$ and $\epsilon_{2,\infty}(r_{d(a)},x) \to 0$, as E^{-1} , so that $\epsilon_{1,\infty}(r_{d(a)},x)$, $\sigma_{0,\infty}(r_{d(a)},x)$, $\alpha_{\infty}(\mathbf{r}_{d(a)},\mathbf{x})$ and $\mathbf{R}_{\infty}(\mathbf{r}_{d(a)},\mathbf{x})$ go to their appropriate limiting constants for T=0K, as those investigated in Table 2 in Appendix 1.

C. Variations of some optical coefficients, obtained in P(Ga)-X(x)-system, as functions of E

In the P(Ga)-X(x)-system, at T=0K and N = $N_{CDn(CDp)}(r_{P(Ga)},x)$, our numerical results of n, κ , ϵ_1 and ϵ_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of E [$\geq E_{CPE}(r_{P(Ga)},x)$] and for given x, as those reported in Tables 3n and 3p in Appendix 1.

D. Variations of various optical coefficients, as functions of N

In the X(x)-system, at E=3.2 eV and T=20 K, for given $r_{d(a)}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_{n(p)}(\gg 1$, degenerate case), $E_{gn1(gp1)}$, n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , as those tabulated in Tables 4n and 4p in Appendix 1.

E. Variations of various optical coefficients as functions of T

In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given $r_{d(a)}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_{n(p)}(\gg 1$, degenerate case), $E_{gn1(gp1)}$, n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , as those tabulated in Tables 5n and 5p in Appendix 1.

CONCLUDING REMARKS

In the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{CdSe_{1-x}Te_x}$ - crystalline alloy, by basing on our two recent works^[1,2], for a given x, and with an increasing $\mathbf{r_{d(a)}}$, the optical coefficients have been

determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $r_{d(a)}$, concentration x, and temperature T.

Those results have been affected by (i) the important new $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect, ε decreases (Σ) with an increasing (\nearrow) $\mathbf{r}_{d(a)}$, and then by (ii) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), $N_{\text{CDn(NDp)}}(\mathbf{r}_{d(a)}, \mathbf{x})$, as observed in Equations (8c, 9a).

Further, we also showed that $N_{CDn(NDp)}$ is just the density of carriers localized in exponential band tails, with a precision of the order of **2.88** × **10**⁻⁷, as that given in Table 4 of Ref.^[1], according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by: $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$, as defined in Eq. (9d).

In summary, due to the new $\varepsilon(r_{d(a)},x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands $N^*(N,r_{d(a)},x)$, for a given x, and with an increasing $r_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

REFERENCES

- Van Cong, H. Critical density in MIT, obtained in n(p)-type degenerate InSb_{1-x}P_x(As_x), GaSb_{1-x}P_x(As_x, Te_x), CdSe_{1-x}S_x(Te_x) crystalline alloys, and explained by that of carriers localized in exponential band tails (III). WJERT, 2024; 10(4): 191-220.
- 2. Van Cong, H. Optical coefficients in the n(p)-type degenerate CdTe_{1-x}Se_x- crystalline alloy, due to the new static dielectric constant-law and the generalized Mott criterium in the metal-insulator transition (10). WJERT, 2024; 10(11): 150-178.
- 3. Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. American Journal of Modern Physics, 2018; 7: 136-165.
- 4. Forouhi A. R. & Bloomer I. Optical properties of crystalline semiconductors and dielectrics. Phys. Rev., 1988; 38: 1865-1874.

- 5. Aspnes, D.E. & Studna, A. A. Dielectric functions and optical parameters of Si, Se, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B, 1983; 27: 985-1009.
- 6. Van Cong, H. et al. Optical bandgap in various impurity-Si systems from the metal-insulator transition study. Physica B, 2014; 436: 130-139.
- 7. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State Communications, 1984; 49: 697-699.
- 8. Van Cong, H. & Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., 1993; 73: 1545-1546.

APPENDIX 1

Table 1. In the MIT-case, T=0K, $N=N_{CDn(p)}(r_{d(a)},x)$, and the critical photon energy $E_{CPE}=E=E_{gno(gpo)}(r_{d(a)},x)$, if $E=E_{gn1(gp1)}(r_{d(a)},x)=E_{CPE}(r_{d(a)},x)$, the numerical results of optical functions such as : $n_{MIT}(r_{d(a)},x)$, obtained from Eq. (21), and those of other ones: $\epsilon_{1(MIT)}(r_{d(a)},x)$ and $R_{MIT}(r_{d(a)},x)$, from Eq. (16), decrease (\triangleright) with increasing (\nearrow) $r_{d(a)}$ and E_{CPE} .

Donor		P	Se		Te	Sn
r _d (nm) [4]	7	0.110	$r_{do} = 0.11$	4 nm	0.132	0.140
At x=0 ,						
E _{CPE} in meV	7	1839.84	1840		1843.5	1847.55
n_{MIT}	7	2.977	2.972		2.874	2.786
$\varepsilon_{1(MIT)}$	7	8.866	8.836		8.262	7.762
R_{MIT}	7	0.247	0.246		0.234	0.222
			At x =	0.5,		
E _{CPE} in meV	7	1729.85	1730	1	1733.2	1736.96
n _{MIT}	7	3.051	3.046		2.948	2.859
$\varepsilon_{1(MIT)}$	7	9.309	9.278		8.689	8.176
R_{MIT}	>	0.256	0.256		0.243	0.232
			At x =	:1 ,		
E _{CPE} in meV	7	1619.87	1620		1622.9	1626.38
n_{MIT}	7	3.124	3.119		3.021	2.933
$\varepsilon_{1(MIT)}$	7	9.762	9.730	9.126	8.600	
R_{MIT}	>	0.265	0.2647	0.253	0.241	
Acceptor		(Ga	In		Cd
r _a (nm)	7	0	0.126 0.1	144	r _{ao} =0.14	8 nm
At x=0 ,						
E _{CPE} in meV	7	18	29.1	1839.6		1840
n _{MIT}	7	3	.074	2.976	2	972

Cong.		World Jou	rnal of Engin	eering Research and	Technology
$\varepsilon_{1(MIT)}$	7	9.45	8.85	8.83	
R_{MIT}	>	0.259	0.247	0.246	
		At	x=0.5,		
E_{CPE} in meV	7	1714.8	1729.5	1730	
n_{MIT}	7	3.151	3.049	3.046	
$\varepsilon_{1(MIT)}$	7	9.93	9.30	9.28	
R_{MIT}	>	0.268	0.256	0.2557	
			At x=1 ,		
E_{CPE} in meV	7	1600.6	1619.3	1620	
n_{MIT}	7	3.227	3.123	3.119	
$\varepsilon_{1(MIT)}$	7	10.4	9.75	9.73	
R_{MIT}	>	0.277	0.265	0.2647	

Table 2. Here, as T=0K and N=N_{CDn(p)}($r_{d(a)}$, x), and for $E \to \infty$ the numerical results of $n_{\infty}(r_{d(a)},x)$, $\varepsilon_{1,\infty}(r_{d(a)},x)$, $\sigma_{0,\infty}(r_{d(a)},x)$, $\sigma_{\infty}(r_{d(a)},x)$ and $R_{\infty}(r_{d(a)},x)$ go to their appropriate limiting constants.

Donor		Р	Se	Te	Sn			
At x=0 ,	,							
n_{∞}	7	1.8197	1.8147	1.7187	1.6330			
$\varepsilon_{1,\infty}$	>	3.311	3.293	2.954	2.667			
$\sigma_{0,\infty}$ in	$\frac{10^5}{\Omega \times cm}$	8.303	8.281	7.842	7.451			
∝ _∞ in	$(10^9 \times c)$	m^{-1})=2.1602						
R_{∞}	7	0.084	0.0838 0.00	699 0.0)578			
At $x=0.5$,								
n_{∞}	7	1.8246	1.8196	1.7233	1.6374			
$\varepsilon_{1,\infty}$	>	3.329	3.311	2.970	2.681			

$$\sigma_{0,\infty}$$
 in $\frac{10^5}{\Omega \times cm}$ 8.326

8.303

7.864

7.471

$$\alpha_{\infty}$$
 in $(10^9 \times cm^{-1}) = 2.1602$

$$R_{\infty}$$

0.085

0.0845

0.0705

0.0584

At x=1,

$$n_{\infty}$$

1.8295

1.8245

1.7279

1.6418

$$\varepsilon_{1,\infty}$$

3.347

3.329

2.986

2.695

$$\sigma_{0,\infty}$$
 in $\frac{10^5}{\Omega \times cm}$ \quad 8.348

8.325

7.885

7.491

$$\propto_{\infty}$$
 in $(10^9 \times cm^{-1}) = 2.1602$

$$R_{\infty}$$

 n_{∞}

$$\searrow$$

0.086

0.0852

0.0712

0.0590

Acceptor

Ga

In

Cd

At x=0,

1.818

3.304

1.815

$$\sigma_{0,\infty}$$
 in $\frac{10^5}{\Omega \times cm}$

3.648 8.715

1.910

8.294

8.281

3.293

$$\alpha_{\infty}$$
 in $(10^9 \times cm^{-1}) = 2.1602$

$$R_{\infty}$$

0.098

0.084

0.0838

At x=0.5,

$$n_{\infty}$$

1.915

1.822

1.820

$$\varepsilon_{1,\infty}$$

3.667

3.322

3.311

$$\sigma_{0,\infty}$$
 in $\frac{10^5}{\Omega \times cm}$ \searrow

8.738

8.316

8.303

$$\propto_{\infty}$$
 in $(10^9 \times cm^{-1}) = 2.1602$

$$R_{\infty}$$

0.098

0.0849

0.0845

At x=1,

$$n_{\infty}$$

1.920

1.827

1.824

$$\varepsilon_{1,\infty}$$

3.687

3.340

3.329

$$\sigma_{0,\infty}$$
 in $\frac{10^5}{\Omega \times cm}$

www.wjert.org

8.762

8.339

8.325

$$\propto_{\infty}$$
 in $(10^9 \times cm^{-1}) = 2.1602$

 R_{∞} 0.099 0.0856 0.0852

Table 3n. In the P-X(x)-system, and at T=0K and N = N_{CDn}(r_p,x), according to the MIT, our numerical results of n, κ , ϵ_1 and ϵ_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of E [$\geq E_{CPE}(r_p,x)$] and x, noting that (i) $\kappa = 0$ and $\epsilon_2 = 0$ at $E = E_{CPE}(r_p,x)$, and $\kappa \to 0$ and $\epsilon_2 \to 0$ as $E \to \infty$.

E in eV	n	κ	$arepsilon_1$	$arepsilon_2$
		At x=0,		
$E_{CPE}=1.8398$	2.9776	0	8.8660	0
2	3.087	0.171	9.501	1.055
2.5	3.593	0.165	12.881	1.185
3	3.799	1.106	13.213	8.401
3.5	3.313	1.435	8.915	9.509
4	3.443	1.412	9.859	9.726
4.5	3.750	2.303	8.757	17.269
5	2.322	3.338	-5.753	15.501
5.5	1.272	2.423	-4.253	6.164
6	1.347	1.845	-1.590	4.969
10 ²²	1.8197	0	3.3113	0
At x=0.5,				
$E_{CPE} = 1.7298$	3.0510	0	9.30	088
2	3.247	0.202	10.501	1.314
2.5	3.808	0.224	14.454	1.710
3	3.961	1.325	13.933	10.498
3.5	3.359	1.632	8.621	10.961
4	3.493	1.560	9.768	10.898
4.5	3.817	2.497	8.333	19.062
5	2.278	3.575	-7.590	16.285
5.5	1.171	2.571	-5.239	6.019
6	1.262	1.944	-2.185	4.907

10 ²²	1.8246	0	3.3292	0
At x=1,				
$E_{CPE} = 1.6199$	3.1244	0	9.7622	0
2	3.416	0.217	11.620	1.485
2.5	4.035	0.293	16.198	2.36
3	4.124	1.565	14.562	12.906
3.5	3.399	1.841	8.166	12.513
4	3.538	1.715	9.580	12.135
4.5	3.881	2.699	7.776	20.952
5	2.227	3.819	-9.624	17.014
5.5	1.062	2.723	-6.287	5.785
6	1.172	2.045	-2.809	4.794
10 ²²	1.8295	0	3.3470	0
E in eV	n	κ	$arepsilon_1$	ε_2

Table 3p. In the Ga-X(x)-system, and at T=0K and N = N_{CDp}(r_{Ga}, x), according to the MIT, our numerical results of n, κ , ϵ_1 and ϵ_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of E [\geq E_{CPE}(r_{Ga}, x)] and x, noting that (i) κ = 0 and ϵ_2 = 0 at E = E_{CPE}(r_{Ga}, x), and $\kappa \to 0$ and $\epsilon_2 \to 0$ as E $\to \infty$.

n	κ	$arepsilon_1$	$arepsilon_2$
	At x=0,		
3.0744	0	9.4522	0
3.192	0.175	10.158	1.117
3.703	0.170	13.684	1.262
3.905	1.126	13.979	8.795
3.407	1.454	9.496	9.907
3.538	1.426	10.481	10.093
3.846	2.321	9.403	17.856
	3.0744 3.192 3.703 3.905 3.407 3.538	At x=0, 3.0744 0 3.192 0.175 3.703 0.170 3.905 1.126 3.407 1.454 3.538 1.426	At x=0, 3.0744 0 9.4522 3.192 0.175 10.158 3.703 0.170 13.684 3.905 1.126 13.979 3.407 1.454 9.496 3.538 1.426 10.481

Cong.		World Jo	urnal of Enginee	ering Research ar	nd Technology
5	2.407	3.361	-5.500	16.183	
5.5	1.352	2.437	-4.112	6.590	
6	1.428	1.854	-1.399	5.298	
10 ²²	1.9099	0	3.6476	0	
At $x=0.5$,					
$E_{CPE} = 1.7148$	3.1508	0	9.9277	0	
2	3.359	0.205	11.242	1.378	
2.5	3.928	0.233	15.379	1.834	
3	4.073	1.357	14.748	11.052	
3.5	3.455	1.659	9.181	11.466	
4	3.589	1.581	10.384	11.347	
4.5	3.915	2.524	8.959	19.770	
5	2.361	3.608	-7.440	17.036	
5.5	1.246	2.591	-5.163	6.458	
6	1.340	1.957	-2.036	5.246	
10 ²²	1.9150	0	3.6673	0	
					
At $x=1$,					
$\mathbf{E}_{CPE} = 1.6006$	3.2271	0	10.4143	0	
2	3.536	0.219	12.456	1.548	
2.5	4.166	0.306	17.262	2.552	
3	4.243	1.609	15.415	13.651	
3.5	3.495	1.878	8.689	13.133	
4	3.636	1.743	10.182	12.671	
4.5	3.982	2.735	8.371	21.785	
5	2.308	3.863	-9.595	17.830	
5.5	1.132	2.750	-6.281	6.228	
6	1.245	2.063	-2.706	5.140	
10 ²²	1.9201	0	3.68	70 0	

E in eV	n	κ	$arepsilon_1$	$arepsilon_2$

Table 4n. In the X(x)-system, at E=3.2 eV and T=20 K, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_n(\gg 1, \text{degenerate case})$, E_{gn1} , n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , noting that both η_n and E_{gn1} increase with increasing N. One notes that, with increasing N, the variations of these optical coefficients depend on those of optical band gap, E_{gn1} .

N (10 ¹⁸ cm	n ⁻³) ∕	15	26	60	100
			x=0		
For $\mathbf{r_d} = \mathbf{r_{So}}$					
$\eta_n \gg 1$	e, 	145	209	366	515
E _{gn1} in eV	7	1.736	1.748	1.810	1.892
n	7	3.754	3.742	3.681	3.598
κ	7	1.589	1.562	1.432	1.267
ε_1	>	11.567	11.561	11.497	11.343
ε_2	\	11.931	11.690	10.540	9.121
For $\mathbf{r_d} = \mathbf{r_T}$	e,				
$\eta_n\gg 1$	7	144	209	366	515
E _{gn1} in eV	7	1.763	1.784	1.863	1.961
n		3.631	3.611	3.531	3.433
κ	٧	1.530		1.324	1.138
ε_1	7	10.843	10.828	10.718	10.490
ε_2	7	11.114	10.737	9.353	7.814
For $\mathbf{r_d} = \mathbf{r_{S}}$	n,				
$\eta_n\gg 1$	7	144	208.7	365.7	514.7
Egn1 in eV	7	1.787	1.814	1.909	2.019
~					

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cong.			World J	ournal of	Engineering Re	search and Technology
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	7	3.522	3.495	3.400	3.287	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	κ	7	1.480	1.423	1.236	1.034	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$arepsilon_1$	7	10.214	10.188	10.034	9.740	
For $\mathbf{r_d} = \mathbf{r_{Se}}$, $\eta_n \gg 1$	ε_2	7	10.429	9.950	8.403	6.796	
For $\mathbf{r_d} = \mathbf{r_{Se}}$, $\eta_n \gg 1$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x=0.5						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	For P P-						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.45	200.8	367	516	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$							
For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε_2	7	14.420	14.196	12.988	11.438	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	For $\mathbf{r_d} = \mathbf{r_{To}}$	e,					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			144.8	209	367	515.8	
$κ$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	E _{gn1} in eV	7	1.643	1.662	1.737	1.831	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n	7	3.753	3.735	3.661	3.568	
$ε_2$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	κ	\	1.797	1.754	1.586	1.388	
For $\mathbf{r_d} = \mathbf{r_{Sn}}$, $\eta_n \gg 1$	$arepsilon_1$	7	10.853	10.871	10.890	№ 10.804	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$arepsilon_2$	7	13.488	13.105	11.616	9.910	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
E_{gn1} in eV 1.666 1.692 1.783 1.890 n 3.644 3.619 3.531 3.424 κ 1.743 1.686 1.489 1.272 ε_1 10.241 10.258 > 10.248 10.103 ε_2 12.705 12.203 10.515 8.712							
n \searrow 3.644 3.619 3.531 3.424 κ \searrow 1.743 1.686 1.489 1.272 ε_1 \nearrow 10.241 10.258 \searrow 10.248 10.103 ε_2 \searrow 12.705 12.203 10.515 8.712							
κ \ \ \ 1.743 \ 1.686 \ 1.489 \ 1.272 \\ ε_1 \ \ \ 10.241 \ 10.258 \ \ 10.248 \ 10.103 \\ ε_2 \ \ \ 12.705 \ 12.203 \ 10.515 \ 8.712	E _{gn1} in eV	7	1.666	1.692	1.783	1.890	
ε_1	n	7	3.644	3.619	3.531	3.424	
ε_2 \ \ \ 12.705 \ 12.203 \ 10.515 \ 8.712	κ	7	1.743	1.686	1.489	1.272	
	$arepsilon_1$	7	10.241	10.258 🔪	10.248	10.103	
	$arepsilon_2$	7	12.705	12.203	10.515	8.712	
X=1				x=1			

For $\mathbf{r_d} = \mathbf{r_{Se}}$	е,					
$\eta_n\gg 1$	7	150	217	380	535	
$E_{\mbox{\scriptsize gn1}}$ in eV	7	1.506	1.518	1.582	1.667	
n	7	3.984	3.972	3.912	3.831	
κ	7	2.127	2.096	1.941	1.743	
$arepsilon_1$	7	11.347	11.385	11.539	11.639	
ε_2	7	16.948	16.652	15.189	13.356	
For $\mathbf{r_d} = \mathbf{r_{To}}$						
	7	150	217	380	534.8	
E_{gn1} in eV	7	1.533	1.554	1.636	1.736	
n	7	3.862	3.842	3.764	3.667	
κ	7	2.059	2.008	1.814	1.589	
$arepsilon_1$	7	10.672	10.729	10.880	10.923	
ε_2	7	15.905	15.433	13.659	11.651	
For $\mathbf{r_d} = \mathbf{r_{Si}}$	 n,					
$\eta_n\gg 1$	7	150	217	380	534.7	
E_{gn1} in eV	7	1.557	1.584	1.681	1.795	
n	7	3.753	3.727	3.634	3.523	
κ	7	2.002	1.935	1.710	1.463	
$arepsilon_1$	7	10.081	10.148	10.284	10.269	
ε_2	7	15.030	14.402	12.428	10.312	
N (10 ¹⁸ cm	n ⁻³)	15	26	60	100	

Table 4p. In the X(x)-system, at E=3.2 eV and T=20 K, for given $\mathbf{r_d}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_p(\gg 1, \text{degenerate case})$, E_{gp1} , n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , noting that both η_p and E_{gp1} increase with increasing N.

One notes that, with increasing N, the variations of these optical coefficients depend on those of optical band gap, E_{gp1} .

$N (10^{19} \text{ cm}^{-3})$	7	6	10	15	20		
			x=0				
For $\mathbf{r_a} = \mathbf{r_{Ga}}$,							
	7	339	492	655	800		
-	7	1.709	1.777	1.869	1.962		
n \		3.875	3.809	3.717	3.623		
κ		1.647	1.501	1.313	1.136		
ε_1		12.303	12.253	12.093	11.836		
ε_2		12.768	11.434	9.765	8.230		
		Fc	or $\mathbf{r_a} = \mathbf{r_{In}}$,			-	
$\eta_p\gg 1$	7	329	484	648	794		
E _{gp1} in eV	7	1.757	1.838	1.944	2.049		
n 🔪		3.737	3.656	3.549	3.441		
κ \		1.544	1.375	1.169	0.982		
ε_1		11.577	11.475	11.230	10.879		
<i>ε</i> ₂ \		11.542	10.052	8.301	6.759		
		Fe	or $\mathbf{r_a} = \mathbf{r_{Cd}}$,			-	
$\eta_p\gg 1$	7	329	484	648	793.6		
E _{gp1} in eV	7	1.758	1.840	1.946	2.052		
n 🔻		3.732	3.651	3.544	3.436		
κ \		1.541	1.371	1.165	0.977		
ε_1		11.554	11.450	11.202	10.848		
ε_2		11.505	10.011	8.258	6.716		
			x=0.5				

For $\mathbf{r_a} = \mathbf{r_{Ga}}$	a,					
$\eta_p\gg 1$	7	288	451	620	768.7	
Egp1 in eV	7	1.547	1.606	1.693	1.783	
n	7	4.036	3.980	3.896	3.807	
κ	>	2.025	1.883	1.683	1.487	
$arepsilon_1$	7	12.186	12.292	12.345	▶ 12.284	
ε_2	7	16.345	14.990	13.117	11.326	
For $\mathbf{r_a} = \mathbf{r_{In}}$	 1,					·
$\eta_p\gg 1$	7	258	427	600	750.7	
E _{gp1} in eV	7	1.587	1.658	1.759	1.861	
n	7	3.906	3.838	3.739	3.638	
κ	>	1.929	1.763	1.540	1.329	
ε_1	7	11.533	11.620 💃	11.612	11.468	
ε_2	7	15.073	13.531	11.518	9.670	
		F	or $\mathbf{r_a} = \mathbf{r_{Cd}}$,			
$\eta_p\gg 1$	7	256.8	426.5	599	750.05	
E _{gp1} in eV	7	1.588	1.659	1.761	1.863	
n	7	3.902	3.833	3.735	3.633	
κ	>	1.927	1.759	1.536	1.324	
$arepsilon_1$	7	11.512	11.598 🔪	11.588	11.442	
$arepsilon_2$	7	15.036	13.489	11.472	9.622	
x=1						
For $\mathbf{r_a} = \mathbf{r_{Ga}}$	a,					
$\eta_p\gg 1$		190	385	574	736	
E _{gp1} in eV	7	1.423	1.479	1.577	1.679	
n	7	4.157	4.105	4.013	3.914	
κ	\	2.341	2.195	1.953	1.714	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	00228					-ggs	
$ \begin{aligned} \varepsilon_2 & \searrow & 19.464 & 18.019 & 15.672 & 13.421 \\ \hline & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\$							
$For \ \mathbf{r_a} = \mathbf{r_{ln}},$ $\eta_p \gg 1 \qquad \nearrow \qquad 97 \qquad 327 \qquad 527 \qquad 694$ $E_{gp1} \text{ in eV} \qquad \nearrow \qquad 1.463 \qquad 1.509 \qquad 1.619 \qquad 1.734$ $n \qquad \searrow \qquad 4.027 \qquad 3.984 \qquad 3.879 \qquad 3.769$ $\kappa \qquad \searrow \qquad 2.238 \qquad 2.120 \qquad 1.852 \qquad 1.593$ $\varepsilon_1 \qquad \nearrow \qquad 11.213 \qquad 11.380 \qquad 11.621 \qquad 11.664$ $\varepsilon_2 \qquad \searrow \qquad 18.024 \qquad 16.890 \qquad 14.369 \qquad 12.009$ $For \ \mathbf{r_a} = \mathbf{r_{Cd}},$ $\eta_p \gg 1 \qquad \nearrow \qquad 93 \qquad 324 \qquad 525 \qquad 692$ $E_{gp1} \text{ in eV} \qquad \nearrow \qquad 1.465 \qquad 1.510 \qquad 1.620 \qquad 1.735$ $n \qquad \searrow \qquad 4.022 \qquad 3.980 \qquad 3.875 \qquad 3.764$ $\kappa \qquad \searrow \qquad 2.232 \qquad 2.118 \qquad 1.849 \qquad 1.590$ $\varepsilon_1 \qquad \nearrow \qquad 11.197 \qquad 11.358 \qquad 11.599 \qquad 11.641$ $\varepsilon_2 \qquad \searrow \qquad 17.958 \qquad 16.861 \qquad 14.334 \qquad 11.971$	$arepsilon_1$	7	11.798	12.030	12.288	12.385	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$arepsilon_2$	7	19.464	18.019	15.672	13.421	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Fo	or $\mathbf{r_a} = \mathbf{r_{In}}$,			
n \(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\eta_p\gg 1$	7	97	327	527	694	
$κ$ \ 2.238 \ 2.120 \ 1.852 \ 1.593 \\ $ε_1$ \ / \ 11.213 \ 11.380 \ 11.621 \ 11.664 \\ $ε_2$ \ \ 18.024 \ 16.890 \ 14.369 \ 12.009 \\	E _{gp1} in eV	7	1.463	1.509	1.619	1.734	
$κ$ \ 2.238 \ 2.120 \ 1.852 \ 1.593 \\ $ε_1$ \ 7 \ 11.213 \ 11.380 \ 11.621 \ 11.664 \\ $ε_2$ \ \ 18.024 \ 16.890 \ 14.369 \ 12.009 \\	n	\ <u></u>	4.027	3.984	3.879	3.769	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	κ	>					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$arepsilon_1$	7	11.213	11.380	11.621	11.664	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$arepsilon_2$	\	18.024	16.890	14.369	12.009	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
E_{gp1} in eV 7 1.465 1.510 1.620 1.735 n \checkmark 4.022 3.980 3.875 3.764 κ \checkmark 2.232 2.118 1.849 1.590 ε_1 \checkmark 11.197 11.358 11.599 11.641 ε_2 \checkmark 17.958 16.861 14.334 11.971			F	For $\mathbf{r_a} = \mathbf{r_{Cd}}$,			
n \searrow 4.022 3.980 3.875 3.764 κ \searrow 2.232 2.118 1.849 1.590 ε_1 \nearrow 11.197 11.358 11.599 11.641 ε_2 \searrow 17.958 16.861 14.334 11.971	$\eta_p\gg 1$	7	93	324	525	692	
n \searrow 4.022 3.980 3.875 3.764 κ \searrow 2.232 2.118 1.849 1.590 ε_1 \nearrow 11.197 11.358 11.599 11.641 ε_2 \searrow 17.958 16.861 14.334 11.971	E _{gp1} in eV	7	1.465	1.510	1.620	1.735	
κ \ 2.232 \ 2.118 \ 1.849 \ 1.590 \\ ε_1 \ \ 7 \ 11.197 \ 11.358 \ 11.599 \ 11.641 \\ ε_2 \ \ 17.958 \ 16.861 \ 14.334 \ 11.971			4.022	3.980	3.875	3.764	
ε_1		\					
ε_2 \ \ \ 17.958 \ 16.861 \ 14.334 \ 11.971							
-							
$N(10^{19} \text{ cm}^{-3})$ 2 6 10 15 20							
11 (10 cm) / 0 10 13 20	N (10 ¹⁹ cm	n ⁻³)	6	10	15	20	

World Journal of Engineering Research and Technology

Table 5n. In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_n(\gg 1, \text{degenerate case})$, E_{gn1} , n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , noting that both η_n and E_{gn1} decrease with increasing T. One notes that, with increasing T, the variations of these optical coefficients depend on those of optical band gap, E_{gn1} .

T in K	7	20	50	100	300
			x=0		

Cong.

For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{S}_{\mathbf{d}}}$	e,				
$\eta_n\gg 1$	>	515	206	103	34
E_{gn1} in eV	>	1.892	1.888	1.876	1.796
n	7	3.598	3.603	3.615	3.694
κ	7	1.267	1.276	1.300	1.460
$arepsilon_1$	7	11.343	11.353	11.381	11.516
ε_2	7	9.121	9.193	9.402	10.792
For $\mathbf{r_d} = \mathbf{r_T}$	e,				
$\eta_n\gg 1$	>	514.9	205.9	103	34.3
E_{gn1} in eV	7	1.961	1.957	1.944	1.865
n	7	3.433	3.437	3.450	3.530
κ	7	1.138	1.146	1.169	1.321
$arepsilon_1$	7	10.490	10.502	10.537	10.716
ε_2	7	7.814	7.879	8.068	9.331
For $\mathbf{r_d} = \mathbf{r_{Si}}$	n,				
$\eta_n\gg 1$	>	514.7	205.9	102.9	34.29
$E_{gn1} in eV$	7	2.019	2.015	2.002	1.923
n	7	3.287	3.292	3.305	3.386
κ	7	1.034	1.041	1.063	1.209
$arepsilon_1$	7	9.740	9.753	9.792	10.003
ε_2	7	6.796	6.856	7.029	8.186
			x=0.5	5	
For $\mathbf{r_d} = \mathbf{r_{So}}$	e,				
$\eta_{\rm n}\gg 1$	\ <u>\</u>	516	206	103	34.4
E_{gn1} in eV	>	1.762	1.758	1.746	1.679
n	7	3.733	3.737	3.748	3.814
κ	7	1.532	1.541	1.566	1.714

Cong.			World Jo	ournal of E	ngineering Re	search and Technology
$arepsilon_1$	7	11.587	11.590	11.598	11.608	
$arepsilon_2$	7	11.438	11.520	11.740	13.072	
For $\mathbf{r_d} = \mathbf{r_{T}}$	۵,					
$\eta_n \gg 1$	\ <u>\</u>	515.8	206	103	34.4	
E _{gn1} in eV	>	1.831	1.827	1.815	1.748	
n	7	3.568	3.572	3.584	3.650	
κ	7	1.388	1.397	1.421	1.562	
$arepsilon_1$	7	10.804	10.811	10.826	10.885	
ε_2	7	9.910	9.984	10.185	11.402	
For $\mathbf{r_d} = \mathbf{r_{Si}}$						
$\eta_n \gg 1$	n, 	515.6	206	103	34.3	
E _{gn1} in eV		1.890	1.886	1.874	1.807	
n	7	3.424	3.428	3.440	3.506	
κ	7	1.272	1.281	1.303	1.438	
$arepsilon_1$	7	10.103	10.111	10.132	10.227	
ε_2	7	8.712	8.781	8.965	10.087	
			x=1			
For $\mathbf{r_d} = \mathbf{r_{Se}}$						
$\eta_n\gg 1$	· \	535	214	107	35.6	
E_{gn1} in eV	>	1.667	1.662	1.652	1.597	
n	7	3.831	3.835	3.845	3.898	
κ	7	1.743	1.753	1.777	1.905	
$arepsilon_1$	>	11.639	11.637	11.630	11.565	
$arepsilon_2$	7	13.356	13.445	13.665	14.849	
For $\mathbf{r_d} = \mathbf{r_{T_d}}$						
$\eta_n \gg 1$	\ <u>\</u>	534.8	213.9	106.9	35.6	
Egn1 in eV	>	1.736	1.732	1.721	1.666	
n	7	3.667	3.671	3.681	3.735	

World Journal	of Engi	ineering	Research	and '	Technol	ogv
	~ <u></u>					

	٧.			
•	`(H	10	T
•	~	,,	16	٠.

$ε_1$	κ	7 1.5	89	1.598	1.621	1.743
For $\mathbf{r_d} = \mathbf{r_{Sn}}$, $\eta_n \gg 1$ \ 534.7 \ 213.9 \ 106.9 \ 35.6 \\ $\mathbf{E_{gn1}} \text{ in eV} \ \ 1.795 \ 1.791 \ 1.780 \ 1.725 \\ \mathbf{n} \ \ \ 3.522 \ 3.527 \ 3.537 \ 3.591 \\ \kappa \ \ \ \ 1.463 \ 1.472 \ 1.494 \ 1.612 \\ \varepsilon_1 \ \ \ \ 10.269 \ 10.273 \ 10.281 \ 10.299 \\ \varepsilon_2 \ \ \ \ \ 10.312 \ 10.387 \ 10.574 \ 11.578$	$arepsilon_1$	7	10.923	10.924	10.926	10.909
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ε_2	7	11.651	11.732	11.935	13.020
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
E_{gn1} in eV 1.795 1.791 1.780 1.725 n 3.522 3.527 3.537 3.591 κ 1.463 1.472 1.494 1.612 ε_1 10.269 10.273 10.281 10.299 ε_2 10.312 10.387 10.574 11.578	For $\mathbf{r_d} = \mathbf{r_{S_1}}$	1,				
n / 3.522 3.527 3.537 3.591 κ / 1.463 1.472 1.494 1.612 ε_1 / 10.269 10.273 10.281 10.299 ε_2 / 10.312 10.387 10.574 11.578	$\eta_n\gg 1$	>	534.7	213.9	106.9	35.6
κ / 1.463 1.472 1.494 1.612 ε_1 / 10.269 10.273 10.281 10.299 ε_2 / 10.312 10.387 10.574 11.578	E_{gn1} in eV	7	1.795	1.791	1.780	1.725
ε_1	n	7	3.522	3.527	3.537	3.591
ε_2 / 10.312 10.387 10.574 11.578	κ	7	1.463	1.472	1.494	1.612
	$arepsilon_1$	7	10.269	10.273	10.281	10.299
Tin K 7 20 50 100 300	$arepsilon_2$	7	10.312	10.387	10.574	11.578
Tin K 7 20 50 100 300						
1 ll K / 20 50 100 500	T in K	7	20	50	100	300

Table 5p. In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given r_a and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_p(\gg 1, \text{degenerate case})$, E_{gp1} , n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , noting that both η_p and E_{gp1} decrease with increasing T. One notes that, with increasing T, the variations of these optical coefficients depend on those of optical band gap, E_{gp1} .

T in K	7	20	50	100	300	
			x=0			
For $\mathbf{r_a} = \mathbf{r_G}$	a,					
$\eta_p\gg 1$	7	492	197	98	33	
E_{gp1} in eV	7	1.777	1.773	1.760	1.681	
n	7	3.809	3.813	3.825	3.903	
κ	7	1.501	1.510	1.537	1.711	
$arepsilon_1$	7	12.253	12.258	12.271	12.304	
ε_2	7	11.434	11.517	11.758	13.354	
						•

World Journal	of Eng	gineering	Research	and	Technol	ogv
TT OI IU O'UI IIUI			11CbCul Cil	and		US 1

•	~			
Œ		n I	n	Œ

For $\mathbf{r_a} = \mathbf{r_{In}}$,					
$\eta_p\gg 1$	7	484	194	97	32	
E _{gp1} in eV	7	1.838	1.834	1.821	1.742	
n	7	3.656	3.660	3.673	3.751	
κ	7	1.375	1.384	1.409	1.576	
$arepsilon_1$	7	11.475	11.483	11.503	11.586	
ε_2	7	10.052	10.128	10.350	11.822	
For $\mathbf{r_a} = \mathbf{r_{Co}}$	 d,					
$\eta_p\gg 1$	7	484	193.6	96.8	32.2	
E_{gp1} in eV	7	1.840	1.836	1.823	1.744	
n	7	3.651	3.655	3.668	3.746	
κ	7	1.371	1.380	1.405	1.572	
$arepsilon_1$	7	11.450	11.458	11.478	11.563	
ε_2	7	10.011	10.087	10.3080	11.776	
		X	=0.5			
For $\mathbf{r_a} = \mathbf{r_{G}}$	 	X	=0.5			
For $\mathbf{r_a} = \mathbf{r_{Ga}}$ $\eta_p \gg 1$	a,	451	180	90	30	
	7	451		90 1.590	30 1.523	
$\eta_p\gg 1$	7	451	180			
$\begin{split} \eta_p \gg 1 \\ E_{gp1} & \text{in eV} \end{split}$	\ \	451 1.606	180 1.602	1.590	1.523	
$\begin{split} &\eta_p\gg 1\\ &\frac{E_{gp1}\text{in eV}}{n} \end{split}$	\ \ \	451 1.606 3.980	180 1.602 3.984	1.590 3.995	1.523	
$\begin{array}{c} \eta_p \gg 1 \\ \\ E_{gp1} \ \text{in eV} \\ \\ \\ \hline n \\ \\ \kappa \end{array}$	\ \ \ \ \ \	451 1.606 3.980 1.883	180 1.602 3.984 1.893	1.590 3.995 1.921	1.523 4.058 2.084	
$\begin{array}{l} \eta_p \gg 1 \\ \\ E_{gp1} \text{in eV} \\ \\ \\ \\ \kappa \\ \\ \varepsilon_1 \end{array}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	451 1.606 3.980 1.883 12.292	180 1.602 3.984 1.893 12.286	1.590 3.995 1.921 12.269	1.523 4.058 2.084 12.126	
$\eta_p\gg 1$ E_{gp1} in eV n κ ε_1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	451 1.606 3.980 1.883 12.292	180 1.602 3.984 1.893 12.286	1.590 3.995 1.921 12.269	1.523 4.058 2.084 12.126	
$\eta_p \gg 1$ $E_{gp1} \text{ in eV}$ n κ ε_1 ε_2 For $\mathbf{r_a} = \mathbf{r_{In}}$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	451 1.606 3.980 1.883 12.292 14.990	180 1.602 3.984 1.893 12.286 15.087	1.590 3.995 1.921 12.269 15.348	1.523 4.058 2.084 12.126 16.919	
$\eta_p \gg 1$ E_{gp1} in eV n κ ε_1 ε_2 For $\mathbf{r_a} = \mathbf{r_{In}}$ $\eta_p \gg 1$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	451 1.606 3.980 1.883 12.292 14.990	180 1.602 3.984 1.893 12.286 15.087	1.590 3.995 1.921 12.269 15.348	1.523 4.058 2.084 12.126 16.919 28.5	
$\eta_p\gg 1$ E_{gp1} in eV n κ ε_1 ε_2 For $\mathbf{r_a}=\mathbf{r_{In}}$ $\eta_p\gg 1$ E_{gp1} in eV	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	451 1.606 3.980 1.883 12.292 14.990 427 1.658	180 1.602 3.984 1.893 12.286 15.087	1.590 3.995 1.921 12.269 15.348 85 1.642	1.523 4.058 2.084 12.126 16.919 28.5 1.575	

ε ₂	7	13.531	-	13.622	13.866	15.338	
For $\mathbf{r_a} = \mathbf{r_{Cd}}$,							
$\eta_p\gg 1$	>	426.5	170.6	85	28.4		
E_{gp1} in eV	>	1.659	1.655	1.643	1.576		
n	7	3.833	3.837	3.848	3.913		
κ	7	1.759	1.769	1.796	1.954		
$arepsilon_1$	>	11.598	11.595	11.586	11.490)	
$arepsilon_2$	7	13.489	13.580	13.823	15.292	,	
			x=1				
For $\mathbf{r_a} = \mathbf{r_{Ga}}$	 a,						
		385	154	77	25.	.7	
E _{gp1} in eV	>	1.479	1.475	1.464	1.409		
n	7	4.105	4.109	4.118	4.16	9	
κ	7	2.195	2.206	2.233	2.37	5	
ε_1	7	12.030	12.015	11.975	5 11.73	34	
ε_2	7	18.019	18.126	18.392	2 19.82	20	
For $\mathbf{r_a} = \mathbf{r_{In}}$							
$\eta_p\gg 1$	7	327	131	65	21.7	,	
E_{gp1} in eV	7	1.509	1.505	1.494	1.439		
n	7	3.984	3.988	3.998	4.049	9	
κ	7	2.120	2.130	2.157	2.298		
$arepsilon_1$	>	11.380	11.366	11.331	11.112	2	
ε_2	7	16.890	16.992	17.247	18.61:	5	
For $\mathbf{r_a} = \mathbf{r_{Cd}}$,							
$\eta_p \gg 1$	ı, 	324	130	65	21.6		
E _{gp1} in eV	7	1.510	1.505	1.495	1.440		
n	7	3.980	3.984	3.994	4.045	,	

Cong.

World Journal of Engineering Research and Technology

Cong.			World Journal of Engineering Research and Technology			
κ	7	2.118	2.129	2.155	2.297	
$arepsilon_1$	>	11.358	11.345	11.310	11.091	
$arepsilon_2$	7	16.861	16.963	17.218	18.584	
T in K	7	20	50	100	300	