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ABSTRACT
In the n*(p*) — CdTe(1 —x)Se(x)- crystalline alloy, 0 =x=<1, X

being the concentration, the optical coefficients, and the electrical-and-
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Prof. Dr. Huynh Van
Cong
Université de Perpignan Via donor (acceptor) d(a)-radius, given in Equations (la, 1b), (ii) our

thermoelectric laws, relations, and various coefficients, being enhanced

by : (i) our static dielectric constant law, £(ryc.).x), rac) being the

Domitia, Laboratoire de accurate Fermi energy at T = 0 K, Egypp) (Ernogrpe), determined in Eq.
Mathématiques et Physique

(LAMPS), EA 4217,
Département de Physique,
52, Avenue Paul Alduy, F- thermoelectric coefficients, are now investigated, by basing on our

(11) and accurate with a precision of the order of 2.11 x 107* [

affecting all the expressions of optical, and electrical-and-

66 860 Perpignan, France. physical model, and Fermi-Dirac distribution function, as those given

in our recent works."? In the following, for given physical

conditions, all the optical coefficients are expressed as functions of the effective photon
energy : E* = E — Egn1(gp1), E and E,,; g1y bEING the photon energy and the optical band
gap. Then, some important remarks can be repoted as follows. From our essential optical
conductivity model, oo (E®), determined in Eq. (18), all the optical coefficients and electrical-
and-thermoelectric ones are determined, as those given in Equations (19a-19d, 20a-20d). In
particular, from the optical-and-electrical transformation duality given in Eq. (15),
E = Egn1(gp1)*Era(sp)- according to the optical phenomenon-electrical phenomenon transition
effect, oot has a same form with that of the electrical conductivity, ogr, as given in Eq.

(20a), and in our recent work™ suggesting many important concluding remarks on the
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electrical-and-thermoelectric coefficients, as those given in Equations (20a, 21-30) and in our

recent work. !

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson

coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*) — CdTe(1 — x)Se(x)- crystalline alloy, 0 < x < 1, X being the concentration,

the optical coefficients, and the electrical-and-thermoelectric laws, relations, and various

coefficients, being enhanced by:

(i) our static dielectric constant law, £(r4(.), X), race) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg, ey, given in Eq. (11) and accurate with a precision of the
order of 2.11 x 10~* ], affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.[*?

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate CdTe-crystal.**®! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,cppy, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
N&pa(cop)» being obtained with a precision of the order of 2.88 x 1077 , respectively, as
given in our recent works.®! Therefore, the effective electron (hole)-density can be defined
as: N* = N — Nepnepp) = N— Neprengy» N being the total impurity density, as that observed

in the compensated crystals.
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(2) The ratio of the inverse effective screening length kg, s, to Fermi wave number kg, g

sn(sp

at0O K, R (N*), defined in Eq. (7), is valid at any N*.

sn(sp)

(3) From our basical optical conductivity model given in Eq. (18), all the optical and optical,
and electrical-and-thermoelectric coefficients are well determined. In particular, from the
optical-and-electrical transformation duality given in Eg. (15), according to the optical
phenomenon- electrical phenomenon transition effect, the optical conductivity, oot ,
determined in Eq. (18), has the same form with that of the electrical conductivity, ogr, as

given in Eq. (20a), and in our recent work.™!

(4) From Equations (20a, 21-30), for any given X, r4¢) and N (or T), with increasing T (or

2

decreasing N), one obtains: (i) for &, = < ~ 18138, while the numerical results of the
Seebeck coefficient S present a same minimum (S) min, (z —1.563 x 107* 1"7{) those of the
figure of merit ZT show a same maximum (ZT) .. =1, (ii) for §,,, = 1, the numerical
results of S, ZT, the Mott figure of merit (ZT) ., the first Van-Cong coefficient VC1, and

the Thomson coefficient Ts, present the same results: —1.322 x 10‘% , 0.715, 3.290,

T r 2
1105 x 107*, and 1.657 x 10~*, respectively, and finally (iii) for £, = |5 > 1.8138,

(ZT) Mo = 1, as those given in our recent work.!! It seems that these same results could

represent a new law in the thermoelectric properties, obtained in the degenerate case

(Eagpy = 0)-

(5) Finally, our electrical-and-thermoelectric relation is given in Eq. (31) by:

2
%B X VC2(N,r4¢2),x,T) = — = _x D(N.raca):xT) (Vg) B f% , according, in this work,

3tn(p) ~ w(NrgexT) q
to:
_ _ D(NrggaxT) (ZD)moteX[1-(ZT) Mot - . D
VC2(N,rgea),x, T) = (VoD e - (V) being reduced to: =,

VC1 and VC2, determined respectively in Equations (24, 27, 28). This should be a new

result.

In the following, many important sections are presented in order to investigate all the optical

coefficients and electrical-and-thermoelectric ones, given in the n*(p*) — Ay_x By -

crystalline alloy at any temperature T(= 0 K).
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OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n*(p*) — Y(x) = CdTe,_,Se,- crystalline alloy at T=0 K2 we denote :
the donor (acceptor) d(a)-radius by ra(.), the corresponding intrinsic one bY: ryg ag) =Tre(cay
the effective averaged numbers of equivalent conduction (valence)-bands by : g.c) , the
unperturbed reduced effective electron (hole) mass in conduction (valence) bands by

m.q(x)/m,, m, being the free electron mass, the unperturbed relative static dielectric

constant by: e,(x) , the intrinsic band gap by: E,(x), and the relative mass by:

m(x) Xmy (%)

m,(x) = < Mg, (%), as those given in the Following Table 1.

me (x)+my(x)

Table 1: In the Y(x) crystalline alloy, the different values of energy-band-structure

parameters, for a given x, are given in the following.

In the ¥(x) = CdTe;_.Sey,-Crystalline alloy, in Which rs, . =rrecyy=0.132 nm (0.148 nm), we
havel®: g @ = 1) xx+ 10 x Q=% =1 , myg,(®)/m, = 0.11 (0.45) x x +0.095 (0.82) x (1 - %)

g,(2) =102 x x + 10.31 x (1 — x), Egolx) =1.84 xx+ 162 x (1 —x).

Here, the effective carrier mass m;(p] (x) is equal to m.,(x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:

13600x[m;(p}{x]jmo]

[20(x)]? mev,

= _Baoaa)®
Bda(aoj {:X) - (%r)x[:rdg(an})s '

Ego(a0)(X) = and then, the isothermal bulk modulus, by:

Our Static Dielectric Constant Law [m;(p] (x) = mcm(x)]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant e(r4,), x), developed as follows.

Al Tg(ay = Tao(a0), the needed boundary conditions are found to be, for the impurity-atom

volume V= (4m/3) x {rdm)a, Vio(ao) = (41/3) x (rdataaj)g, for the pressure p, p, = 0, and
for the deformation potential energy (or the strain energy) «, a, = 0. Further, the two

important equations, used to determine the a -variation, A« = a —a, = «, are defined by:

dp_ B —_92¢ ~ivinari . dday B i i .
v v and p & givingrise to : dv(dv) v Then, by an integration, one gets:
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:Bdo(anj{x)x(v_vdofﬁﬂ))x In ( A ): Edn(an]{x) X [( e )3 - 1} % In (ﬁ)g = 0.

Vdorao) Fdo(ao) Fdo(ao)

[ﬂa{rd(a)!x)]n(m

Furthermore, we also showed that, as r4g.) > Tao(ao) (Tace) < Tao(zo)) » the COMpression
(dilatation) gives rise to the increase (the decrease) in the energy gap Egn(gpj{rd(aj,x), and the
effective donor (acceptor)-ionization energy Ed(aj(rd(a),x) in absolute values, obtained in the

effective Bohr model, which is represented respectively by : + [M{rd(ai’x)]n@’

Egno(gpo)(rd(ajixj - Ego{xj = Ed(a){rd(a)!xj - Edn(ao){xj = Edo(ao)(xj X

2
Eo(X)
() 1] - + I 0],

2(Taray)

fOr Tagay = Tap a0y, AN FON 10y = Tgg a0y

2
Eg(X)
Egno(gpo){rd(a)’x) - Ego{xj = Ed(a)(rd(ajrxj - Edo(aoj{xj = Edo(ao){xj X |:(—) - 1] == [ﬂa{rdfﬁj’x)]n(p)'

2(Tacg))

Therefore, one obtains the expressions for relative dielectric constant e(r4.y.x) and energy

band gap E, .y (raca)x), aS:
. . _ £, (X)
(1)-for r4y = Tgoaey s SINCE £(Tgea),X) = —

2 2
|1+[(ﬁ) _1]x1n(ﬁj
N T'doiao) T'doiao)

< g,(x), being a new

E{:rd(aj, X)'Ia.W,

Tdrah 3 Tdray 3
Egnotgpe)(Tdte) %) — Ego(®) = Ea(e)(rata) %) ~ Edo(ae)(®) = Edo(ao) () X [(—) - 1] xIn(22) =0, (1a)

According to the increase in both E .. (racy.x) and Eqea (racayx), with increasing r,,, and for

a given x, and

.. . _ £, (X)
(1)-fOr 412y = Tao(ao), SINCE &(Tgay, X)=

Pl ()

= > £,(x), with a condition,

given by: [(L)B - 1] X In (L)B < 1, being a new &(rg,y. x)-law,

Tdofaao) dofeo)

Td{a

Egm,(gm}(rd(ﬂ},x:] - Egﬂ{x} = Ed(&}(rd(a},x) - Ed[,(a[,}{x} = —Ed[,(a[,}{x} ® [(;—:)3 - 1] * In( )3 =0, (1b)

Tan

corresponding to the decrease in both E_,,po) (racay.x) @Nd Eqa (raca)x), With decreasing ry,

and for a given x.
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It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new £(ry,), x)-law.

Furthermore, the effective Bohr radius ag, ) (Tac). %) is defined by:

)% k= B
_=lrd@XXh 53 5 1072 o x ZdEr (2)

aBn(Bpj{rd(aj’X) = m;(p}(x:]meXCIE m;(p}(x]'

Generalized Mott Criterium in the MIT [m;(p] (x) = rncm{x)]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepn(wpp) (Taga) X)» Was given by the Mott’s criterium, with an empirical parameter,
as [23:

My gy

1 r
Neon(eop) (Fatay¥) /3 X 3pncep)(Taa) X) = Mugp): Mugp) = 0.25, 3)

depending thus on our New g(ry,y, x)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rgp(sp),m, in the Mott’s criterium, being characteristic of interactions, by:

IVERY 1 B g (1YY? My (E)xmg
rsu(m),M(N’rd(a)’X) = (H) X aElnleIPJ':"df_Ej*x:'_ 11723 x 107 % (E) X e(rayx) (4)

being equal to, in particular, at N=N¢p, cpp) (Tagay. ¥)- rsn(spm(NCD“ECDPJ(rd,:a],x),rd(a),x):
2.4813963, for any (ry.), x)-values. Then, from Eq. (4), one also has:

1 3 1

{ 3
NCDn(CDp)£rd(a)’Xj 13X aBu(Bp)(rd(a]’X) = (4_)3 X 24813063 =0.25 = {ws)u(p] = Mu(’p}! (5)

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M, =0.25, according to the empirical Heisenberg parameter

n(p
"

n

@ = 0.47137, as those given in our previous work [3], we have also showed that
Ncon(cnpy 1S Just the density of electrons (holes) localized in the exponential conduction

(valence)-band tail, NE&T .., With a precision of the order of 2.88 x 1077 ,respectively .

It shoud be noted that the values of M ) and H.

n(py COUID be chosen so that those of

n(p

Ncpn(cpp and NESE(CDPJ are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can

be defined, as that given in compensated materials:
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N*(N,T4(2).X) = N — Nepaupp) (Tacay»X)= N7, for a presentation simplicity. (6)

In summary, as observed in Tables 7 and 8 of our previous paper [3], one remarks that, for a

given x and an increasing rqny , £(ra).x) decreases, while Egna(gpa){rd(aj,x) ,
EBT : . : :

Nepnvop) (Ta). ¥) @and Nepn epp) (Taca)» X) increase, affecting strongly all the optical properties

and the electrical-and-thermoelectric ones, as those observed in following Sections.

PHYSICAL MODEL [m"n(pj (x) = m, (%) < Mgy (x)]
In the n*(p*) — ¥(x) = CdTe,_,Se - crystalline alloy, the reduced effective Wigner-Seitz

(WS) radius r characteristic of interactions, being given in Eqg. (4), in which N is

sn(sp)’

replaced by N*, is now defined by:

-k—i
(N) =0 < p

35:[»‘)) 1/3 x 1
Agn(Ep)

sn(sp)(NTagay X) = (m\.? , being proportional to

¥ XT -
sn (sp) 2gn(ep) (Ta(e)yX)

[

ITeN*

N*"Y2  Here, y = (4/9m)/3, an(FPJ{N“)E( )E is the Fermi wave, g.) being the

Bclv)

effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length kg, to Fermi wave number kg, g,

is defined by:

_ Kansp) _ Kratep) -
Rsn(sp]{Ngj = ke r:p‘l = k—ier\l = Rsn‘i‘t-'s(sp‘i‘t-'sj + [RsnTFfspTF] - Rsnws(spwsj]e fenlsp) < 1, (7)
nikFpl FnlEpl

being valid at any N*.
Here, these ratios, Re,1r(sprr) and Reqws(spwsy, €an be determined as follows.

First, for N > Nep,mipp) (Ta. %), according to the Thomas-Fermi (TF)-approximation, the

ratio Renre spry(N7) IS reduced to

x KsnTr(spTR) k;;(Fp} 4¥Tsnisp)
RoaTr(sprry(N7) = =— = «1, 8
snTF (spTF) kFﬂ(Fp} kSIEIfTF[spTF} T ( )

-1/6

being proportional to N*

Secondly, for N << Ngpnnnp) (Tagay), according to the Wigner-Seitz (WS)-approximation,

the ratio Ry,wscsaws) 1S respectively reduced to

k dfr2 *E (N*}]
sy _ Ssnisp)Ws _ 3 _ [ sn(sp)~“CE
Rsn(sp]‘NS {:N ) = ken = 0.5 x (27{ ¥ dTgn(sp) ) (98.)

Where Eq;(N®) is the majority-carrier correlation energy (CE), being determined by:
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0.87553 (2[1—]1{2}])
—D.B7553 D.D‘;‘DB+1’m(’5p) e

0.0908+Ten(sp) 1+0.03847728xr 55378576

XIn(Fspgspy)—0.093288

Ece(N°) =

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

kgl 1 kgl
Fn(Fp}< Mn(p)  _— < Fn(Fp)

=R < 1, I® 3— 2 , 9b
2pn(Ep) EFHD[FPD} Aﬂ[p} k;&tsp} sn(sp) nn(p}{l\ } Pagay) xq k‘sn(sp} ( )
; ; . N Erno(rpo)(N°) Xan(E 3(N%)
Which gives: A, (N) = —P—n o) Efno (Fpo)(N™) = —P—Exm e
BAND GAP NARROWING (BGN) BY N AND BY T [m};;)(x) = m,(x) < Mgy (¥)]
First, the BGN by N is found to be given by!?:
. N @) 0 \s
AE g (gpyn(N" T ey X )— Do X NE + 2, X s(rd(a)x) X N2 x (2.503 X [~Ecg (rengsp )] X
r )+a £o () ] e ><N4+2a £0®) ]2><N2+ 2a; x[ £o %) ]ExNé
sn(sp) 3 E{rd(a) x) mn(p)( ) 4 X {rd(a) x) {rd(ayx] r’
Ny = 9.999x1017cm ek (10a).
Here, a;=38x10"3(V) , a,=65x10"%V) , a3=285x10"3(eV) |,

a, = 5.597 X 1073(eV), and a5 = 8.1 x 107*(eV).

Therefore, at T=0 K and N* = 0, and for any rq,y, one gets: AE gy = 0, according to the

metal-insulator transition (MIT).

Secondly, one has?:

- 220177201
AE gy (gpy:r(T) = 0.20251 X ([1 +(5ooeas) ] - 1). (10b)

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION
[m;(p] (x) =m,(x) < mc(vj{:x)]

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the

— Y(x) = CdTe,_,Se,- crystalline alloy in order to obtain the same one, as given in the

- Y(x) - crystalline alloy, according to the reduced Fermi energy
Engp) &gy (N % T) = w:} 0(< 0), obtained respectively in the degenerate

(non-degenerate) case.
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For any (N,rye),xT), the reduced Fermi energy &,q,(N.rge),xT) or the Fermi energy
Erncrp)(Noraa), % T), Obtained in our previous paper [9], obtained with a precision of the order

of 2.11 x 10~*, is found to be given by:

E
Eatpy (W) = E"“}E"*’T}(“j = S = :f(‘”) A = 0.0005372 and B = 4.82842262, (11)
. . N*
Where u is the reduced electron  density, u(N,rg.,xT)=
y (N, racay ) Nery T
2 z
: kgT 2 s _3\7z
New) (T.X) = 28,() X (&(’ﬁ#)g (cm™) , F(u) = au= (1 +bu"z +cu s) y
2
a=[3vm/al”, b=1(0)" =TS ()" and  G(w) ~Ln(w +27Exuxe

1920

d =23/ [i_—i]:w.

w27 1g

So, in the non-degenerate case (u <« 1), one has: Ep,p)(u) = kgT x G(u) =~ kpT x Ln(u) as

u — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1), one

2 _4 _& ‘E A2 xk3 (N¥)
. _ _ Fn(Fp)
gets: Epyrpy(u > 1) = kgT X F(u) = kgT X aus (1 +bu =+ cu a) 4p—zxmﬂp}{k]><mn asu — oo,

the limiting degenerate condition. In other words, &, = "“(FP} is accurate, and it also

verifies the correct limiting conditions.

. . . 72k N*
In particular, as T — 0 K, since u™* — 0, Eq. (11) is reduced t0: Egpe(Fpe)(N*) = P %enep) (V)

zxm;(p}{:ﬂXmD !

being proportional to (N*)2/*, and also equal to 0 at N* = 0, according to the MIT and noting

that EFno{Fpo] (mr (Xj) = EFno{Fpo] (mc{v] (Xj) since I’H[.{:X) < mc(v){x)-

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of En(pj(N,rd(aj,x,T).[g]

Fermi-Dirac Distribution Function (FDDF)

The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e¥)™" |
Y = (E = Epn(rp)) /(kgT).

So, the average of EP, calculated using the FDDF-method, as developed in our previous

workst ¥ is found to be given by:

of af 1 e¥

(E®)eppr = G p (Een(rp)) X EF"(FPJ o f EP X ( BE) dE, T 9B kgT % (1+e¥)2’
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Further, one notes that, at 0 K, —== 8(E — EFM(FPOJJ, 8(E — EFna(Fpaj) being the Dirac

delta (8)-function. Therefore, Gp(EFna(Fpaj) =1.

Then, at low T, by a variable change ¥ = (E — Epn(rpy)/(kgT), One has:

B
G {EFD(Fp)) =1+ EFn(Fp) X f - (1 >< {kBTY—i_ EFn(ij) d? =1+ E[.L 1, 2““ >< {kBT} X EFn(ij
I
B

Where CFg p(p—1)..(p—B+1)/B andthe integral Iz is given by:

oo -E
P g LA Ve

@ (1+eY)2

mmdy, vanishing for old values of . Then, for even values

of B = 2n, with n=1, 2, ..., one obtains:

J-m -}-EHXEV
0 (1+e¥)?

IZn

Now, using an identity(1 +e¥)™2 = X2 ,(—1)"*s x e¥®"2) 3 variable change: sy = —t, the
Gamma function: fom t?"e"'dt = T'(2n+ 1) = (2n)!, and also the definition of the Riemann’s

zeta function: {(2n) = 2** n*?[B,,|/(2n)!, B,, being the Bernoulli numbers, one finally
gets: I, = (22" —2) x " x |B,,|. So, from above Eq. of (EP)gppr, We get in the degenerate

case the following ratio:

{EF) (p-1)..(p—2n+1
Gp (Erngrp) = oo = 1+ X0, PP x (221 = 2) x [Byg | X ¥ = Gy () (12)
F‘I’F‘p\

Lis _ mkgT h
Ly (N T) Egncepy (N5 T)

noting that G,_; (y = F— %j =1,and as T- 0K,

Where y =

Gp=1(y = 0) = 1.

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

EuL:]’ due to the Fermi-Dirac distribution function, are
®

used to determine the electrical-and-thermoelectric coefficients.

Table 2: Expressions for G,.;(y =

G2 (y) G2 (¥) Gs 2 (¥) Gz (¥) Gy 2 (¥) G4 (y) G2 (¥)

(1+§+ u) (1+—) (1+= r ?’") (1+y?) (1+35”2+ﬂ (1+2y2+?1l;) (1+215'z+1"5’*)

384 384 128
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OPTICAL-AND-ELECTRICAL PROPERTIES

Optical-and-Electrical Transformation Duality

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — ¥(x) = CdTe,_,Se.-crystalline alloy, in order to obtain the same one, as given in
the n* — A_yB, - crystalline alloy, according to the reduced Fermi energy

Erngp) &gy (N % T) = w:} 0(< 0), obtained respectively in the degenerate

(non-degenerate) case, giving: Epng(ppo) = Ern(rp) (NoTy),x T = 0).

Then, in the n*(p*) — Ay By~ degenerate crystalline alloy and for the temperature T(K),
One has:

(i) in the electrical phenomenon (EP), the reduced band gap is defined by:
Egnz(gpzj = Ec(v] - Evo(co] = Egni(gpi] - ﬂEgn(gp]:N(N H) - ﬂ']'E,g,rn{,grp]:T(T)’ (13)

where E iy Is the intrinsic bang gap, AEgy(gp)(N¥) and AE,, () (T) are respectively the

gni(gp
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and

(ii) in the optical phenomenon (OP), the photon energy is defined by: E = fiw, and the optical

band gap bY: Egni(gp1) = Egnagp2) + Ernep)-

Therefore, forE = E the effective photon energy E* is found to be given by:

gni(gpi)s

E" = E — Egni(gpn) = E — (Egna(gp2) + Erncrp)) = 0. (14)

From above Equations, an optical-and-electrical transformation duality means that:

E* = E — Egni(gp1), given in the OP, is reduced, as E = E y + Egncp), given in the EP,

gni(gpl
in which Egny(gp1y and my, ;3 (x) = m,(x) are now replaced by Egpp(gpzy and mey (%), to:
E*=E —Egni(gp1) = Epnrp) » and reciprocally, replacing Egnaapz) and mgpy(x) by

Ezn1(gp1) and m;(p] (x) = m,(x) given in the OP, respectively, (15)

noting that EFn(Fp](mr(xj) > Efn(rp) (mcm (x]) since m,(x) < m () (x).

Eqg. (15) thus shows that, in both EP and OP, the Fermi energy-level penetrations into

conduction (valence)-bands, observed in the n*(p*) — type degenerate A _,)By-crystalline
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alloy, Egnerp), are well defined, but at the discontinuous OP-EP transition:

Egnep) (Mr (%)) > Egncep) (mc(vj (x)), according to the discontinuous case.

Optical Coefficients [mj, (%) = m,(x)]

The optical properties for any medium can be described by the complex
refraction: N = n — ik, n and « being the refraction index and the extinction coefficient, the
complex dielectric function: € = g, —is,, where i = —1, and € = N?. Further, if denoting

the normal-incidence reflectance and the optical absorption by R and «, and the joint density

of states by:
DOS E) = 1 zm;fﬁ){x] 32 E—Egni(gp1) 2 E d
J n(p]( j ~ 22 X e X E_[Egnl(gpﬂ+EFn(Fp)_EFn0(Fp0)] X Fno(Fpo) &N

hq?x|v(E)|?

F(E) = (2,
(E) n(E)xcEXzfree space’ one gets
. __ Exe3(E)  2Exx(E) 410 (E) — 2 .2
o (B) = JDOSy(p) (B) X F(E) = S o = S5 = 02— a® =0 —x?
_ _ [n-1]7+4x?
£z (E) = ZKH, and R(Ej = [z+1]72+:2 . (16)

It should be noted that, such the above joint density of states yeilds: (i) as E = Egp1(gp1)(T),

M 3/2
.. 1 2m (x)
JDOS, ) (E) =0, and (i) as E — o, JDOSy,)(E) = 55 ¥ (—"—";2) ) X \/Erno(epo) -
Further, eeqe space IS the permittivity of the free space, -q is the charge of the electron, |[v(E)|

is the matrix elements of the velocity operator between valence (conduction)-and-conduction

(valence) bands, and the refraction index n is found to be defined by

B E+Coi
n(E, ram) = Ne(raw) + X =

i=1 m — Iy, (I‘d{a]), aSE — oo, (17)

Here, the optical conductivity a, can be defined and expressed in terms of the kinetic energy

h2xk?

of the electron (hole), Ey, = Tt G0 ma
n(p)" o

, or the wave number k, as:

1/2 . . . 2
— @¥xk k Ex which is thus proportional to E..“.
00 (0 = T2 = x [k X apncap] X (ﬂn(m) : prop k

nmkgT
Ern(rp)

- 2
Then, we obtain:(E2)eppr = G, (y = ) X Efyeepyr @Nd Gz (y]:(l + %) = Gy(N,rgga),x T),
with y E%{m, En(p) = Sn(p) (N,rqca), % T) for a presentation simplicity. Therefore, from

above equations (16, 17), if denoting the function H(N, rg(.), %, T) by:
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Ken(ep) (V) . N _E o~
H(N,rd(a],x, T) - [m X [an(Fp] (N™) X apy(zp) (r‘d(a],x)] X \/An(p] (N*) = —EnotFpo)t =

Rsn(sp](Ngj T]n(p}(Ngj
GZ (NJ Td(a): X T)

Kk . . .
Where Rgp(sp) (N*) = k;:';ps), which is proportional to EZ,o(epoy. for given (N,rgqe),x, T)-

physical conditions, our optical conductivity model can be assumed to be:
Oo (N, Ta(a). % T, E) =

2

q* E—Egna(gp1) 1

Txh X H(N’rd(a]’X’T) X [E—[E +E -E | ohmxcm/’ (18)
gn1(gp1) +EFn(Fp) ~EFno(Fpo)

] -
Where % = 7.7480735 X 10~° ohm™2. It should be noted here that:

A 2
(i) oo (E = Egn1(gp1) (T]) =0, and oy(E — o) = # X H(N, Tdca), X T) = Constant for

given (N,rd(a],x,T) —physical conditions, and

(i) as T» 0K and N* = 0 [or Epno(epey (N”) = 0, according to: H(N, rg(2),%,T) = 0], and
for a given E, [E — Egnigpn)] = [E— Egnicgpp]=Constant, then from Equations (16-18),
n(E)= Constant, oo(E) =0, x(E) =0, £(E)=(ny,)? = Constant, ,(E) =0, and

« (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains:

W(E)? 8mZh kpneep)(N*)
E (2mg) 332)({'7] n(p) Rgn(sp) (N

X [kFﬂ(Fp] (NH) X aE?n(Bp:] (rd(ajix)]] Pt GZ (NJ I'd{a),x, T)J (198.)

2
K(EB) = 2 X H(N g, T) x| 5~Egnicgp) | (19)
n(E}Xefroe space XE E—[Egm(gpi)"'EFn(Fp)—EFno(Fpo)]

Which gives: ®(E = Egny(gp1)(T)) = 0, and x(E — ) — 0, as those given in Ref.,

2
£,(E) = L H(N, raa), %, T) X [ E-Egni(gp1) ] J
Efree space XE E_[Egm(gpl)+EFn(Fp)_EFn0(‘Fp0)]

Which gives: &,(E = Egny(gp1)(T)) = 0, and £,(E - ) - 0, as those given in Ref.ll, and  (19¢)

2
4q? [ E~Egni(gpa) ] -1
& (E) = ——— X H{N,r xT) X cim 19d

(E) hen(E) X efree space ( »Td(a) S ) E_[Egnl(gplj+EFn(‘Fp)_EFn0(Fp0)] ( ), ( )
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- - 2
Which gives: « (E = Egni(gp1) (T]) =0, and « (E > 90) = — =+ x H(N,rg(a),% T) = Constant,

hiengg Xefree space

as those given in Ref.™

Using the optical-and-electrical transformation duality, given in Eq. (15), at
E = Egni(gp1) + Erncrp) » the optical conductivity, ooy, given in Eg. (18), in which
my ) (x) = m,(x) is now replaced by m.,,(x), has a same form with that of the electrical
conductivity, ogr, given in our recent work™, for such an optical phenomenon-and- electrical
phenomenon transition. So, from Equations (18, 19b, 19c, 19d), and for

E = Egni(sp1) T Erncrp), ONES 0btains respectively, as:

2
OoT (N,I‘d(a],x, T,E) = nq—; % H(N, Faca) % T) % ( Epn(Fp) ) ( 1 )’

Epno(Fpao) ohm xcm

having the same form with that of og (N, rgca, %, T),

2
OgT (N, Tdca), X T,E) = nq—; X H(N,rd(a],x, T) X ( EEn(Fp) ) ( . ), (20a)

EFno(Fpo} ohm»cm

KT(Nrrd(a);X, T,E) = 2q®

2
xH(N,rd(a],x,T)x(M) . (20D)

n(E)*efree space X(Egn1(gp1) *EFn(Fp)) Erno(Fpo)

2
EZ,T(Ner(ﬂ]JXJ TJE) = e

£free space”(Egni(gp1) TErncrp))

2
Ern(Fp) )
X H(N, ,x,T)x|——=] ,and (20c
( fd(a), % ) (EFno(Fpo) ( )

) 2
oCr (N,rd(a],x, T, E) = 4 X H(N,rd{a],x, T) X (M) (cm™1). (20d)

hen(E) Xefree space Erno(Fpo)
One notes here that (i) the electrical conductivity og(N,rqca),%, T), given in Eq. (2a), is an

essential result, being used to determine other following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eq. (15), at the discontinuous OP-EP transition, given in the

discontinuous  case EFn(ij(mr(X))>Epn(pp) (mc{\,](xj) ,since m.(x) < mg(x)

corresponding to: oot (m,(x)) > ogr (mcm (xj). In our recent work!?, all the electrical-and-

thermoelectric properties were investigated for this discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given

(N, r4¢2), %, T) -physical conditions, are reported in the following Table 3.
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Table 3: Here, some optical coefficients, for some particular values of E, are given as

follows.
EineV 0g(E) k(E) £,(E) o (E)
Egnl (gp1) 0 0 0 0
[Eeni(gp1) + ErnEp)] OgT = Opt Kt €T OCp
E—w C::TX: =Constant 0 0
492 xH _
=Constant

hcNe X2free space

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [m}, ) = me(y) ()]

Here, if denoting, for majority electrons (holes), the thermal conductivity by oy, (N.rge). % T)

W

cmx K

in , and the Lorenz number L by:

Wxohm
K2

2 2
L="x (%2)" = 2.4429637 ( ) = 2.4429637 x 107 (V2 x K~2), then the well-known
q

Wiedemann-Frank law states that the ratio, C:T: is proportional to the temperature T(K), as:

ath (Nrg(z)xT)
— = - = LxT,. 21
GET (Nrg(z)xT) ( )

Further, the resistivity is found to be given by: p(N,rg(a), %, T) = 1/0gr(N,rq(2), %, T), noting
again that N* = N — Nepn(npp) (Taca), X)-

In Eq. (20), one notes that at T= 0 K, ogr(N,rg(a), %, T = 0K) is proportional to E%no{Fpoj, or
to (N"j%.Thus, from Eq. (21), one has: ogr(N = Nepnnpp),Ta(a),% T = 0K) =0 and

aISO GTh.(N == NCDH(NDP]J rd{a],x, T= DK:J =0at N’# = D, at WhiCh the MIT occurs.

Electrical Coefficients
The relaxation time 7 is related to o by!!!:

T(N,rg4), % T) = ogr(N,rg0), % T) X . Therefore, the mobility p is given by:

q* X (N*/gc(w))
_ N qxr(N,rd(a),x,T) UET{Ner(a}-“LT} cm?
N.l » .IT = N » JT = ec = * . 22
IJ( rd{a) X ) I"l( rd{ﬂ] ) mn(.p:]{_x;])( mg gx(N .'fglev]] VXS:] ( )
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Here, at T= OK, p(N*,rqca, T) is thus proportional to (N*)*/2, since ogr (N*,rga), T = 0K)
is  proportional to (N*)*® . Thus , T(N"=0,rg0,,T=0K)=0 and

W(N™ = 0,rg(a), T = 0K) = 0 at N* = 0, at which the MIT occurs.

Then, the Hall factor is defined by:

T)rpDF __Ga(y) y = L _ kg T
Depprl®  [G2(MI*' Y EIngp)(Nrd@xT)  Epngp (Nra@xT)’

ry(N,rg),x,T) = [E and therefore,

the Hall mobility yields:

) 2
(N, raca), % T) = p(Nyrag),x T) X ig (N, T) (52), (23)
Noting that, at T=0K, since ry(N,r4¢),x,T)=1 , one therefore gets:

Hyu (N, Ta(a) % T) = |J.(N, Td(a). % T) :

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as [*!:

w2

D(Nrgr)xT) _ N* x dEgn(rp) _ kpxT x (u din(p}(u)) _ [ < T X (u din(p}(u)), kg _ [3xL (24)

p(NrgexT) g dN* q du n2

du

Where D(N,raq), % T) is the diffusion coefficient, &, (u) is defined in Eq. (11), and the
mobility p(N,rye),x T) is determined in Eq. (22). Then, by differentiating this function

dF’nr_pj (u)
u

Engpy (1) With respect to u, one thus obtains . Therefore, Eq. (17) can also be rewritten

as:

D(Nryz)=T)  kpxT y uv’(uj *Wln) = V) x W' (u)
p(N,rd(a},xT} q W2 (u)

3 4 -2
Where W'(u) = ABu®~* and v'(u) = u™* + 27ze79(1 — du) + ZAuB~1F(u) |(1 + 28) + & Dufizen 2|

14bu 3+cu 2

One remarks that: (i) asu — 0, one has: W? ~ 1 and u[V' x W —V x W'] =~ 1, and therefore:

D ..
np® L kexT  and (i) as  u—o , one has. W2~ A’u?®  and
N q

u[V' x W —V x W'l ~ 2au®/2A*u® | and therefore, in this highly degenerate case and at
T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

D(Nrgs) xT=0K) _

sy xT=0) :«EEFM(FPOJ{N")M. In other words, Eq. (24) verifies the correct limiting
T ()% 1=

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:
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4 g2
bu 2+2Zcu 2
D(N, rd(E}K'T) Erno(epo)(u) ( U Szeu j
><—P—>< 1+ x—24],
u(Nrga)xT) q 3 (1 +bu_§+cu_§)
— [3vw 2f3 n _ 623739855 g
Where a = [3+//4] ( )" and c == )

Thermoelectric Coefficients
First of all, from Eq. (20a), obtained for ogr(N,ryc), x, T), the well-known Mott definition for
the thermoelectric power or for the Seebeck coefficient, S, is found to be given by:

8l E %k dInogT|E
nUET( :'] _-m X—BX (En,—_p:,).

E o

_-m kg
S(N,ra, x.T) = 3 q=0 X kpT X E=Epn(pp) 2 q g5,
=Ern(rp ®

Then, using Eq. (11), for the degenerate case, %, =0, one gets, by putting

_ v
FS(N,rd(a),X, T) =|1— ],
3xGy (3. E
nip)
— __T(S kg 2Fgp(NT) _|3xL 2x%En(p) 4 [ETow (V _
S(N' rd(a)’X’T:] 3 x q x En[‘p) - 2 X (’1+2xEnE'p:| ) 2 r L X 1+Z Do ( ){ 0: {ZT)Mott -
T(; )
3><Ei[pj ’ (25)
according to:
Exinﬁnla
85 _ [3xL x = 1 _ 3L (2T pgore X [1— (2T Ypgod
Fnip) VT (1 zxsncpf)" VK3 [1+(Z Do
+ =

Here, one notes that: (i) as &, — +9° or &, — +0, one has a same limiting value of S:

- 2 - -
§——0, (i) at & = f%ﬁl.BlSB, since aE =0, one therefore gets: a minimum
n(p)

(min = VL= -1563x 107 (1) , and (i) at Eg =1 one obtains:

S~ 1322 %10~ &)

Further, the figure of merit, ZT, is found to be defined by:

82 xopxT S“ 4x(ZTg
ZT(N I‘d(a:,,X T) < = L = m (26)
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2
Here, one notes that: (i) 2-2=2xZx="—, s<0, (i) at & =\E£1.8138, since

Enip) Enip)
8(ZT)

Fa— 0, one gets: a maximum (ZT),,, =1 ,and (ZT)yue =1, and (iii) at &,y =1, one
n(p

2
obtains: ZT ~ 0.715 and (ZDyee = 5 > 3.290.

Finally, the first Van-Cong coefficient, VC1, can be defined by:

v N® ﬁ' l'5--11 =
(1) =2 - 52, being equl 0O for . — [, 2

VC1(N,rye % T) = —N* x ——

and the second Van-Cong coefficient, vC2, as:
VC2(N, 1y, % T) =T x VC1 (V), (28)

the Thomson coefficient, Ts, by:

ds (Vv a o, . 2
Ts(N, e, x T) = T X = (E) =Tx fl} X f being equal to 0 for &,¢,) = \/; (29)
and the Peltier coefficient, Pt, as:
Pt(N, rae,x T) = T x S (V). (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

ds
dN*

ds .
VC1(N,rge.xT) and Ts(N,rg, % T) are expressed in terms of —= and ==, one has:

2 2
[VC1,Ts] < 0 for &) > \r [VC1,Ts] = 0 for &) = \/g and [VC1,Ts] > 0 for §,¢,) < \/g

stating also that for &,¢,) = E:

() S, determined in Eq. (25), thus presents a same minimum

(S)min = —VL > —1.563 x 107 (3),

(i) ZT, determined in Eq. (26), therefore presents a same maximum: (ZT) .. = 1, since the

variations of ZT are expressed in terms of [VC1,Ts] xS, S <0,

Furthermore, it is interesting to remark that the (\VC2)-coefficient is related to our generalized

Einstein relation (24) by:

85 D(Nrata}ﬂ}( ) ks XL (31)

%, mNrae)xT) q L

? x VC2(N, 1y % T) = —

according, in this work, with the use of our Eq. (25), to:
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_ D(N.rgea)xT) (ZT o X [1— (T o]
VCZ{N’rd(a)’X’T) o I.L(N,r.j(a},x.T) [1+(ZT)M{m]z {:V)
Of course, our relation (31) is reduced to: 2 VC1 and VC2, being determined
13

respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n* (p*) — Y(x) = CdTe,_,Se,- crystalline alloy, 0 < x < 1, X being the concentration,

the optical coefficients, and the electrical-and-thermoelectric laws, relations, and various

coefficients, being enhanced by:

(i) our static dielectric constant law, £(rac.). %), race) being the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,y, given in Eq. (11) and accurate with a precision of the

order of 2.11 x 10~* [9], affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,
(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally
(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated, basing on our physical model, and Fermi-Dirac distribution
function, as those given in our recent works.™ 2
It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate CdTe-crystal [3]. Then, some important remarks can be
repoted as follows.
(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,,cng), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT),
N&pa(cop)» being obtained with a precision of the order of 2.88 x 1077 , respectively, as
given in our recent works.! Therefore, the effective electron (hole)-density can be defined
as: N* = N — Nepnepp) = N — Nepaengy» N being the total impurity density, as that observed

in the compensated crystals.

(2) The ratio of the inverse effective screening length kg, ., to Fermi wave number kg, g,

at 0 K, Ryyspy (N, defined in Eq. (7), is valid at any N*.
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(3) From our basical optical conductivity model given in Eq. (18), all the optical and optical,
and electrical-and-thermoelectric coefficients are well determined. In particular, from the
optical-and-electrical transformation duality given in Eg. (15), according to the optical
phenomenon- electrical phenomenon transition effect, the optical conductivity, oot ,
determined in Eq. (18), has the same form with that of the electrical conductivity ogt, as

given in Eq. (20a), and in our recent work.™!

(4) From Equations (20a, 21-30), for any given X, rq¢) and N (or T), with increasing T (or
decreasing N), one obtains: (i) for g, — \Ez 1.8138, While the numerical results of the
Seebeck coefficient S present a same minimum (S) pin (z —1.563 x 1074 1"7{) those of the
figure of merit ZT show a same maximum (ZT) ., =1, (ii) for &,,, = 1, the numerical
results of S, ZT, the Mott figure of merit (ZT) ., the first Van-Cong coefficient VC1, and

the Thomson coefficient Ts, present the same results: —1.322 x 10‘% , 0.715, 3.290,

T r 2
1105 x 107*, and 1.657 x 10~*, respectively, and finally (iii) for £, = |5 > 1.8138,

(ZT)mowe = 1, as those given in our recent work [1]. It seems that these same results could

represent a new law in the thermoelectric properties, obtained in the degenerate case

(Eagpy = 0)-

(5) Finally, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg . a5 D(N.raea)xT) (V2 kg [3xL . . .
2 X VC2(N,rgea),x,T) = — X (E) ~ = .|z » according, in this

3tn(p) ~ w(NrgexT) q
work, to:
_ D(Nrg@xT) (ZD Mo [1—(ZT) Mmott] bei . D
=——" , being reduced to: - ,
vez (N’ Td(a) % T) p(N,rd(a:,,_!(,T:] [14+(ZTD)Mmott]? (Vj g =

VC1 and VC2, determined respectively in Equations (24, 27, 28). This can be a new

result.
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