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ABSTRACT
In the n*(p*) — A;;_B,- crystalline alloy, 0 =x=1, x being the

concentration, the optical coefficients, and the electrical-and-
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Université de Perpignan Via donor (acceptor) d(a)-radius, given in Equations (la, 1b), (ii) our

thermoelectric laws, relations, and various coefficients, being enhanced

by : (i) our static dielectric constant law, £(ra;s.x), race being the

Domitia, Laboratoire de accurate Fermi energy at T = 0 K, Ezncep) (Enogspey)s determined in Eq.
Mathématiques et Physique

(LAMPS), EA 4217,

Département de Physique,
52, Avenue Paul Alduy, F- thermoelectric coefficients, are now investigated, by basing on our

(11) and accurate with a precision of the order of 2.11 x 10~* [9],

affecting all the expressions of optical, and electrical-and-

66 860 Perpignan, France. physical model, and Fermi-Dirac distribution function, as those given

in our recent works.™ 2 In the following, for given physical conditions,

all the optical coefficients are expressed as functions of the effective photon energy :
E” = E— E.ni(gp1), E and E_,1¢01) being the photon energy and the optical band gap. Then,
some important remarks can be repoted as follows. From our essential optical conductivity
model, o,(E*), determined in Eqg. (18), all the optical coefficients and electrical-and-
thermoelectric ones are determined, as those given in Equations (19a-19d, 20a-20d). In
particular, from the optical-and-electrical transformation duality given in Eg. (15),
E = E_1(zp1) TErnirp).according to the optical phenomenon-electrical phenomenon transition

effect, oot has a same form with that of the electrical conductivity, og¢, as given in Eq.
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(20a), and in our recent work™, suggesting many important concluding remarks on the
electrical-and-thermoelectric coefficients, as those given in Equations (20a, 21-30) and in our

recent work.!*!

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n* (p*) — Ay B~ crystalline alloy, 0 = x = 1, x being the concentration, the optical

coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients,

being enhanced by :

(i) our static dielectric constant law, =(ra;4).%), racs) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Esny, given in Eq. (11) and accurate with a precision of the
order of 2.11 x 10+, affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.!*?

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate A-crystal.**®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nepneng), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

Néf,g.;mp}, being obtained with a precision of the order of 3 x 1077 | respectively, as given in

our recent works.®) Therefore, the effective electron (hole)-density can be defined as:
N*=N — Neppicpp) 2 N — Néﬁﬁ:cnp}, N being the total impurity density, as that observed in

the compensated crystals.
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(2) The ratio of the inverse effective screening length k.-, to Fermi wave number kgp o

at 0 K, Ry, (N, defined in Eq. (7), is valid at any N*.

(3) From our basical optical conductivity model given in Eq. (18), all the optical and optical,
and electrical-and-thermoelectric coefficients are well determined. In particular, from the
optical-and-electrical transformation duality given in Eg. (15), according to the optical
phenomenon- electrical phenomenon transition effect, the optical conductivity, oyt ,
determined in Eq. (18), has the same form with that of the electrical conductivity, Ggr, as

given in Eq. (20a), and in our recent work.™!

(4) From Equations (20a, 21-30), for any given X, ra;syand N (or T), with increasing T (or

decreasing N), one obtains: (i) for &, =ﬂ|“?: = 1.813€, while the numerical results of the
v

Seebeck coefficient S present a same minimum (S}mm,(z —1.563 x 10~* K), those of the
figure of merit ZT show a same maximum (ZT)mpa, = 1, (i) for &,y = 1, the numerical
results of S, ZT, the Mott figure of merit (ZT ).+, the first Van-Cong coefficient VC1, and

the Thomson coefficient Ts, present the same results: —1.322 xiﬂ“‘% , 0.715, 3.290,

I'F
JT = 18138,

(ZT)uee = 1, as those given in our recent work. It seems that these same results could

1.105 x 1:]‘4%, and 1.657 x 1:]‘4%, respectively, and finally (iii) for &,y =

represent a new law in the thermoelectric properties, obtained in the degenerate case
(gn(p} = I=::I)

(5) Finally, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg ) _ 0% D(N.rg (e xT) v kg _ |';_L . . .
= X VC2(N, g0, % T) = TR [K} 2= |- according, in this work,
to:

, _ _D(rawxT) L Dy x1-(Zgr] : . D
VC2(N, r4r,), % T) = e <2 X T g o (V) being reduced to:

VC1 and VC2, determined respectively in Equations (24, 27, 28). This should be a new

result.

In the following, many important sections are presented in order to investigate all the optical

coefficients and electrical-and-thermoelectric ones, given in the n*(p™)—A;;_B, -

crystalline alloy at any temperature T(= 0 K).
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OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n* (p*) — A;;_ B~ crystalline alloy at T=0 K™, we denote : the donor
(acceptor) d(a)-radius by raa), the corresponding intrinsic one by: ryqra=ra, the effective
averaged numbers of equivalent conduction (valence)-bands by : g.w) , the unperturbed
reduced effective electron (hole) mass in conduction (valence) bands by mg;(x)/m,, m,

being the free electron mass, the unperturbed relative static dielectric constant by: ,(x), the

intrinsic band gap by: E_,(x), and the relative mass by: m,.(x) = De(X)xml) < m g ().

el %) +Hmglx)

Here, the effective carrier mass my,;(x) is equal to m.¢,)(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:

13600 [ty (%) /mq] i
T meV |, and then, the isothermal bulk modulus, by:
ol

Edof m:l‘l'f-‘a'

Bdglan}(x:} - m .

E dofac) (X} =

Our Static Dielectric Constant Law [my, (x) = m_g, ()]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(ra¢a).x), developed as follows.

At rara) = 'aaras), the needed boundary conditions are found to be, for the impurity-atom
volume V= (411/3) X (raca))’, Vao(as) = (41/3) X (¥ao(ae) ", for the pressure p, p, = 0, and
for the deformation potential energy (or the strain energy) «, a, = 0. Further, the two

important equations, used to determine the & -variation, A &« = & —or, = @, are defined by :

do_ B da 4
v v and p=——-, giving rise to : ——(- dv) 2 Then, by an integration, one gets:
[":"a':rﬂ:jﬂfl’x:]] Bdn 1n‘1':x:]x(v Vo am)x In ( ) Egoq S.D‘l{x:l ® [( d_i - 1] = lﬂ Tao “) = 0.

Furthermore, we also showed that, as rgis) = ragras) (Taa) < rdegae)), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap Egn.;gp;.{rd.;a;.JX}, and the
effective donor (acceptor)-ionization energy Ed.;a;.{rd.;@ x) in absolute values, obtained in the

effective Bohr model, which is represented respectively by : + [ﬂa(rd,:ﬂj,x}]m,p},
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Eplx)

E gnocepor () —Ego(9) = Eaay ey %) — Edogaey () = Eatoaay &) X [( ) - 1] = + [Batra ],

E(Tagay)
for Td(a) = T'da(aah and for Id(a) = I'dafaa)

Eplx)

Egunu:gpnj':rd[ayx:] _Egn{x:] = El:“l[aj':rl:’l[ayx:] _Edn[al:-j':x:] = El:’ll:-[al:-j':x:] bt [(Eil‘d'aﬂJ - 1] == [":""x':rd[ayx:]]m:m-

Therefore, one obtains the expressions for relative dielectric constant e(rg,x) and energy

band gap Egngp) (Faca ), as:

Eq ()

(I)-for rdl:g_} E rdn(an}y Since E(rd(a:ux} = 7 = S En{x:] y bEing a new

‘Tam " Tdia)
o[ el
E(I‘d,:E:”K::I-law,
- N - rag |3 Taga ) 1
Eenorepe) (Fatar ¥) — Ego(®) = Eq(Facar*) — Edotan) (%) = Edoac) (¥) X [{rﬁ{,'ﬂ;] - 1] X In (rdﬂ{,ﬂ =0, (1a)

according to the increase in both Egn ep (rae.x) and Egey (raco.x), With increasing ryw; and for a

given x, and

£ (X
" Tdrm 5_ " Tdra
[-rdnujanj} l]xmli-rdu[anj}

given by: [(—”u—) - 1] % In (—”LL) <1, being a new &(r4;q).x)-law,

Tdo{ao) Tdo {ac)

(ii)-for Tdra) = Tdafao) since E(I‘d,:a}_.}{}: T

- > £,(x), With a condition,

N

w8 e w3
Eg‘unl:gpnj(rﬂl:s,}'x:l - EgDI:X-:I = Eﬂl:s,:llirﬂl:ﬂ'x:l - Elﬂl:-l:!:l:‘l[:'::l = _Edn[gnj':xj' e [(r;d;i' ‘] - 1] et 1!][: Td_:_ﬂ::] =0, (1b)

o (e Tea )

corresponding to the decrease in both E gz (Fara)x) @nd Egey (raew.x), With decreasing ry

and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new &(ry;4), x)-law.

Furthermore, the effective Bohr radius ag,gp)(raca.x) is defined by:

elrgs i =(ra
@t _ (353 % 1078 em x Z24E@) @)

8gn| PaapX®) = T = .
B!LBF':'( dia) } o () xmgxq? i (30)

Generalized Mott Criterium in the MIT [mj ) (x) = m_, ()]
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Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepn(wop) (Tacap%), was given by the Mott’s criterium, with an empirical parameter,
Mn(p}’ aS[Z' 3]:

1
NCDnI:CDp}(rdI:a}J X} 13X aBn(Bp}{rd(a}JX} = Mn(p}! Mn(p} = 0.25, (3)

depending thus on our new &(r4;q),x)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius ren(zp) in the Mott’s criterium, being characteristic of interactions, by :

2 i/3 1/2 m.r',_ L) Emg
ratpat(Norae x) = () x————=11723 x10° x (3] x — (4)

L SgnapyTdm) )

being equal to, in particular, at N=N¢p,cpp) (Faga)x): rs,,.;spl},{Nmn.:cnp}(rd.:a},xl rd,:a},x}z

2.4813963, for any (ra(a).x)-values. Then, from Eq. (4), one also has:

1
1, ERE] 1
Neon(cop) Fagey %) *? X 3an ep (rata). x) = (;)3 X S asrases = 025 = (WShyp) = My, (®)

explaining thus the existence of the Mott’s criterium.
Furthermore, by using M, = 0.25, according to the empirical Heisenberg parameter

Hns = 0.47137, as those given in our previous work!), we have also showed that Nepscop)

is just the density of electrons (holes) localized in the exponential conduction (valence)-

band tail, Ngpacpe)» With a precision of the order of 2.82 (2.88) x 107, respectively .°

It shoud be noted that the values of M, and H,; could be chosen so that those of

Nepn(cop) and Néﬁﬁ.;mp} are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,racayx) = N — Nepniwpg) (Tage, %)= N¥, for a presentation simplicity. (6)

In summary, as observed in Tables 7 and 8 of our previous papert®), one remarks that, for a
given x and an increasing rs. , €(raia)x) decreases, while Egm.;gp.j;.{r.ﬂ.;@ﬂ :
Nepninog (Taca. %) and NEpaenp) (Taa) X) increase, affecting strongly all the optical properties

and the electrical-and-thermoelectric ones, as those observed in following Sections.

www.wjert.orq 1SO 9001: 2015 Certified Journal 88




Cong. World Journal of Engineering Research and Technology

PHYSICAL MODEL [m;‘,:p} (%) = m,(x) < mc,:v}(x}]
In the n*(p*) — A1 B,- crystalline alloy, the reduced effective Wigner-Seitz (WS) radius
renisp) Characteristic of interactions, being given in Eq. (4), in which N is replaced by N¥,is

now defined by:

kEél’Fp‘l
W T ey (N ) = ——
¥ enisp) SEnEp

1

2 - 1III! - -
<1, o (N ) = (22) x , being proportional to

4ml Spnap (FdE)s)

3”1”')5 is the Fermi wave, g.) being the

Ns—l,.-':il . Here, y = (4{971’}1;3 , an.:Fp}(N*} = (

Ec(v)

effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k., to Fermi wave number kg,

is defined by:

=1
Konisp) _ Kenprpy

Rangspy (N*) = = Rawsigpws + [RsuTFixpTFJ - Rsuwsixpwm]g_r’“:’m =1L (7

- -1
an Fp k:n IS

being valid at any N~.
Here, these ratios, R ptr(sprr) and Ropws(epws), €an be determined as follows.

First, for N > Nepniwpp) (Taca,x), according to the Thomas-Fermi (TF)-approximation, the
ratio Ronrr(zptr (N*) is reduced to

R (N 3} — I-'5!I!'l".['l.‘-'l:!'E}"J"l.‘-'j _ RE!‘I[FF}) _ |4}"|-"3m:3pj 1 (8)
TFi=pT = T -
=nTF(EPTE) kfnFp)  KanTRspTR) W ’

T

being proportional to N*~*/,

Secondly, for N << Nepyninpg)(Tagey), according to the Wigner-Seitz (WS)-approximation,
the ratio R nwsi=nws) IS respectively reduced to

KanrapiW A[rZ o <ECE(N]
Rsn':BP}‘i.-‘-fs(Ns}E gﬂl_:_.P:"S: 0.5 X( - [sn 1~ CE ')1 (9a)

=S
=T drg nEp

Where Ecg(N*) is the majority-carrier correlation energy (CE), being determined by:
0.B7553 , {2[1 —]r_[!j:‘}

—0.87553 D'DEDB'I'TE-T‘.l'E-]:ﬁ RN TI:E r
0.0908 +r oo 1+0.038477 28 Xr e 00

In{ren ey ) —0.093288

Ecg(N*) =

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

L=t . — |zme 2y
Po(Fp) Mnpy FoFm _ - ) 2 —142
= = < " =R../ = 1, (M) = - otk y gb
2gn(Bp)  EFno(Fpo)  Anp)  Kopap sn(=p) Tam®) E(Faga) 9 Sanap) ( )
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LR I-"l%ijpj (N7

EFm:ll'Fpn‘l' N} E
‘xm.r'._l:pjl:x}xmg'

~|h"|

Which gives: A,q,)(N7) = Fro(Fpo)(N*) =

BAND GAP NARROWING (BGN) BY N AND BY T [my) (x) = m, (x) < m,g, ()]
First, the BGN by N is found to be given by!?:

AE g (N Taey x) = ay + =225 x NE+ a, x 2w NE % (2.503 X [~Ecg(ranrep )] %

(. Fdray x) el "d[a)ﬁfj

]

s . ) ‘
i 3 = 1 ) B 2
rsnl:sp}) + dyg X [ IED‘I} :I:|4 b | % N-ﬂ + 234 |:2IED—I}:|1 % N:' + 235 % [ 229._-':’} :|3 w N:_,

EI-.rﬂ.[Bij -"J L p‘l'x:I ray B‘l;‘) EI-.rdl:Bj-‘x:I
N = _ N
* 5595x10%7 cm 3 (10a)
Here, a;=38x107"3(eV) , a, =65xX107%(eV) , ay;=285x107%(eV) |,

. = 5597 x 1073 (eV), and a; = 8.1 x 107*(eV),

Therefore, at T=0 K and N* = 0, and for any rg,), one gets: AE = 0, according to the

gnigp)

metal-insulator transition (MIT).

Secondly, one has?:

AE (oo (T) = 0.20251 X ([1 + (7 “M] Zaer 1). (10b)

220.0013 K

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

[mp (%) = m,(x) < m,y ()]

Fermi Energy
Here, for a presentation simplicity, we change all the sign of various parameters, given in the

p* — A1y By - crystalline alloy in order to obtain the same one, as given in the

n* — A_»B, - crystalline alloy, according to the reduced Fermi energy

_ EfnrFpyNraaT)

Een(Fp)+ Engp) (Nra.x T) = = = 0(= 0), obtained respectively in the degenerate

(non-degenerate) case.

For any (N.ri(5.x.T), the reduced Fermi energy &, (N.rs.xT) or the Fermi energy
Efn(rp)(N.rz¢5.% T), obtained in our previous paper[gl, obtained with a precision of the order

of 2.11 x 10~%, is found to be given by:

EFnFpi) G(LL_.+AuEF|u}_'u|u} A=

baey (W) = = 5~ = T =005 A= 0.0005372 and B = 4.82842262, (11)
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i H N
Where u is the reduced electron  density, u(N,rge.x T) = —
b MNepw(Tog
z
™My e () xmg kg T E 2 _3 _E _E
Ne((T,%) = 2gcp x (22 22 )° (em™3) , F(u) = aus (1 +buz+ cu 5:] \

__ 62.3739855 (’-1-[)4
- 1

-]
TR and G(uw) =~ Lnf{u) + 27z x ux e™9";

=y, b=100)" ¢ -

d = 23/ [%—i] = 0.

SETd ig

So, in the non-degenerate case (u << 1), one has: Epype)(w) = kT x G(u) = kg T x Ln(u) as
u — 0, the limiting non-degenerate condition, and in the very degenerate case (u = 1), one

z
z _a _EvTz Rk (N
gets: Epnrpp}(u 1) = kgTx Flu) = kgT x aus ('l +bu = +cu 5) iy X_FH—FM asu — oo,
- EKH'LI.,_I:]:':ILK}XMD

imiti 1ti EFn(
the limiting degenerate condition. In other words, £, = ;E-;W

is accurate, and it also

verifies the correct limiting conditions.

In particul T — 0K, since u=! — 0, Eq. (11) is reduced t0: Espo(spey(N) = el
n particular, as T = , SInCé u™~ — 0, E(q. ( ) IS reauced 10: Lpna(Fpa) - Zxmmy oy () % mg '

being proportional to (N*)2/2, and also equal to 0 at N* = 0, according to the MIT and noting

that Ern.:.n:rpu}[mr (x:]} > EpnolFpo) {mc,:v} [x]) since m, (x) < m_q,(x).

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of £, (N, ry. % 1).l%

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")"t |

Y= {E - EFnlep}}!{{kBT}-

So, the average of EF, calculated using the FDDF-method, as developed in our previous

workst* ® s found to be given by:

_ p _ o 2f _E _ i et
(EP)eppr = Gp (Efn(rp)) X Eppgp) = J_ EPX (_ E) dE, E  kgT . (12e1)7

af : :
Further, one notes that, at 0 K, —z-= 8(E — Enorpo)), 8(E— Egno@ps)) being the Dirac

delta (5)-function. Therefore, G, (Egnorrpe)) = 1.

Then, at low T, by a variable change y = (E — Egppy))/(kgT), One has:

_ _ oo al P E _E
Gp (Ern(ep)) = 1 + Egpny X oo irors X (KeTY + Erne) dy=1+30_,; Gy x (g X Ep ) X
Ig
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Where CE =plp—1)..(p— |3- +1)/B!  and the integral Ig is given by:

oo YBXE

o=/ i dy= I

dy, vanishing for old values of B. Then, for even values

== (Vi +e-1 z)”
of B = 2Zn, with n=1, 2, ..., one obtains:

_ZIWTWE
Dqﬂw

Now, using an identity(1+ e¥)=2= %2, (—1)5*1s x e¥(==1) 3 variable change: sy = —t, the
Gamma function: JI"[:'CtE“LaF1t dt =T(2n + 1) = (2Zn)!, and also the definition of the Riemann’s
zeta function: 7(2n) = 2°» 12" |B,,|/(2n)!, B,, being the Bernoulli numbers, one finally
gets: Ip, = (227 — 2) x m?® x |Ba,|. So, from above Eq. of (E®)znns We get in the degenerate

case the following ratio:

Gp(Epnrpy) = S22 = 1 4 57 J—P - P (2~ D) X By | X 57 = G ), (12)
Fn G
Where y= —= =T notin that G, (v = keT _ ™ v —9 and as T— 0K,
y En:::,j':”-'T} Efng [Fp) (N T::' g [}F EFn:jFp-j E’ﬂ::ij

Gp::-i(}’ —0) = 1.

Then, some usual results of G, (y) are given in the following Table 1, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 1: Expressions for Gy, (¥ = EEL], due to the Fermi-Dirac distribution function, are
®

used to determine the electrical-and-thermoelectric coefficients.

Ga 2 (¥) G2 () Gz 2 (W) Ga(¥) 72(¥) G4 (¥) Ggy2(¥)
P Tyt = T 35 4o Tyt 2y 147 ¢4
(N e s g s e e

OPTICAL-AND-ELECTRICAL PROPERTIES

Optical-and-Electrical Transformation Duality

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — A;;_,yB,-crystalline alloy, in order to obtain the same one, as given in the

n* — A_»B; - crystalline alloy, according to the reduced Fermi energy

Efn(Fpy Norapy aT)

— = 0(= 0), obtained respectively in the degenerate

EFn(Fp}: En(p} 1::'\], T (a) X T} =

(non-degenerate) case, 9iving: Egporrpe) = Epntrp) (Norgr.x T = 0).
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Then, in the n*(p*) — A;;_B,- degenerate crystalline alloy and for the temperature T(K),

One has:

(1) in the electrical phenomenon (EP), the reduced band gap is defined by:

Egn:(gpﬂ = E:':v} - Evn'::-:u} = Egnl(gpl} - &Egn(gp}:}{(Ngj - E"Egn':gp}:T[:T]a (13)

Where E is the intrinsic bang gap, AE., . (N*) and AE.,z,)(T) are respectively the

Eni(gpi)
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = #w, and the optical

band gap by Egnl':gpl:' = Egn!':gpﬂ + EFn(Fp}'

Therefore, for E = E_, 1.1y, the effective photon energy E* is found to be given by:

E"=E—Eqy(gn =E— (Egnﬂigpﬂ + EFHEFP}) = 0. (14)

From above Equations, an optical-and-electrical transformation duality means that:

E* = E— E_;1 (g1, 0iven in the OP, is reduced, as E = E_.;(zp1) + Egn(rp, given in the EP,
in which Egpy (gp1) and my (%) = m, (x) are now replaced by E_parzpa) and my, (), to:
E*=E—E_n1(zp1) = Ernrrpy » and reciprocally, replacing E_p;¢zpz and mg.,(x) by

Ecnttgpn and mye,)(x) =m,(x) given in the OP, respectively, (15) noting that

EFn':Fp} [mr (K:]) = EFn':Fp} (mc{v} (X:]) Since mr{x} = mr.":v:'(x}-

Eqg. (15) thus shows that, in both EP and OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*) — type degenerate A, _,;B,-crystalline

alloy, Egnrgp). are well defined, but at the discontinuous OP-EP transition:

Epn(pp) (m,(x)) > Epn(Fp) (m:(v} (x) ) according to the discontinuous case.

Optical Coefficients [my;(x) = m,(x)]

The optical properties for any medium can be described by the complex
refraction: M = n— ik, n and « being the refraction index and the extinction coefficient, the
complex dielectric function: & = &; — ie,, where i* = —1, and & = N2 Further, if denoting
the normal-incidence reflectance and the optical absorption by R and <, and the joint density

of states by:
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3/2 2

. :m;-:pw:x:') [ E~Egu (gp) ] —
DOS_ A (E) = X (— X ® JE ( , and
] I!'J..[J:'( j o BT E_[Egn‘_':gpﬁ'+EFI:1.[F[.‘:-:|_EFILIJI:F[.'HJ:I] \l'l Fno(Fpo)

z { z
F(E) = — fg®xlwiE) _one getsm:

n(E)XcEX2frog space
_ _ Exz (E) _ 2Exx(E) _  4mog(E) = n? — 12 =
o (E) = JDOS, () (E) X F(E) = = 2= = =~ —En(m:fﬂrmpm , 5 (E)=n* —«* , &,(E) = 2kn,
_ [m-1% 4"

and R(E) = 22 (16)

It should be noted that, such the above joint density of states yeilds: (i) as E = E_,4¢zp1) (T),

e ... 3)2
‘mn':p3'~x}

.. 1 =
JDOS,(;)(E)= 0, and (ii) as E =0, JDOS,(,(E) = - X (T) X \/Eno(Fpo)

Further, £g... cpace 1S the permittivity of the free space, -q is the charge of the electron, |v(E)|
is the matrix elements of the velocity operator between valence (conduction)-and-conduction

(valence) bands, and the refraction index n is found to be defined by!?:

_ EE4Cy
Il[:E, rdl:a,}j =1, (rd(a}j + Ei.‘l::l E!_1515+1|:1_ — .. (_rdl:g:l)’ asE — oo, (17)

Here, the optical conductivity ag can be defined and expressed in terms of the kinetic energy

Rk

2 Xm;l,: B () mg

of the electron (hole), E,, = , or the wave number kK, as:

gk k B, |2 . . 5
oo (k) =X P [k X ag,zm] X (nmm , Which is thus proportional to Ey 2.
Th btain: 2 = G,(y = —EL) x E2 d
en, we obtain: (E*}eppp = Gy (v = EFanmj X Egn(rp) , an

G = (1+1) = 6,(Nraex T) , with y =0

presentation simplicity. Therefore, from above equations (16, 17), if denoting the function
H(N, ra(), %, T) by:

y En{p}zEn(p}[N,rd.:E:,,x,T:l fOI‘ a

| &Enem (N7}
H(N,rgc, %, T) = [m

G,(N,r4¢4.% T)

Epno (Fpoll N7}
L VY

[
| _
X [an'in} (N*) X agy(zp) (et )] X w'ﬁ“':P}(st T NN

Where R, (N*) = ﬁ which is proportional to EZ,,pp.y fOr given (N, ra00,% T)-

physical conditions, our optical conductivity model can be assumed to be:
oo(N, rg¢ay.x T,E) =

: e T ()
* H(N,rac.%T) x . 18
TR [ diad ) E_[Egn‘_igpﬂ+EFn|jFp)_EFnﬂ|jFpu)] ohmxem ( j
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Where ﬁ = 7.7480735 x 107% ohm™2. It should be noted here that:

(1) o4 ( Ecni(gpn) (T]) =0, and ogxl(E = ) =—— - X H[N rd.ﬂ:,,x,T) = Constant for

given (N, rg.4y,% T) —physical conditions, and

(i) as T=0Kand N" =0 [0or Eg,,(gpe)(N*) = 0, according to:H(N,rgr,,% T) = 0], and
for a given E, [E—E_u;(gpn] = [E— Egnigepn]=Constant, then from Equations (16-18),
n(E)= Constant, o,(E) =0, x(E) =0, &(E)=(n.)* = Constant, £(E) =0, and

o< (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.?

Using Equations (16-18), one obtains:

[wiE)® Entk kpn(pp (N7
E (zmr}s'":xw-'nngpj Rm:j,pj':N']'

x [kFﬂ':Fp:' (st = aET‘.':E]:I:' [t"d,:a},x)]l * G: [N,I‘d,:&},x, T), (19a)

"
r

«(E) = 2q* X H(N, 100, % T) X [E_[E 5~ Egns (gp2) ] , (19b)

”':E}xzfraaspacaxz gn'_igpﬂ+EFn:jij_EFm:|:jFp|:lj]

Which gives: ““(E = E,p1(eon (T)) = 0, and x(E = o0) = 0, as those given in Ref.?,

g,(E) = ———— X H(N,ry0,,%,T) X [ B~ Egna (gp) ]

Zfree !pBE‘BXE [Egn'_igp-'_‘l+EFn:jij_EFnu:jFp|:lj]

which gives: &(E = E_; (o) (T)) = 0, and ,(E = ) = 0, as those given in Ref.”, and  (19c)

(Ej = # by H(N, Fa(a) X T) * [E [ = Pgns(gpe ]:|2 (Cm_lj: (19d)

hen(Elxzire, Space ~|Egns(gps) T EFn(Fp) ~EFno(Fpoy

Which gives: « (E Egni.gpﬂ(ﬂ) 0, and « (E— ) = _ 4 X H[N,rd,:a],x,T) = Constant,

hengX2tres space

as those given in Ref.!

Using the optical-and-electrical transformation duality, given in Eg. (15), at
E = E_n1(gp1) T Ernrrpy , the optical conductivity, ogr, given in Eqg. (18), in which
m, ., (x) = m,(x) is now replaced by m., (), has a same form with that of the electrical

conductivity, ozr, given in our recent work!Y, for such an optical phenomenon-and- electrical

phenomenon transition. So, from Equations (18, 19b, 19c¢, 19d), ones obtains respectively, as:
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2 Epocmey \2
GDT[N-'rd':EI:”x’ T,E = Egn1|:gp1:| + EFH':FP:') = ﬁ X H[N’ rI:'i':EI:'-"l!‘{JI T) X ( Fofe! ) { = ).r

EfnalFpol ohmxecm

having the same form with that of ogr(N,r a0, % T),

_ 4 Efn (Fp) |- 1
CFET[N,I'd,:E:,,K,T) aalry x H(_N, I‘d,:&},}{,T) X (Eaninnj (DthEm)J (208.)
2q9° Epn(Fp) \
N,rgn%T)=— 3 X H(N,rg.,%xT) X (—p) , (20b
KT[ d(a) ) n{E)%2free space % (Egns (gpa) TEFn(Fp)) [ d(a) ) Efno(Fpo) ( )

4q='

X H(N, rg00,% T) x (Z2222)" and - (200)

Ea1 [:N’rd':ﬂa'-'x’T) - Efna (Fpa)

Zfres :pacsx':}:gn‘_igpﬂ +EFn':prl:'

oy (N, rgea,xT) = ta” X H(N, rgep.% T) X (M)L (em™1). (20d)

hen(E) X 2grag spECe Epno (Fpo)

One notes here that (i) the electrical conductivity oz (N, rs.,.% T), given in Eq. (2a), is an
essential result, being used to determine other following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eq. (15), at the discontinuous OP-EP transition, given in the

discontinuous  case : EFH.;FP;.[mFEXJ)?EFH.;FP;.(mE.:‘,}(xj) ,  corresponding  to:

oor(m,(x)) > ogr (mc,:v} (xj). In our recent work®, all the electrical-and-thermoelectric

properties were investigated for this discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given

(N, rac0,% T) -physical conditions, are reported in the following Table 2.

Table 2: Here, some optical coefficients, for some particular values of E, are given as

follows.
EineV oglE) ®(E) z;(E) o (E)
Ecniigpt) 0 0 0 0
Ecniigp1) + Efnirp) OgT = OET K1 g7 ot
E - oo axH 0 0
ik
4g%xH

fong X 2fres space
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ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m},,, = m_, ()]

Here, if denoting, for majority electrons (holes), the thermal conductivity by o, (N.rs5.x T)

w
cmxH

in

: and the Lorenz number L by:

TXO) = 24429637 x 1078 (V2x K72), then the well-known

L= “; X (%) — 2.4429637

Wiedemann-Frank law states that the ratio, %, is proportional to the temperature T(K), as:
oTh(MraxT)
oET(Nrar=T) LxT (21)

Further, the resistivity is found to be given by: p(N,ry.,.% T) = 1/0g(N,r4.,.% T), noting
again that N* = N — Nep, rvpp) (Taga) - %)

"
r

In Eq. (20), one notes that at T= 0 K, ogr (N, r4¢4),% T = 0K) is proportional to Ez, ,zpey

or

to (N*)=.Thus, from Eq. (21), one has: ogr(N = Nepyinpp)sTace).% T = 0K) = 0 and

also oqy, (N = Nepp (wppys Tare)-% T = OK) = 0 at N* = 0, at which the MIT occurs.

Electrical Coefficients

The relaxation time t is related to oz by™!):

T(N,T00,% T) = 0gr (N, ra00, % T) X :’—}{-E\f—: . Therefore, the mobility w is given by:
LN/ Eplw)

axt(Nirg(gxT) _ opr(NrggxT) (ﬁ )

H[N,rd.:ﬂ,x,T) = M[N*,rd.:aj,uT) = =

mr-lipfl (%)% mg XN/ Eelw1) Ve

(22)

Here, at T= OK, w(N*, 4, T) is thus proportional to (N*)*2, since ogr(N*, rae, T = 0K)
is  proportional to (N*)*¥® | Thus , T(N*=0,r4,T=0K)=0 and

WN*=0,ryg,,T=0K) =0at N* = 0, at which the MIT occurs.

Then, the Hall factor is defined by:

? _ (r*)enpE _ G,iv) — b — nkgT
ry(N.orgr.xT) = ropelE  [Ga I V= tatp (Nram <T)  Epncrpy (Nrgin o)’ and therefore,
the Hall mobility yields:

IZI!?I'.I.1
(N, Tara, 5 T) = u(N, raea,x T) X rg(N%T) (52, (23)
Noting that, at T=0K, since ry(N,rg.x,T)=1 , one therefore gets:

Lg(N,rge),% T) = (N, rge.x T).
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Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

D':N.lej;j.}i'fj N*
q

dEgn kgxT di, o (u) f3:L el k faxt
) _ ke x(u s ): [ x(u_-L ke 2 (24)
I a u

- =
4 du q 4

w(¥ragxT)

Where D(N.ryp.x.T) is the diffusion coefficient, &, (w) is defined in Eq. (11), and the
mobility w(N.r;cy.xT) is determined in Eg. (22). Then, by differentiating this function
o (1

d ] :
Engm (W) With respect to u, one thus obtains o Therefore, Eq. (17) can also be rewritten

as:

D(NraaT)  kpxT « uv’-:u}w.ﬂ:u}—v(u}xwﬁ:u]
ulMragxt) ~  a W2iu) !

_ B _3 _E
Where W'(u) = ABu® "t and v'(u) = u=! + 27z~ (1 — du) +2AuB~1F(w) | (1 +28) +§XM+MEEJ.

1+bu " E+cu”E

One remarks that: (i) asu — 0, one has: W2 =~ 1 and u[V' x W —V x W'] 2 1, and therefore:

D [ ': k - a A a
—E= U}E—E’qﬂ , and (i) a u—=oc , one ha: WIXAW® and
ulV! x W—V x W'~ 2au?3A%u?8 | and therefore, in this highly degenerate case and at
T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

Df_h’_r .:;:._};.T:DKJ 2 . e- e
m NEEFHD.;FW;.(N*}M. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u == 1), EQ. (24) gives:

_4 _E)
bu z42cu sJ
2

DIl Mord; a‘_'ux-Tj . EFnoFpo (u)

: SE x|1+2x — 1,
HI"N’N[B:'%T:I : E 3 1+bu_s+cu_sJ
_ 243 a ”
— f = _ L rmyé _ BZ.3T39855 po4
Where a = [3vm/4]" ", b=2(3)" ande==—_"-"(3)".

Thermoelectric Coefficients
First of all, from Eq. (20a), obtained for oz (N. rsr5.x. T), the well-known Mott definition for
the thermoelectric power or for the Seebeck coefficient, S, is found to be given by:

- k gl (E
S(N.racam T) = - X -2 x ks T 22 4

_o ke nomlg)

dE ]EzEFn[ - 3 q E'Enm;l
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Then, using Eq. (11), for the degenerate case, &, =0, one gets, by putting

Fe(N,rg e T) = |1 - — L ]
e |:r— |
n{p) s

kg _ 2Fep(N°T) (3L 2% 2T hen [V
S(N.raee).x.T) = " ;X—s;(_ = _,\IIT:_; M:‘j'—_ -=—2L % ;'_’_(z.ﬂr:, r:t (E}{ 0. (ETyon=
nip) 2l o
o)
‘TI.':
¥Entp) , (25)
according to:
ExEn-E-:
a5 I"}(L 3 ,;‘ % = -1 _ Iﬁ}{ 2 'E.'T\'“,,—}-[l 'mﬁ“:—\.
250 ‘\,l m? -'1+3xEn-E.:".|‘ 4 o [1+(ZT el
mi |

Here, one notes that: (i) as &,¢,) = +wor gn.ap;.—rﬂ], one has a same limiting value of S:

5= — (ll) at Enrp) = II: ~ 1.8138, since

=0, one therefore gets: a minimum
3 I'-"r'Emp

(8)pin, = —vL = —1.563 x 107 G{) , and  (iii)) at Em=1 one  obtains:

S —1.322 x 1074 (E)

Further, the figure of merit, ZT, is found to be defined by:

S4xogp XT S_: _ AXEThyon
ET(“-] Paig) X, T:I —K L _—[1+(Z'I3r-:nn::' (26)
o\ 2IT) g 25 n2 8(ZT)
Here, one notes that: (i) =—= =2 x=x——, 5 =0, (i) at &,p) = l— = 1.813§ since =0,
aEn e L aEn m "'1] a Eﬂl Bl

one gets: a maximum (ZT)yex = 1 .and (ZT)yee= 1, and (iii) at &y, =1, one obtains:

ZT =~ 0.715 and (ZT) o = “? = 3,290,

Finally, the first Van-Cong coefficient, VC1, can be defined by:

VCL(N.ry(px T) = —N* x = (T:: ] = N*X

° » — 5l peing equal to 0 for Eury) = =2 (27)
dnre ® st ! g q I!'.I'.LF':'__.\I 3!

i)

and the second Van-Cong coefficient, VC2, as:
VC2(N,rg09.x T) = T x VC1 (V), (28)

the Thomson coefficient, Ts, by:

Ts(Nrg(.xT) =T >< (R) T X - — —111 being equal to 0 for &, =ﬂ|'%, (29)
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and the Peltier coefficient, Pt, as:
Pt(Nryg.x T) =T x S(V), (30)

One notes here that for given physical conditions N (or T) and for the decreasing &,,), since

. —ds ds
VC1(N.rz00.x T) and Ts(N.ry.xT) are expressed in terms of —— and ——, one has:
[VCL, Ts] < 0 for Engy > |~ , [VCL, Ts] = 0 for Engpy = = and [VCL, Ts] > 0 forEnepy < |
» nipl NER » nipl NER y nip) NER
: [z
stating also that for £,y = ﬂl?:

(1 S, determined in Eq. (25), thus presents a same minimum

s = — L o —% E
(S)pin = —VL = —1.563 x 10 {K)

(if) ZT, determined in Eq. (26), therefore presents a same maximum: (ZT) ... = 1, since the

variations of ZT are expressed in terms of [VC1, Ts] x S, § < 0.

Furthermore, it is interesting to remark that the (VC2)-coefficient is related to our generalized

Einstein relation (24) by:

K

35 D(NramxT) (‘f‘) ke _ 3L
’ q ..,J mw

(31)

kg —
— .'K VCE :\q_. Al 3N T = rl
q '[ Ta(a)-% } o ® (ratoT)

according, in this work, with the use of our Eqg. (25), to:

D(Nrge)xT (ZT) ot [1- (2T,
\ (&) JX Mors’ _.1:.—.] (v}
pl__N,rd;:B:._.x,.T:l [14(ZT)

VC2(N,rgegx T) = —

Of course, our relation (31) is reduced to: E VC1 and VC2, being determined

respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*™(p*) — A;1_y; B.- crystalline alloy, 0 = x = 1, x being the concentration, the optical
coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients,
being enhanced by :

(i) our static dielectric constant law, s(rs;.3,%), raca; being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),
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(if) our accurate Fermi energy, Esney, given in Eq. (11) and accurate with a precision of the

order of 2.11 x 10+, affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.!*?

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate A-crystal.**®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,cng), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),

Néf,g.;mp}, being obtained with a precision of the order of 3 x 107, respectively, as given in

our recent works.®! Therefore, the effective electron (hole)-density can be defined as:
N* =N — Nepn(eop) ® N — N&aieng, N being the total impurity density, as that observed in

the compensated crystals.

(2) The ratio of the inverse effective screening length k.-, to Fermi wave number kgp o

at 0 K, Ry 5, (N, defined in Eq. (7), is valid at any N*.

(3) From our basical optical conductivity model given in Eq. (18), all the optical and optical,
and electrical-and-thermoelectric coefficients are well determined. In particular, from the
optical-and-electrical transformation duality given in Eqg. (15), according to the optical
phenomenon- electrical phenomenon transition effect, the optical conductivity, ogt ,
determined in Eq. (18), has the same form with that of the electrical conductivity oz, as

given in Eq. (20a), and in our recent work.!"!

(4) From Equations (20a, 21-30), for any given X, ra;gy and N (or T), with increasing T (or

[
*JI“? = 1.8138 while the numerical results of the

Seebeck coefficient S present a same minimum (S}mm,{ﬂ —1.563 xiﬂ“‘:{), those of the

decreasing N), one obtains: (i) for &,;p) =

www.wjert.orq 1SO 9001: 2015 Certified Journal 101




Cong. World Journal of Engineering Research and Technology

figure of merit ZT show a same maximum (ZT)pa, = 1, (ii) for &,y =1, the numerical
results of S, ZT, the Mott figure of merit (ZT),,+, the first Van-Cong coefficient VC1, and

the Thomson coefficient Ts, present the same results: —1.322 xiﬂ“‘% , 0.715, 3.290,

I'F
JT = 18138,

(ZT) e = 1, as those given in our recent work. It seems that these same results could

1.105 x 1:]‘4%, and 1.657 x 1:]‘4%, respectively, and finally (iii) for &,y =

represent a new law in the thermoelectric properties, obtained in the degenerate case

(En(p} = ﬂ)-

(5) Finally, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg ) _ @&z D(N.rg (e xT) v kg _ |';_1, . . .
=X VC2(N,rgce),x T) = TR Y (K} T= = according, in this
work, to:

f _ _D(rawaT) | (ZDyorex11-(Z Do : D
VC2(N,rgce,xT) = ireen) < 2 X T i o (V) being reduced to: -,

VC1 and VC2, determined respectively in Equations (24, 27, 28). This can be a new

result.
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