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ABSTRACT

In the n* (p*) — A(1—x)Bx- Crystalline alloy, 0 =x = 1, x being the
concentration, the optical coefficients, and the electrical-and-
thermoelectric laws, relations, and various coefficients, being enhanced
by : (i) our static dielectric constant law, £(rqc).x), r4ca) being the
donor (acceptor) d(a)-radius, given in Equations (la, 1b), (ii) our
accurate Fermi energy at T = 0K, Epn(pp) (Epno(rpo)), determined in
Eqg. (11) and accurate with a precision of the order of 2.11 x 107*[°,

affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients, are now investigated, by basing on our
physical model, and Fermi-Dirac distribution function, as those given

in our recent works.™ 2 In the following, for given physical

conditions, all the optical coefficients are expressed as functions of the effective photon

energy : E" = E — Egni(gp1), E and Egny(gp1) beINg the photon energy and the optical band

gap. Then, some important remarks can be repoted as follows.

-From our essential optical conductivity model, oo (E™), determined in Eqg. (18), all the

optical coefficients and electrical-and-thermoelectric ones are determined, as those given in
Equations (19a-19d, 20a-20d).

-In particular, from the optical-and-electrical transformation duality given in Eq. (15),

E = Egni(gp1) + Erncrp)(Eeno(epo)) » according to the optical phenomenon-electrical
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phenomenon transition effect, o, has a same form with that of the electrical conductivity, o,
as given in Eqg. (20a), and in our recent work™, suggesting many important concluding
remarks on the electrical-and-thermoelectric coefficients, as those given in Equations (20a,

21-30) and in our recent work.™"

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n* (p*) — A(1-x) By~ crystalline alloy, 0 < x < 1, x being the concentration, the optical
coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients,
being enhanced by :

(i) our static dielectric constant law, £(rg(.), %), racs) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Epncepy, given in Eqg. (11) and accurate with a precision of the

order of 2.11 x 10~* [9], affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients ,
(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally
(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated, basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.!*?
It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate A-crystal.[3'13] Then, some important remarks can be
repoted as follows.
(1) As observed in Equations (3, 5, 6), the critical impurity density Neppccpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

Népaccop)- being obtained with a precision of the order of 3 x 1077, respectively, as given

in our recent works.®! Therefore, the effective electron (hole)-density can be defined as:
N* = N — Nepn(cop) = N — N&pacep): N being the total impurity density, as that observed

in the compensated crystals.
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(2) The ratio of the inverse effective screening length kgy,sp) to Fermi wave number kg ep)
at 0 K, Rgn(spy (N™), defined in Eq. (7), is valid at any N”*.

(3) From our basical optical conductivity model given in Eq. (18), all the optical and optical,
and electrical-and-thermoelectric coefficients are well determined. In particular, from the
optical-and-electrical transformation duality given in Eg. (15), according to the optical
phenomenon- electrical phenomenon transition effect, the optical conductivity, og ,
determined in Eq. (18), has the same form with that of the electrical conductivity, a, as given
in Eq. (20a), and in our recent work.™

(4) From Equations (20a, 21-30), for any given X, rgczy and N (or T), with increasing T (or
2z
decreasing N), one obtains: (i) for &,p) = E ~ 1.8138, while the numerical results of the

Seebeck coefficient S present a same minimum (S) min. (z —1.563 x 107* E) those of the
figure of merit ZT show a same maximum (ZT)yax. = 1, (ii) for &,y = 1, the numerical
results of S, ZT, the Mott figure of merit (ZT)y 11, the first Van-Cong coefficient VC1, and

the Thomson coefficient Ts, present the same results: —1.322 x 10‘% , 0.715, 3.290,

1.105><10‘4£ , and 1.657’><1-:11“‘?—'I ,  respectively, and finally (iii) for

2
En(p) = \/g =~ 1.8138, (ZT)pot = 1, as those given in our recent work [1]. It seems that
these same results could represent a new law in the thermoelectric properties, obtained in
the degenerate case (§,p) = 0).

(5) Finally, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg . a5 D(N.raea)xT) (V2 kg [3xL . . .
2 X VC2(N,rgea),x,T) = — X (E) ~ = .|z » according, in this

3tn(p) ~ w(NrgexT) q
work, to:
_ D(NrgmxT) (T Mot [1-(ZTIMmott] bei . D
= ——= eing reduced to: —
VC2(N,rgc),%, T) e X 2 e WV g L

VC1 and VC2, determined respectively in Equations (24, 27, 28). This should be a new

result.

In the following, many important sections are presented in order to investigate all the optical

coefficients and electrical-and-thermoelectric ones, given in the n*(p*) —Ay_xBy -

crystalline alloy at any temperature T(= 0 K).
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OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n* (p*) — A(;_ B, crystalline alloy at T=0 K™, we denote : the donor
(acceptor) d(a)-radius by rg(a), the corresponding intrinsic one by: rgeca0)=Ta, the effective
averaged numbers of equivalent conduction (valence)-bands by : g¢wy , the unperturbed
reduced effective electron (hole) mass in conduction (valence) bands by m ) (x)/m,, m,
being the free electron mass, the unperturbed relative static dielectric constant by: £,(x), and
the intrinsic band gap by: E g, (x).

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values

as:
Edo(aoj(xj:neaox[imfg]jixjfmo] meV , and then, the isothermal bulk modulus, by
ol
_ _ Edo@@o)®)
B X)=qam_  3-
do{ao]( ) (%}x(rdo(aoj)

Our Static Dielectric Constant Law
Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant e(rq .y, x), developed as follows.

Al rg(a) = Tao(a0), the needed boundary conditions are found to be, for the impurity-atom
volume V= (41/3) x (rd{a])a, Vio(aey = (41/3) X (rdo{aoj)a, for the pressure p, p, = 0,
and for the deformation potential energy (or the strain energy) «, a, = 0. Further, the two
important equations, used to determine the @ -variation, A « = a —a, = «, are defined by :
dp_ B

_ & i rise to : S(3%)=B i i :
R and p= 3y » giving rise to : C“_F(CW =5 Then, by an integration, one gets :

[Aa (rd(ajjxj]n(p] = Bgo(ao) (%) X(V— Vo (ao) )% In
3 3
Vo= fa@ ) _ ] @ ) =
(Vdo(aoj) Edo{ao] (Xj % [(rdo(aoj) 1} xIn (rdo(at})) = 0.

Furthermore, we also showed that, as rgg) > Taorac) (Td(a) < Tdo(as)) . the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gpj(rd(a],x), and
the effective donor (acceptor)-ionization energy Eq(a) (rd{aJ,x) in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [ﬂ.a (rd{a),x)]n )’
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2
£q(x)
Egno(gpo) (rd(a]rxj - Ego (x) = Ed(a] (rd{a]rxj - Edo(ao] (x) = Edo{ao] (x) X l(ﬁ(:d(a)]) -

1] =+ [ﬁa(rd(a],xj]n(pj

f0r I‘d(a] = rdo(ao]’ and fOI’ I‘d(a] = rdo(ao]v

2
£q(x)
Egno(gpo) (rd(a]rxj - Ego (x) = Ed(a] (rd{a]rxj - Edo(ao] (x) = Edo{ao] (x) X l(ﬁ(:d(a)]) -

1] = — [ﬂa(rd(a],xj]n(pj
Therefore, one obtains the expressions for relative dielectric constant £(rg¢.y,x) and energy

band gap Egn(gp) (Taca) %), as :

g (%)

(I)-for r4(a) = Tdao(ac), SINCE £(Tg(a), X)= - <g,(x), being a new

. 3 . 3
e )

E(I'd(a],X)'laW,

r 3
Egno(gpo] (rd(a]:X) - Egc (X) = Ed(a] (rd(a]:X) - Edo(ao] (X) = Edo(ao] (X) X [(ﬂ) - 1] X

Tdo(ao)

ra) \?

in (20 ) 2 o
T'dojao)

(1a)
according to the increase in both Egygp) (raca) x) and Eqa)(raca),x), With increasing rqca)

and for a given x, and

£0(x)

(ii)'for I'd(a) = I'do(ao) since E(I‘d(a],XjJ = - > g,(x), with a

| T 3 T, 2
Jl_[(.mgg:i)) ‘1]““(::12%)

3 3
condition, given by: [(rdi) — 1] X In (ﬂ) <1, being a new &(rqa), X)-law,

T'do(ao) T'do(ao)

3
r
Egno(gpo] (rd(a]yx) - Ego (X) = Ed(a) (rd(a]yx) - Edo(ao] (X) = _Edo(ao] (X] X [(ﬂ) -

Tdo(ao)
|enfiee)
Tdo(ao) =0, (1b)
corresponding to the decrease in both Egnogpo) (Taca), X) and Eq(ay (racay, ), With decreasing

rq(a) and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties
strongly depend on this new &(rga), X)-law.
Furthermore, the effective Bohr radius agygp) (Taca),x) is defined by:

) h2 b
2a@ XXM 53 % 1078 ¢m x Sra@%) )

agn(ep) (Td(a)X) = Me (v (x)Xmpxg? My (%)
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Generalized Mott Criterium in the MIT
Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepnvpp) (Taca), X), Was given by the Mott’s criterium, with an empirical parameter,

[2,3].

M as

n(p):
1y
Nepn(cop) (Taca), X) /3 X agneep) (Taa),X) = Myp), Mpg) = 0.25, 3)

depending thus on our new &(ry,y, X)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rgp(sp)m, in the Mott’s criterium, being characteristic of interactions, by :

(33 1 g o (13 me)xmg
Foncspyt (N, Taa) X) = (m) X oo Gan = L1723 X 10° X (ﬁ) X (4)
being equal to, in particular, at N= Nepn(eop) (Taga), X)

rsn{sp],M(NCDn{CDp] (rd{a],xj,rd{a],x): 2.4813963, for any (rga),x)-values. Then, from Eq.

(4), one also has :

1

1y 3 1
NCDn(CDp] (rd(a];x) /3 X 2Bn(Bp) (rd(ajxx) = ( )3 X 54813963 =0.25= (wsjn(p] = Mﬂ(p]! (5)

4t

Explaining thus the existence of the Mott’s criterium.

Furthermore, by using M, = 0.25, according to the empirical Heisenberg parameter
Hnpy = 0.47137, as those given in our previous work®, we have also showed that
Nepn(epp) IS just the density of electrons (holes) localized in the exponential conduction
(valence)-band  tail ,  Nepncpp) . With a precision of the order of
2.82 (2.88) x 1077, respectively [l

It shoud be noted that the values of My, and Hy .,y could be chosen so that those of
Ncpn(epp) and NESE{CDPJ are found to be in good agreement with their experimental results.
Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rq¢a),X) = N — Nepnupp) (Taga),x)= N7, for a presentation simplicity. (6)
In summary, as observed in Tables 7 and 8 of our previous paper’®), one remarks that, for a
given x and an increasing rgay , £(raca),x) decreases, while Egnogpo) (racay x) .
Ncpn(vop) (Taca), %) and NEpT e (ra),X) increase, affecting strongly all the optical
properties and the electrical-and-thermoelectric ones, as those observed in following

Sections.
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PHYSICAL MODEL
In the n*(p*) — A—x) By~ crystalline alloy, the reduced effective Wigner-Seitz (WS) radius

Tsn(sp), Characteristic of interactions, being given in Eq. (4), in which N is replaced by N*, is

now defined by:

-y — XenEp) 3gc)\ 1 :
XT N)=——<1, r N, rgca, X E( 8) X , bein
¥ X Tsnspy (N7) p— sn(sp) (N, Tagay, x) e P—c— g

1

ITZN*\z . ]
il ) is the Fermi wave,

proportional to N*~/%. Here, ¥ = (4/9m)/3, kgp(epy (N*) = (

c(v)
g.(v) being the effective averaged numbers of equivalent conduction (valence)-bands, and

agn(sp) (Taca),X) IS determined in Eq. (2), in which mgy,(x) is replaced by the relative

effective carrier mass, defined by: m,(x) = %
ch2 vl

Then, the ratio of the inverse effective screening length kgn ) to Fermi wave number

Kgn(kp) IS defined by:

+ — ksngsp) _ Kengep)
Rsn(sp] (N )=—== =

— ~Tsn(sp)
Ken(ep) ks_r}(sp) RanS(spWS] + [RsnTF(spTF] Rsn‘»"ds(sp‘»"@S]]f3 <1, (7)

being valid at any N*.
Here, these ratios, Rsnte(sptr) and Repws spws), can be determined as follows.
First, for N > Nepneypp)(Taa),x) , according to the Thomas-Fermi (TF)-

approximation, the ratio Rgprgsprr (N7) is reduced to

- KsnTF(spTF) ken(rp) 4YTsn(sp)
R (N*) = = — = « 1, 8
snTF(spTF) ken(Fp) ksrjl'TF(spTF) E (8)

being proportional to N* /¢,

Secondly, for N << Nepnnpp) (Tacay), according to the Wigner-Seitz (WS)-approximation,

the ratio Rgnwscsnws) 1S respectively reduced to

S ' d[r *Ecg(N®)
Ranepyws(N") = N _ g5 (2 y ey Fes 0l (9%)

where E¢g(N™) is the majority-carrier correlation energy (CE), being determined by:

0.87553 +(2[1—In(2)])
—0.87553 0.0908+Tsn sp) e

0.0908+4r 1+0.03847728 XTgpiag, o ©
SN(spP) sn(sp)

Xln(rsnfsp)]—0.093288
Ecg(N7) =

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

Krn Kea ||2ﬂx(§§(v)]

FiED _ o) _ 1 _ Kengp) _ o s
< = < — =R < 1, N)=1+——x k ,

aEn(Bp) EFI’ID(FDO) An(p) kSI%(Sp) sn(sp) Tlrl(p]( j q sn(sp)

£(rdea)) (9b)
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o _ PEXKEnEp) (N

E ) '
— B Erno(rpo) (N7) = 20—,

which gives: A N*) =
g n{p]( ) Tlnlfp)(Ng:]

BAND GAP NARROWING (BGN) BY NAND BY T

First, the BGN by N is found to be given by[Z]:

. "y £q(x) £g(x) 3
AE g gpyn(N" Taa),x) = a3 + E(rdm 5% N +a; X S{rd@ 5% N x (2.503 x
1
£ (x) £q(x) -
[—ECE(‘"sntsm)] x ‘“sncsm) +ax |22 x)] % e % NG + 22, % L{mm o] <Nt
£g(x) 5 N*
[s{rd(a:, x) X N Ny ~ 9.999%1017 cm—3’
(10a)
Here, a;=38x103(eV) , a,=65x10%eV) , a;=285x103V) |,

a, = 5.597 X 1073(eV), and a5 = 8.1 x 107 *(eV).
Therefore, at T=0 K and N” = 0, and for any rq(,y, one gets: AEqp.p) = 0, according to the

metal-insulator transition (MIT).

Secondly, one has?:

440.0613 K

2.201732201
AE g (gp)r(T) = 0.20251 x ([1 +(ooers) ]”“ = 1). (10b)

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION
Fermi Energy
Here, for a presentation simplicity, we change all the sign of various parameters, given in the

p* — A(1-x By - crystalline alloy in order to obtain the same one, as given in the

— Ap-xBx - crystalline alloy, according to the reduced Fermi energy

Erneep) » eney (NoTaga), % T) = EF"(FPJE(N;“&) *T) - 0(< 0) , obtained respectively in the

degenerate (non-degenerate) case.

For any (N,rqa),x,T), the reduced Fermi energy &, (N,rqca), %, T) or the Fermi energy
Eencepy (N, Tq(2), %, T), obtained in our previous paper [9], obtained with a precision of the

order of 2.11 X 10™* is found to be given by:

G(u)+AuPF(w) _ v(w)
1+AubB — wiu)

Enpy (W) = EF"(F")(“] A = 0.0005372 and B = 4.82842262,  (11)
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. . B N*
where u is the reduced electron density, u(N,rqe,xT) = N0
_z
2 E 8
New) (T, %) = 28 X (&ﬁ‘;‘:{g”—"ﬂ) (em™2) : F(u) = auz (1 +bu =+ cu_E) 3,
Q= [3\;&;4]2;3 b1 (E)z _ 623739855 (“) and G(u) ~ Ln(u) + 27 X u X e~d¢:
! g ra’l ' 1920 ! ’

d=2%2|L-2]>o0.
V27 16
So, in the non-degenerate case (u << 1), one has: Egy(ppy (1) =kgT X G(u) = kgT X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

2
8y73  R2xkipgp (NY)

2z &
one Qets: Egpegpy(u > 1) = kgT X F(u) = kT X aus (1 +buz + cu_E) o

2xmyp(X)xXmg
asu — oo, the limiting degenerate condition. In other words, &,y = EF ~CB js accurate,
and it also verifies the correct limiting conditions.
. . . _ 72 Ik N*
In particular, at T=0K, since u™* = 0, Eq. (11) is reduced t0: Egno(rpoy(N*) = #:ﬁfm] ,
T 0]

being proportional to (N*)?/3, and also equal to 0 at N* = 0, according to the MIT.
In the following, it should be noted that all the electrical-and-thermoelectric properties

strongly depend on such the accurate expression of &) (N, raca),x, T) [9].

Fermi-Dirac Distribution Function (FDDF)

The Fermi-Dirac distribution function (FDDF) is given by: f(E) =(1+e")™* |
Y = (E — Egncep))/ (ke T).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

_ p af af 1 e¥
{EP}FDDF = Gp(EFn{Fp]) X EFn{Fp] = f_mEp X (— —) dE, TEE k— X m.
Further, one notes that, at 0 K, —= = 8(E — Epno(epo) )» 8(E — Egno(epo)) being the Dirac

delta (8)-function. Therefore, G, (EFHO(FPOJ) =1.

Then, at low T, by a variable change y = (E — Egn(gp))/ (kg T), One has:

B
P(EFH{FP]) =1+ EFn{ij X J—m {1+ ‘r]z (kBTY"i' EFH(FP]) dy =1+ Zp 1.2..Cp X

B
(kgT)E x EFn{Fp] X Ig

,where C5 = p(p —1) ...(p —B+1)/B!  and the integral I is given by:

www.wjert.orq 1SO 9001: 2015 Certified Journal 9
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[¢a] YBXE‘F E " .
Ig=J_ o Trerz Y = j_mmdy, vanishing for old values of 3. Then, for even

values of B = 2n, with n=1, 2, ..., one obtains:

L — J,m yZhxeY
n ™ =Jo (14e¥)?

Now, using an identity(1 +e¥)™2 = X2, (—1)5*1s X e¥~1 3 variable change: sy = —
the Gamma function: anmti’“e‘t dt =T(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: {(2n) = 22~ 1®?|B,,|/(2n)!, B,, being the Bernoulli numbers,

one finally gets: I, = (22" — 2) x 2" X |B,,|. So, from above Eq. of {EP)gppr, We get in

the degenerate case the following ratio:

(EP) (p—1)..(p—2n+1
Go(Erncrp) = 7o =1+ Zh  PEE B ¢ (22— 2) X [Ban| X Y77 = Gpua (), (12)

h _ mkgT
Enp)(N".T)  Epngep)(N".T)

where y =

Then, some usual results of Gy.,(y) are given in the following Table 1, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 1: Expressions for Gy.q(y = —), due to the Fermi-Dirac distribution function,

Sn(p)
mkgT =
EFnFp)  Snip)

noting that G,—, (y = ) = 1, used to determine the electrical-and-thermoelectric

coefficients.

Ga/z(Y) G, (¥) Gs/z(.‘f) G3(¥) G?/Z(Y) G4(y) Ga;z(.‘f)
(1e5+30) (1+%) (1+3-3) () (1+50+50) (r2v+3) (1457 +550)

OPTICAL-AND-ELECTRICAL PROPERTIES
Optical-and-Electrical Transformation Duality
First off on, for a presentation simplicity, we change all the sign of various parameters, given

in the p* — Ay_xBy-Crystalline alloy, in order to obtain the same one, as given in the

n* — Any_By - crystalline alloy, according to the reduced Fermi energy

Epnrp)(N.rdg@).xT)
kgT

Eeneep) + &np)(NoTaa), %, T) = = 0(< 0) , obtained respectively in the
degenerate (non-degenerate) case, giving: Egno(rpo) = Een(ep) (N, Ta(a), %, T = 0).
Then, in the n* (p*) — A(1_xBy- degenerate crystalline alloy and for the temperature T(K),

One has:

www.wjert.orq 1SO 9001: 2015 Certified Journal 10
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(i) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn2(gp2) = Ectv) — Evo(co) = Egni(gpi) ~ AEgn(gp)in(N") — AEgn(gp)r(T), (13)
where Egpiapi) IS the intrinsic bang gap, AEgnap)(N™) and AEqqp) (T) are respectively the
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),
and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = Aw, and the optical
band gap, by: Egni(gp1) = Egna(gp2) + Ern(ep)- Therefore, for E = Egqq(gp1), the effective
photon energy E* is found to be given by:

E" = E — Egni(gpn) = E — (Egnatgp2) + Erncrp)) = 0. (14)
From above Equations, an optical-and-electrical transformation duality means that:

E* = E — Egny(gpa), Jiven in the OP, is reduced, as E = Egni(gp1) + Eencep) [Eno(epo |, given

in the EP, in which my(x) is now replaced by mg,(x) , to

E" = E — Egni(gp1) = Eencep) [EFno{Fpoj] , and reciprocally, replacing mc;(x) by m;(x)
given in the OP, (15)
Eqg. (15) thus shows that, in both EP and OP, the Fermi energy-level penetrations into

conduction (valence)-bands, observed in the n*(p*) — type degenerate A;_yBy-crystalline

alloy, Epnep) [Ernogepo) - are well defined.

Optical Coefficients

The optical properties for any medium can be described by the complex
refraction: N = n — ik, n and « being the refraction index and the extinction coefficient, the
complex dielectric function: & = g; —ig,, where i? = —1, and € = N2, Further, if denoting
the normal-incidence reflectance and the optical absorption by R and «, and the joint density
of states by:

_ 1 2mp3/2 E—Epni(gp1)(T) 2
108,y ) = 512 % () X [ar @S] X VEnaeoo / ne

rg® x|v(E)|?

F(E) = ne gets®?:
( j n({E)XcEXEfree space’ one gets
B _ Exgp(E) _ 2Exk(E) _ 4mog(E) =n?Z — e, =
« (E) = JDOSy (p) (E) X F(E) = hen(E) ke cn(E)Xefree space | =0 K8 = 2,
_ [m—1]%4x2
and R(E) = FYTIITCR (16)

It should be noted that, such the above joint density of states yeilds: (i) as E = Egp1(gp1)(T),

Zm[-

. 1 3/2
JDOS ) (E) = 0, and (i) as E = , JDOSy () (E) — — X (ﬁ—z) X /Erno(pe)- FUrther,
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Efree space IS the permittivity of the free space, -q is the charge of the electron, [v(E)| is the

matrix elements of the velocity operator between valence (conduction)-and-conduction

(valence) bands, and the refraction index n is found to be defined by

BpiE+C
n(E, ra@) = Mo (Ta@) + it g2og pre — Moo (Ta@) 8 E = 0. (17)

Here, the optical conductivity o, can be defined and expressed in terms of the kinetic energy

2 2
of the electron (hole), Ey = ﬁ, or the wave number Kk, as:
2Xmyp(x)xXmg
0o (k) = T X [kxa ] = ( = )m which is thus proportional to Ej.”
© mxh ksn(sp] Bn(Bp) /) k -
. _ nkgT
Then, we obtain: (E2)pppr = Gy (y = EFH(BFm] X Efnep) , and

2
G2 (Y:] = (1 + y?) = GZ (N, rd{a]rxj Tj 1 Wlth .V _— En{p] En(p] (NJ rd(ajlxy T) for a

b
presentation simplicity. Therefore, from above equations (16, 17), our optical conductivity
model can be assumed to be as:

Jg (N, Ta(a) % T,E) =

a® _ Kenep)(N) . -
I:ﬁ x RSI‘I(SP]{N*] x [an(Fp] (N ] X aBﬂ(BPJ (rd(a]’ X)] X AH{P] (N j X GZ (NJ rd(E]JX! T) X
( E“=E—Egn(gp1) (N.rdca)=T) )2 ( 1 )

Ee‘EE_Egnl(gpl){Nard(a}»—":»Tzaj ohmxcm (18)

which gives: oq (E = Egn1(gp1) (Tj) =0, and og(E — o) = Constant for given

(N, rgc2), %, T) — physical conditions, as those given in Ref. [2].

q2 B E (N*) Ksn(sp)
1 Fno(Fpo) — P
Here, — T = 7.7480735 x 107> ohm n(p] (N*) = —ﬂn(p)(N 7 sn(sp] (N*) = —

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-
Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains:

(E)? _
E

gn2h kpn(rp) (N*)
(2mp) 22 Frnocpo, [Rsn(sp)(N*] [an(Fp] (N9 x agn(Bp) (rd(ajyx)] X An(p] (N*)[ x

Gz(N,ra), % T), (19a)

2q? Kencep)(N') . )
K(E) n(E) Xefree space XE X [Rsn(sp)(Na] X [an(Fp] (N ) X Apn(Bp) (rd(a];x)] X An(p] (N j X

2
E-E M
G- (N T) % ST hem(gpnt’)
2( Td(a), % ) [E_Egnl(gpl)(sz ! (19b)

which gives: k(E = Egni(gp1)(T)) = 0, and x(E — o) — 0, as those given in Ref. [2],
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__ 49® ken(rp) (N*) . .
&2 (E:] N Efree space XE X [Rsn(SP](N*] X [kFH(FP] (N j X aBn(Bp] (rd(a]’x)] X An{p] (N ] X

2
E—Egn1(gp1)(T) ]
G2 (N; rd{aJJXJ T) X [E—Egnl(gpl){sz !

(19¢)
which gives: £5(E = Egni(gpn (T)) = 0, and £, (E — o) — 0, as those given in Ref. [2], and

_ 4q* ken@p) (N
« (E) = hen(E)Xefree space [Rsn(sp)(N“] [kF“(Fp] (N") aBn(Bp] Td(a]; >< Angp) (N*)

E-Egna(gpy) (T) -1
GZ (N, rd(a], X, T) X [E_Egnl(gpl)(sz] (Cm j;

(19d)
which gives: « (E = Egni(gp1) (T]) =0, and « (E — o) = Constant, as those given in

Ref.l?

Using the optical-and-electrical transformation duality, given in Eq. (15), at
E = Egni(gp1) + Een(rp) [EFHO(FPOJ], the optical conductivity, og given in Eq. (18), in which
m,(x) is now replaced by m,)(x), has the same form with that of the electrical

conductivity, o, given in our recent work [1], for such an optical phenomenon-and- electrical
phenomenon transition. So, from Equations (18, 19b, 19c¢, 19d), ones obtains respectively, as:

q®  ken(rp)(N7)

ﬁ RSI‘I[\’SP)(NECJ X [an(Fp] (N :] X

2
Epn(pp) (N,I‘d(a:p.‘(.T) 1
Go(N, rgea), %, T) X ( - -
EFno(’Fpo)(Nard(a}XaT—U) ohmxcm

Oo (N, Ta(a), X, T,E = Egni(gp1) + Epn(rp) [EFno{Fpo]]) =
apn(ep) (Ya)%)] X y/Anep) (N*?J] X
having the same form with that of o(N, rq(a,x, T),

(N a5 T) = |55 x FERE [k (N) X 2o (e x)] X Yag (V)

2
Ern(ep) N.raga) = T) 1
GZ (NJ rd{a:]!x; T) X (E (N — )
Fno(Fpo)\N.Td(a). x.T=0 ohmxcm

O il P L LS G E R CHaRy) g CWSICD] B
Gz(N, Ta(a). X%, T) X (EFi::;s:;é:::f:;on))z . (20D)
g,(E) = Emgz:wm X [::E:;((:; X [Ken(ep) (N) X agn(ap) (rac), x)] X [Anp) (N*)| X
2z
G0 T) X (e S ) and  (200)
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_ 4q” ken(rp)(N) . .
x (E) = hen(E)Xefree space X [Rsn(sp)(N* X [an(Fp] (N*) X aBn(Bp](rd(a]’X)] X [Ane (N

2
Epn(r )(N,rd(a),x;r) _
GZ(N, Td(a) % T) X ( P ) (em™).
EFno(Fpo)(N,rd(a),x,T—ﬂ)

(20d)
One notes that the electrical conductivity o(N,r4ca),%,T), given in Eq. (2a), is a basical

result, being used to determine other following electrical-and-thermoelectric coefficients.

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES

Here, if denoting, for majority electrons (holes), the thermal conductivity by ot(N, rgca),x, T)

w
cmxK

in

: and the Lorenz number L by:

Wxohm
Kz

] 2
L="x ("—B) — 24429637 (
3 q

) = 2.4429637 x 1078 (V2 x K™2) , then the well-

known Wiedemann-Frank law states that the ratio, %“ is proportional to the temperature

T(K), as:

or(N.raga)x.T)
o(N.rg(z).xT)

=LxT. (21)
Further, the resistivity is found to be given by: p(N,r4ca), %, T) = 1/0(N,r4c), %, T), noting
again that N* = N — Nepn(npp) (Taca), X)-

In Eq. (20), one notes that at T= 0 K, o(N, rgca),x, T = 0K) is proportional to E%no(Fpoj, or to

(N*]%.Thus, o(N = Nepn(npp), Td(a), % T = 0K) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients

The relaxation time 7 is related to o by!!:

mc(’v)(-"—'lmo

. Therefore, the mobilit is given by:
X (N /Beqw) yulsgivenby

T(N, q(a) % T:] = U(N, dia): % Tj X

qXT(N,rd(a:,,_!(,T:] B U{N,I‘d(’a}x,ﬂ ﬁ
My (x).xmg ax(N*/gew)) ~ VXs

|.L(N, Td(a), X, T) = |.I,(N ", Td(a) T) = ). (22)

Here, at T= OK, p(N*, rq¢s, T) is thus proportional to (N*)/3, since o(N*,rq(z, T = O0K) is
proportional to (N*)*3. Thus, u(N* = 0, rqca), T = OK) = 0 at N* = 0, at which the MIT
occurs.

Then, since T and o are both proportional to Egygp) (N*,T)?, as given above, the Hall factor

is defined by:

— {™rppr _ _Ga(¥) y = L _ kg T
T Uopppr? Gz En(p) (N.rda)x.T) EFn(Fp}(Ner(a}-“LTT

ry (N, rg(a), x, T) and therefore,

the Hall mobility yields:
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(N, raga), %, T) = (N, raca), % T) X ra(N*,T) (o— ) (23)
noting that, at T=0K, since I‘H(N,rd(a],x,T]=1 , one then  gets:

Ly (N, q(a) % T:] = H(N, Iqa) X%, T:] .

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

D(N.rgra).xT N* dE kg xT d (u) 3xL d uh k IxL
(Nra@xT) _ N* () _ keXT (u En(p) ): AL T x (u En(p) ) ks 2L
u{N,rd(a}x,T} q dN q du T du q T

where D(N,rq(2), %, T) is the diffusion coefficient, &,.,)(u) is defined in Eq. (11), and the

mobility u(N,rd(a],x,T) is determined in Eq. (22). Then, by differentiating this function

. . d .
En(p) (1) With respect to u, one thus obtains M. Therefore, Eq. (17) can also be rewritten
as:
D(N.rga).xT)  kgxT V() xwu) —-viw) xw' (u)

f = s
u(NragxT) q w2 (u)
where W'(u) = ABu®? and

3 £ a
V() =ut+ 272791 — du) + 2AuPIF(u) (1 + ) + 2 % . One remarks

1+bu 24cu 2

that: (i) as u—0, one has: W2 ~1 and u[V' XW -V XxW']=21, and therefore:

. ; , and (i) as wu—o , one has: W?=xA%u’2 and
u[V'x W -V xW']=~ gaumAZuZB, and therefore, in this highly degenerate case and at

T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

D(N.rq(a).x.T=0 K)
u(N.rqa)xT=0 K)

Epno{ppoj (N*)/q. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

4 g
bu 3+2cu 3
D{N,rd(a:,,X,T) 2 Epno(rpo) () 4 ( 3 - )
— = o T ] - X z B |
u(NrggxT) 3 q 3 (mj

where a = [337/4]"", b= ()" and e = ()"

Thermoelectric Coefficients
First of all, from Eq. (20), obtained for o(N, rac),x, T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, S, is found to be given by:

www.wjert.orq 1SO 9001: 2015 Certified Journal 15




Van. World Journal of Engineering Research and Technology

S(N, rac % T) = = x —>< kgT X

alncr{E]] _ -’ o KB o ano(Enp)
OE lE=Epngp 3 q 3En(p)

Then, using Eqg. (11), for the degenerate case, &,,) =0, one gets, by putting

2

Fs(N,rge,x,T) = |1 - —F ,
3XG2 y=
[ Enu:oj

-2k 2Fgp (N*T 3xL 2%
S(N,ra(2), %, T) = - X X % =— |57 % 3;;“’) =
n(p) 1+ Tzlz(p)

7T 2
—24L X /@Dt (—) <0, (ZT)Mott = 1-[72

1+(ZT)pMott \K 3XZnp) , (25)
according to:
sx‘c;n( )2
s _ [3xL %2 % -1 3IXL 2 (ZT Mo X[1—-(ZT) pmott]
= == —z arL
d&n(p) m? ( " "En(E) ) z [1+(ZT) pote)®

Here, one notes that: (i) as &,y — + or ;) — +0, one has a same limiting value of S:

b4
S — —0, (i) at &) = \/:_ 1.8138, since

“— 0, one therefore gets: a minimum
“P

(S)min. = —VL =~ —1.563 x 104 G) , and (i) at ¥y, =1 one obtains:

S~ 1322 x10°* G)

Further, the figure of merit, ZT, is found to be defined by:

$2xoxT 5_2_ 4% (ZT) Mott (26)

L [4+(ZDmowl?

ZT(N,rq(2),%,T) =

a .. 2 .
Here, one notes that: (i) --— (m =2X ; X 3% j X S <0, (i) at Engp) = {—ﬂ?z 1.8138, since
n(p

d(ZT)
9%n(p)

= 0, one gets: a maximum (ZT) pax, = 1,and (ZT)yore = 1, and (iii) at &,¢p) = 1, one

2
obtains: ZT = 0.715 and (ZT)yee = 5 =~ 3.290.

Finally, the first Van-Cong coefficient, VC1, can be defined by:

. . a8 .
VC1(N, rg(a,x T) = —N* x = (E):N”‘x P _x—Z0®  peing equal to 0 for

1.[2
En(p] = \/;1 (27)
and the second Van-Cong coefficient, VC2, as:
VC2(N,rgc),x T) = T x VC1 (V), (28)

the Thomson coefficient, Ts, by:
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_._ds (VY _ as  _ dtng) | . _ [
TS(N,I‘d{a],X, T) =Tx aT (E) = m X a1 belng equal to O for En(p] = \/;, (29)
and the Peltier coefficient, Pt, as:
Pt(N,rd(a],x,T) =T xS (V). (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

: ~ds __ . ds _

VC1(N,raca),%, T) and Ts(N,raa,x, T) are expressed in terms of —= and —, one has:
2 2

[ V€L, Ts]<0 for &p >[5 , [ VCLTs]=0 for &g =5 , and

2 2

, stating also that for §,(p) = ﬂ?:

T
[VCL, Ts] > 0 for &np) < |5
() S, determined in Eg. (25), thus presents a same  minimum
— v
(S)min. = _V’E ~ —1563 xX107% (E)’

(if) ZT, determined in Eq. (26), therefore presents a same maximum: (ZT) ., = 1, Since

the variations of ZT are expressed in terms of [VC1, Ts] xS, S < 0.

Furthermore, it is interesting to remark that the (\VC2)-coefficient is related to our generalized

Einstein relation (24) by:
kg __ ds D(N.rqa)xT) (v_z kg _ [3xL
= x VC2(N, raqa), % T) = T X e =), == &=

according, in this work, with the use of our Eqg. (25), to:

D(N.rq¢z).x.T) (ZT)Motex[1-(ZT)mott] W)
u(N.rqea)xT) [1+(ZT)mote]? '

VC2(N,rg0),%x T) = —

Of course, our relation (31) is reduced to: E, VC1 and VC2, being determined

respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n* (p*) — Aq1—x By~ crystalline alloy, 0 = x =< 1, x being the concentration, the optical
coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients,
being enhanced by :

(i) our static dielectric constant law, £(ry(a), ), rqca) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),
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(i) our accurate Fermi energy, Epncepy, given in Eqg. (11) and accurate with a precision of the

order of 2.11 x 10~* [9], affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,
(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally
(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated, basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.!*"?
It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate A-crystal.’*®! Then, some important remarks can be
repoted as follows.
(1) As observed in Equations (3, 5, 6), the critical impurity density Neppccpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

N on(cpp) being obtained with a precision of the order of 3 x 1077, respectively, as given

in our recent works.®! Therefore, the effective electron (hole)-density can be defined as:
N = N — Nepn(eop) = N — N&pcepp): N being the total impurity density, as that observed
in the compensated crystals.

(2) The ratio of the inverse effective screening length kg, sy to Fermi wave number kg, p)
at 0 K, Rgn(spy (N™), defined in Eq. (7), is valid at any N~

(3) From our basical optical conductivity model given in Eq. (18), all the optical and optical,
and electrical-and-thermoelectric coefficients are well determined. In particular, from the
optical-and-electrical transformation duality given in Eg. (15), according to the optical
phenomenon- electrical phenomenon transition effect, the optical conductivity, o |,
determined in Eq. (18), has the same form with that of the electrical conductivity o, as given
in Eq. (20a), and in our recent work.™

(4) From Equations (20a, 21-30), for any given X, rgcz) and N (or T), with increasing T (or
2z
decreasing N), one obtains: (i) for &,p) = E ~ 1.8138, while the numerical results of the

Seebeck coefficient S present a same minimum (S) min. (2 —1.563 x 107* E) those of the

figure of merit ZT show a same maximum (ZT)yax. = 1, (ii) for &,y = 1, the numerical

results of S, ZT, the Mott figure of merit (ZT)pott, the first Van-Cong coefficient VC1, and
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the Thomson coefficient Ts, present the same results: —1.322 x 10‘45 , 0.715, 3.290,

1.105><10‘4£ , and 1.657’><1-:11“‘?—'I , respectively, and finally (iii) for

2
En(p) = E ~ 1.8138, (ZT) Mot = 1, as those given in our recent work [1]. It seems that

these same results could represent a new law in the thermoelectric properties, obtained in

the degenerate case (§,(p) = 0).

(5) Finally, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg _ _ @s D(Nrae@xT) (v2 kg _ [3xL L .
- X VC2(N,rge), %, T) = FTIE C COp— (K ) .= |, according, in this
work, to:

_ _ D(Nirg@)xT) (ZT)motex[1-(ZT)mottl ; . D
VC2(N,rge),%x T) = a(NramxT) e (V) being reduced to: =,

VC1 and VC2, determined respectively in Equations (24, 27, 28). This can be a new

result.
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