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ABSTRACT

In the n*(p™)— Ge(1—x)Si(x) [Si(1— x)Ge(x)]— crystalline
alloys, 0 = x = 1, x being the concentration, the optical coefficients,
and the electrical-and-thermoelectric laws, relations, and various
coefficients, enhanced by: (i) our static dielectric constant law,
e(rara.X), Tae Peing the donor (acceptor) d(a)-radius, given in
Equations (1la, 1b), (ii) our accurate Fermi energy at T=0K,
Een(rp) (Efno(Fpo)) » determined in Eq. (11) and accurate with a
precision of the order of 2.11 x 107* [9], affecting all the expressions
of optical, electrical, and thermoelectric coefficients, are now
investigated, by basing on our physical model, and Fermi-Dirac
distribution function, as those given in our recent works.™ 23 In the

following, for given physical conditions, all the optical coefficients are

expressed as functions of the effective photon energy : E* = E— E_,;(zp1), E and Egpgzp1),

being the photon energy and the optical band gap. Then, some important remarks can be

repoted as follows. From our essential optical conductivity model, o5(E*), determined in Eq.

(18), all the optical, electrical, thermoelectric coefficients are determined, as those given in

Equations (19a-19d, 20a-20d). In particular, from the optical phenomenon and electro-optical

phenomenon (OP - [E-OP])-transition, obtained for E = E_,1(zp1) +*Epa(em), and given in Eq.
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(15), one observes that the optical conductivity agr has a same form with that of the
electrical conductivity, ogr, as those given in Eq. (20a), suggesting thus many important
concluding remarks on all the optical, electrical, thermoelectric coefficients at such the (OP

and E-OP)-transition , as those given in Equations (20a, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson
coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n* (p¥) — Ge(1 —x)Si(x) [Si(1— x)Ge(x)] —crystalline alloys, 0 < x < 1, x being
the concentration, the optical coefficients, the electrical-and-thermoelectric laws, the
relations, and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(r4..x), ra, being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,zp, given in Eq. (11) and accurate with a precision of the

order of 2.11x107% 1 affecting all the expressions of optical, electrical, and

thermoelectric coefficients ,

(iii)our optical phenomenon and electro-optical phenomenon (OP and E-OP)-transition, given
in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as

those given in our recent works.!* %]

It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate Ge[Si]-crystals.2**! Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Nep,¢cnpy, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).,
nEET, ., being obtained with a precision of the order of 2.89 x 1077, as given in our
recent works.™ 3 Therefore, the effective electron (hole)-density can be defined as:
N* =N — Nepnceppy > N — NEET .y N being the total impurity density, as that observed

in the compensated crystals.
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(2) The ratio of the inverse effective screening length k., ., to Fermi wave number kg,

at 0 K, R .py (N7), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for £,¢,; = ﬂqﬂ“a—h =~ 1.8138, while the numerical results of the

Seebeck coefficient Sgp Present a same minimum [SET[DH) _ [2 —1.563 x 10“‘:"7:],
min.

those of the figure of merit ZTgroy Show a same maximum (ZTgrigry) max. = 1, (i) for
Eatpy = 1, the numerical results of Sgrpgry, ZTgrror, the Mott figure of merit ZTeroruorn
the first Van-Cong coefficient VC1griqr;, and the Thomson coefficient Tsgrory, present the
same results: —1.322x 107*Z , 0.715, 3290, 1.105x 107*Z, and 1.657 X 107*=,

[ 2
respectively, and finally (iii) for €., = ﬂqﬂ“? > 1.8138, ZTgrgrmon = L aS those given in

our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

3L .
= [Z= according,
‘\q T

BEE'T[DT' v DE'T[D']'-l._N;I."d::E:ux-Tj (V_:) I.{E
i)

kg _
— X VC2 N,rga).xT)=— . a
. ET[OT] (N,rar2.%,T) B ip) perromy(NoramxT) LK a

in this work, to:

DET[OT] (Nrgra =T

ZTgr[oT)Mot X [1~ ZTeT[0mMOtt] .
( V), bein
“E'T[EIT:'-_st‘d:jB:ux-T:l (v, g

X 2 X J
[1+ ZTET[OT Mott]

VC2errory (Norgea.x. T) = —

. DE‘T |:|'T' - - - -
reduced to: E[[D—T- , VClgpor; and VC2gror, determined respectively in Equations (24,

27, 28). This can be a new result.

(5) Finally, for given [N,rg¢..x, T], all the numerical results of [o5(E), x5 (E), €55 (E), and
g (E)], given in the OP, and those of [oz(E), kz(E), £,z (E), and oz (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be

used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogr(gry(N,ra¢s),% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).

In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the
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n*(p*) — Ge(1— x)Si(x) [Si(1 —x)Ge(x)] — crystalline alloys at any temperature

T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n*(p¥) — Ge(1—x)Si(x) [Si(1 — x)Ge(x)] —crystalline alloys, at T=0
K231 we denote : the donor (acceptor) d(a)-radius by r.), the corresponding intrinsic ones
DY: Tagras) =Teerce) AN Tagrao) = Tsigsiy, respectively, the effective averaged numbers of
equivalent conduction (valence)-bands by: g_., , the unperturbed reduced effective electron
(hole) mass in conduction (valence) bands by m_, (x)/m,, m, being the free electron mass,

the relative carrier mass by: m_(x) = % < mgy (%), for given x , the unperturbed
r m (%) 4 my (x -

relative static dielectric constant by: £, (x), and the intrinsic band gap by: E_, (x), as those

given in the Following Table 1.

Table 1: In the Ge(1— x)Si(x) [Si(1— x)Ge(x)] —crystalline alloys, the different

values of energy-band-structure parameters, for a given x, are given in the following.

In the Ge,_,Si_ -crystalline alloy, in which rag.o) = Tearce) =0.122 nm, we have!® .
2 () = 6(2)Xx+4(2) X (1—x) , myy(x)/m, = 037353 (0.54038) X x 4012 (03)X (1-%) ,
£o(x) = 114 X x 4+ 158 X (1 — x), E_ (%) = 1.17 X x + 0.7412 X (1 — x).

In the Si;_,Ge, -crystalline alloy, in which ra,(.o) = rsicsiy =0.117 nm, we havel™ 3
8e () = 4(2) X x4 6(2) X (1—%) , My (x)/m, = 012 (0.3) X x +0.37353 (0.54038) X (1 - x) ,
£,(¥) =158 Xx+ 114X (1 —x),E_ (x) = 07412 X x + 1.17 X (1 — x).

Here, the effective carrier mass my,(x) is equal to m,,, (x). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute values as:
13600 =[my P () fmg ]
[20(x0]*

Eggiag) )
Baotao) () = ramy -
daolac) [%}xl._rdu (20))

Egoran) (X) = meV , and then, the isothermal bulk modulus, by:

Our Static Dielectric Constant Law [m;,:p} (%) = mg, ()]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant £(r44),x), developed as follows.

www.wijert.org 1ISO 9001: 2015 Certified Journal 178




Cong et al. World Journal of Engineering Research and Technology

At rga) = Taara0) the needed boundary conditions are found to be, for the impurity-atom

volume V= [47Ef3] X [rdlﬂ}) VI:]DIE.D} [47Ef3:] X [rdl:llﬂl:l:l) for the pressure p, p, = 0,
and for the deformation potential energy (or the strain energy) a, @, = 0. Further, the two

important equations, used to determine the e -variation, A & = a —a, = a, are defined by:

dp

Frra— and p— , giving rise to : ( )— . Then, by an integration, one gets :
[ﬁa(rdl:ﬂ}’xj]m«p} = BdDI:E.I:I:' (Xj X(V_ Udcil:ﬂ_ci:l ) X In
3 3
Tdia) _ Tdie
Vo am) Edo(aa) () % [{fdm:auj) 1] X 1n[fdm:au3) = 0.

Furthermore, we also showed that, as Taay > Taprae) ( Tdia) < Tdo(as)), the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap E_,, ., [rd,:ﬂj,x), and
the effective donor (acceptor)-ionization energy E., [rd,:a},x} in absolute values, obtained in

the effective Bohr model, which is represented respectively by : + [&cx[rd,:ﬂ},x]] )

-

— _ g lx) \°
Egnu:u(gpu:u} (rd(ﬂ}’x] - Egn [:Xj - Ed(a} [:rdl:ﬂ.:l’xj - Edn(an} (Xj - EI:]I:II:EI.I:I:I (X] X |( fu ) -

2 '~rd|jnj:'

1] =+ [&cx(rd,:aj,xj]

n{p)

for rdl a) — rdnl aolh and for ri:il a) = rdc\l aol

-

_ _ 2glx) "
Egnu:n:gpu:-} (rd(a}’xj - Egu:- (X] - Ed(a} [:rdl:ﬂ.:l’xj - EdD':E.l:I:l (Xj - Eljl:ll:ﬂ.l:l::l (Xj X |( . . ) -

Ehrgy aj:'

ni(p}

1] = — [ﬂcx(rdl:a:,,x]]

Therefore, one obtains the expressions for relative dielectric constant £(rg;.),%) and energy

band gap E.;, (e (Taca)x), as

2qlx}

(’ Tdray % ‘ Tdrmy 3
tage) ) T
Tdoraoy Tdofeoy

< £,(x), being a new

(I) -for rdla} rdnlac\}v since E(rdla}’xj_
i1+
A

£(rga.X)-law,

S
Egno(epo) (Tata) %) = Ego () = Eag) (Tata) %) — Eaotac) (%) = Eaotan) (x) X [[ﬂ) - 1} %

Tdorao)

Tdra 3
In(Z22) = o, (12)

according to the increase in both E_ ;. (racax) and Egrp (race).x), with increasing aca)

and for a given x, and
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2qlx}

_ ('ﬂ}s—l]xln(rdi}s

Tdoraoy Tdoraoy

i)-for rzrey = Tgoraoy ,» SiNCE &(Tgrgy.X) = > £,(x), with a
(a) (ac) (a)

N

Far 3 Tar 3 -
condition, given by: [(ﬂ) — 1] X 1n(ﬂ) < 1, being a new &(ry.,),x)-law,

T'doreo) T'do(ao)

_ 3
Egno(gpe) (Tata)»¥) — Ego (%) = Eaca) (Taca): %) — Eaotao) () = —Eaotas) (%) X [(L) -

Tdofzo)

Tdie)

1] <1 (F22) <0, (1b)

corresponding to the decrease in both E_, ;0 (race.x) and Eacay (Tacay,x), with decreasing

ra(e and for a given x.

It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new €(rg.,. x)-law.

Furthermore, the effective Bohr radius ag,gp) (raca).%) is defined by:

a0 635 108 cm x e ()

- T i E—— . o
B!‘.I[_BFI:I( d'-.ﬂ-:" j mn,:Pj(x}mex:]z mnl:Pjo}

Generalized Mott Criterium in the MIT [mj,,) (x) = m_; ()]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepniupp) (Tara) %), was given by the Mott’s criterium, with an empirical parameter,

Mg, ast 23

n(p)r &

1y —
NCDnI:CDp}(rdI:a}’xj 13X dpniEp) [:rdl:a}’x:] = Mnl:p}’ Mﬂ':[:'} = 0.25, (3)

depending thus on our new €(ry:4.x)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

WS) radius r.,¢..3.0, in the Mott’s criterium, being characteristic of interactions, by :
(=p), g

3 1/3 1 B 2 14 1/3 m;l,:p:,(x}xmu 4
Fentsp) (Mo Taga)  X) = (m) A — 1.1723 X 107 X (;) e (4)
being equal to, in particular, at N= Neonrenp) (Taray - %)

T en(ep) st (Nepaenp) (Facay¥)s Taays %)= 24813963, for any (rac..x)-values. Then, from Eq.

(4), one also has :

1s 3 z 1
NCDE‘.II:CDFI]I (rlﬂI:El.]I’xj 3 X EIBH':B[J:' (rlﬂ':&:”x) = (;)5 X 74813963 =0.25= (WSJH'P:' = M“':P:" (5)

explaining thus the existence of the Mott’s criterium.
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Furthermore, by using M,,, = 0.25, according to the empirical Heisenberg parameter

H oy = 0.47137, as those given in our previous work!®], we have also showed that

n(p)
Nconicop) 1S just the density of electrons (holes) localized in the exponential conduction
(valence)-band tail . Népn(copy » With a precision of the order of

2.89 X 1077 ,respectively 3]

It shoud be noted that the values of M, and #,,, could be chosen so that those of

Nepn(cop) and NéIB,E,:CDp} are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rg,%) =N — Nep, onpp) (Farap )= N7, for a presentation simplicity. (6)

In summary, as observed in Tables 7 and 8 of our previous paper’®, one remarks that, for a
given x and an increasing raws , £(racy.x) decreases, while Eocopoy (Tace)x)
Necpatvop) (Taca»X) and NEZTop.y(rac.x) increase, affecting strongly all the optical
properties and the electrical-and-thermoelectric ones, as those observed in following

Sections.

PHYSICAL MODEL
In the n* (p*) — Ge(1 — x)Si(x) [Si(1 — x)Ge(x)] —crystalline alloys, the reduced effective
Wigner-Seitz (WS) radius r.,.,y, Characteristic of interactions, being given in Eq. (4), in

which N is replaced by N¥, is now defined by:

_ Yrarp _ () ? 1
VR Tanep (N =B 1 v (Norgegyx) = (41::;-) X

SEn(ER)

, being

AEn(Ep) ':"d:ja:wx}

3 N* . ]
= )5 is the Fermi wave,

proportional to N*"2. Here, ¥ = (4/9m)*, kg cpy(N*) = (

Eclw)

... being the effective averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k., .., to Fermi wave number
kpnikp IS defined by:

k!ni:pfl _ kEEinfl _

Rsn[sp} (Na) = - Rsni-‘-’ﬁ':sp'l.-‘-’s} + [RBHTF':SPTF} - Rsnﬁ-‘-’ﬁ':sp'l-‘.’s}]e_r!n::spj < 1; (7)

kpntepy  Fantsm

being valid at any N*.
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Here, these ratios, R.yrrzptey @0d Ropwspws), Can be determined as follows.
First, for N> Neppowpp)(Taca»®) ,  according to the Thomas-Fermi (TF)-

approximation, the ratio R_,g¢zprey (N is reduced to

kgl P
KanTFrepTFy _ FoFpy  _  |*¥Tsnispm
pTE) _ B — |

kpniEg kenTFrspTey N

RsnTF(spTF} (st = « 1, (8)

being proportional to N*~*/

Secondly, for N << Nep,, (wpp) (Tacey), a@ccording to the Wigner-Seitz (WS)-approximation,

the ratio R s (=mws; IS respectively reduced to

d[rgni!mxfc g (*))]
¥ Aran (spy )’ (ga)

__ Ean(spws
Rsnn:sp}$?5[N$] == =05x (

£
kpn e

Where E-¢ (N*) is the majority-carrier correlation energy (CE), being determined by:

7 [1-1n(=)] A
0.2 555. z : z) }xlnkrsm.sp,‘l}_glugazas
+y _  —0.B7553 D.0508 +Tapiapy b ME (5F)
ECE [:N :] - 0.0902 + a 1.ETETEETE
: Tan(sp) 1+0.03847 728 Xrgy o)

Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

.
i!'r:)-c:l:g —
kgt . o2, | clw) o _1in
Fn(Fp) Moppy 1 FrniFp) — ey — N 21.—1/2
< = < B =g <1, N (N)=—xqg®k_ /.,  (9b)
SEn(Ep) Epno(Fpo) Anrg by n(sp) eniep) v aip) e(race) =ni=p)

Which gives: A, (N*) = o Egnotrpo)(N*) = o,

BAND GAP NARROWING (BGN) BY NAND BY T

First, the BGN by N is found to be given by!?:
AE, oy (N Faray x) = a PRI xﬂxNEx(zsuax
ealep) N - Td(a) P elrggayx) T T alrggg) T AT

z

s . = 1
[ - - = r - =
[~Ece(Tantep) )] X Toncep ) + 23 X [ 2q() ]4 % 1J. il N+ 2a, X [ 2o () ] X N+

E':’d.;a:wx:' My p) (%) E':’d[ a:wx:'
] 2 .
2a; X [ JEuI:I:' ]2 % NE, N, = ;-—_y
2(rgey) r 5.555x10%7 cm (10a)
Here, a,=38x10"3(eV) , a,=65x10"%eV) , a;=285x10"3%V) |,

a, = 5.597 x 1073 (eV), and a; = 8.1 x 107*(&V).

Therefore, at T=0 K and N* = 0, and for any rg,), one gets: AE_,..,,, = 0, according to the

metal-insulator transition (MIT).
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Secondly, one has:

_ T .20 2.:I:l‘_

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — Ge(1— x)Si(x) [Si(1— x)Ge(x)] —crystalline alloys, in order to obtain the same
one, as given in the n™ — Ge(1 — x)Si(x) [Si(1 — x)Ge(x)] —crystalline alloys, according to

Epn Fp) (Nra(e)2T)
kpT

the reduced Fermi energy Egq(ppys E4rpy (N Tg(a), % T) = = 0(= 0), obtained

respectively in the degenerate (non-degenerate) case.

For any (N,rs.),% T), the reduced Fermi energy &, (N.ra¢.),% T) or the Fermi energy
Efnirp) (N.Taca).% T), obtained in our previous paper [9], obtained with a precision of the
order of 2.11 x 107*, is found to be given by:

— EFm‘Fp‘\':'-‘:' _ G':U:'+A.UBFI:I_1} Viu) _ _
fagey (W) = T = = = 5 A= 0.0005372and B = 482842262, (11)

Where u is the reduced electron  density, u(N,ry,).xT)= al ,
“c.m'Tﬂ‘}

Ny (ToX) = 2800y X {m;uﬁpfli?“?’:;lgxke']"}; (em™%) , F(u)= aug(l + bu_4;+ cu_z}_;,

uE _ 1rmy2 _ £2.3735BES o4 ~ -z —du.

a= [3\,*11,‘4] =3 [;) C= T [;) . and G(u)~ Ln(u)+2 zxuxe "

+27 is

d—zﬂf‘[‘- —i]:::n.

So, in the non-degenerate case (u << 1), one has: Egyrppy (W) = kg T X G(u) 2 ky T X Ln(u)

asu — 0, the limiting non-degenerate condition, and in the very degenerate case (u > 1),

I
z _2 “ENTE | RPKR g (NT
one gets: Epyrppy (13> 1) = kyTX F(u) = kT X aus(l—l-bu =+ cu s) * v PR (V)

2 b-(mr-l,: pl () mmg

e . .- E
asu — oo, the limiting degenerate condition. In other words, &) = i"; is accurate,
and it also verifies the correct limiting conditions.
In particular, as T—0K , since u'—=0 , Egq (11) is reduced to:
KE
Efno(rpa)(N*) = %ﬁﬁﬁx— being proportional to (N*)*3, and also equal to 0 at N* = 0,
2wm_roylx
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according to the MIT and noting that EFHD.:FFD}[mr(x])}EFHD.;FFD}(mE.:v}(XJ) since

m, (x) < m,,, (x) for given x.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of £, (N,r4¢4),x,T).!

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: f(E)=(1+e")7! ,
Y= (E - EFn(Fp}jnf(kBTj'

So, the average of EF, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

at

_ p aF aF i ¥
(E¥)eppr = Gp(EFnEFp}j X EFn(Fp} - f EF X { az) dE, 8E @ X (1+e¥32

Further, one notes that, at 0 K, — === 8(E — Egpo(rpo) ) 8(E — Epporrpey) being the Dirac

delta (5)-function. Therefore, G, [Ernc..;ppc.}) =1

Then, at low T, by a variable change y = (E — Eg, gy )/ (kg T), one has:

Gp(Epnerpy ) = 1+EFH,FF}><J"E|1+ 13.9‘( (kg Ty + Eppep ) dy = 1+2°-., CEx

(kg T)® XEF

Fru(Fp) X IE

Where Cf =p(p—1)..(p —B +1)/B!  and the integral I is given by:
Pt .

..r_ﬁ: '1+E }.. ur_

values of = 2n, with n=1, 2, ..., one obtains:

_ o e yxe’
Ln =2 fy o dy

=dy, vanishing for old values of B. Then, for even

“":Ie 24e=v/ :I

Now, using an identity(1+ e¥)™2 = £22,(—1)**'s x e¥*="¥ 3 variable change: sy = —t,
the Gamma function: _f: t™e "dt=T(2n+ 1) = (2n)!, and also the definition of the
Riemann’s zeta function: Z(2n) = 22 'w*"|B,,|/(2n)!, B,, being the Bernoulli numbers,
one finally gets: I, = (2** —2) x m*® x |B,,|. So, from above Eq. of {E®})zppr, We get in

the degenerate case the following ratio:
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(EF) p (p—1)..ip—2n+1)
G[J (_EFn(Fp}) = EP FO0E = =1+ E

: X (228 —2) X |Byy| X y*® = G,y (v), (12)
Fn(Fp) (2n): i P

T _ nkgT
Enip)':”-JT} EpnFm (N1

T_} 0 Kl Gp}l(}r - ﬂ:] —* 1

) mkgT '“
noting that G-, (y = ?BFN - Ej

Where y =

=1, and as

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for G,.,(y = Eulj, due to the Fermi-Dirac distribution function,
=]

are used to determine the electrical-and-thermoelectric coefficients.

Gy (¥) Gy(¥) Gssa(y) G3(¥) Go/2(¥) G, (y) Ggy2(¥)

(105 +20) (1+9) (+F-Z) ey (105 + ) (1024 ) (14505

OPTICAL-AND-ELECTRICAL PROPERTIES
Optical Phenomenon — Electro-Optical Phenomenon (OP - [E-OP])-Transition

[m;l:p} = m, (Xj [m:{v} (Xj]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — Ge(1— x)Si(x) [Si(1— x)Ge(x)] —crystalline alloys, in order to obtain the
same one, as given in the n* — Ge(1— x)Si(x) [Si(1— x)Ge(x)] — crystalline alloys,

according to the reduced Fermi energy Ex,zp), £,y (N.T a0 % T) = EF“fFP”'L”’;“ﬁ”“T} = 0(< 0),
( ( ( .

obtained  respectively in  the  degenerate  (non-degenerate) case,  giving:

EFnD':FpD} = EFn':Fp} (Nlrd':a.}’x’T = Dj-

Then, in the n¥(p*) — Ge(1 —x)Si(x) [Si(1— x)Ge(x)] —crystalline alloys, and for the
temperature T(K), One has:
(1) in the electrical phenomenon (EP), the reduced band gap is defined by:

E ) = =E —E = Egnl(gpi} - e"Egrﬂ:g::l]':}r(Ngj - E"Egrﬂ:g:p]l:T(Tl (13)

gnligp elv) voleao)

Where E_;(zpi IS the intrinsic bang gap, AE ., (N*) and AE_, (.., (T) are respectively the

Enl
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),

and
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(i) in the optical phenomenon (OP), the photon energy is defined by: E = fiw, and the optical

band gap by Egnl':gpl:' = Egn!':gpﬂ + EFn(Fp}'

Therefore, for E = E_,12p1), the effective photon energy E* is found to be given by:

E"=E—Egn(gp) =E— [Egn?{gpﬂ + EFnEFp}) = 0. (14)

From above Equations, the (OP — E-OP)-transition means that:
E* = [E— E_ni (g, given in the OP, in which E = [E_.1¢z1) + Epniep ], 1S reduced in the

E-OP, in which E=[E 1t Epniepy] and m,(x) are now replaced by

gniligp

E = [Egnatgpzy T Egnirpy] and my, (x), to: E*=E— Ecn2(epz) = Ernrpy, and reciprocally,

noting that Eg, ey (m,(x)) > Egn(rp) (mc,:v} [x]) since m, (x) < m_(,(x), for given x. (15)

Eq. (15) thus shows that, in both OP and E-OP, the Fermi energy-level penetrations into
conduction  (valence)-bands, observed in the n*(p*)— type degenerate
Ge(1— x)Si(x) [Si(1 — x)Ge(x)] —crystalline alloys, Eg,zy;. are well defined, noting that
at this discontinuous (OP — E-OP)-transition: Eg,cpp) (m.(x)) = EFH,:FP}[mE,:v} (xj) ,

according to the discontinuous case.

Optical Coefficients

The optical properties for any medium, defined in the OP and E-OP, respectively, according
to:  [miy =m.(x)[m.,)]] , can be described by the  complex
refraction: Mg = ngpg; — iKggy » Nopgy aNd  kgpg; being the refraction index and the
extinction coefficient, the complex dielectric function: &gy = 40148 — i€20[287, Where
i* = —1, and Eog) = Nopg” Further, if denoting the normal-incidence reflectance and the

optical absorption by R qg; and o<q gy, and the joint density of states by:

o .oy 32 5
_ 1 Emn;:P‘:ll._X}) [ E—Egn, (gpa) ]
DOs_; E =—,><(—_ * =—= # B or ,
] nxp}H[E](] 22 K2 E‘[Egn-_igp£-+EFn:;Fp:.-EFnu;;Fpu;.] 4 CFno(Fpo)

hglx|vwiE)®

n(E}<cEX2frag space

and Fo g, (E) = , one gets!?l:

E X £301281 (E) _ 2E X xgg) (E)
o (E) = [DOS., E) X Fog (E) = — =
o (E) = JDOS, 50161 (E) X Fore) (E) heng g (E) he
4o (E)

Cllg[E] (E] X Efres space

r
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= . — EXEZD[EE-':E:' — EEXI{.D[E-':E} _ WGD[E":E:'
“olE] [:E:] - ]DDS”'~F‘}“[E] (Ej X F“[E] (Ej hengg,(E) he engE] E)"2free space
n 1]2+H. z
= z z = _ lmom— D[E]
£100181 (E) = Nope” — %o £2012e1 (E) = 2 (gyMopey @nd Ropgy (B) = ——— (16)

humj+ﬂz+ﬁmtzl

It should be noted that, such the above joint density of states yeilds: (i) as E = E_,;¢zp1) (T),

2my, (%)

3/2
— i 1 - —
]DDSH':FI:'H[E] [:Ej —_ ':I, and (“) as E —* m, ]Dﬂsnl:p]ﬂ[E] (E) — ﬁ * (T) 4 N'IEFHDI:FFID:I'

Further, €geq -pace 1S the permittivity of the free space, -q is the charge of the electron,
| Vore] (E)| is the matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands, and the refraction index ngg; is found to be defined by

— BpiE+Cs
Noe) (B Tage)) = ne(rge) + E?:lm - n,.(rg ) as E — . (17)

Now, the optical [electrical] conductivity g can be defined and expressed in terms of the

REwxl®

2% ml:1 g () mmy

kinetic energy of the electron (hole), E, = , k being the wave number, as:

_ Qwk k g, |2 L ) )
oore; (k) = — X F— X [k X aBn,:Bp}] X (nmm) , Which is thus proportional to E,. ~.

'1'II|.{BT

I
Then, we obtain: {(E*)zppe = G, (y = ) X Efqppy» and Gg(yj:(l + Y?) = Gy (N,rg0,x T),

EFn[ij
withy = EELN Entp) = Entpy(N.Taw % T) for a presentation simplicity.

Therefore, from above equations (16, 17), if denoting the function H[N, Ta(a)r % T) by:
H(N,rgr.xT) =

kpn(pp (N7 |I =
[m X [Kpacrs) (N*) X @pacap) (Faca.x)] X JAam (N =

Gy(N,ra0,%,T)

EPno(Fpa) [ ”-:':|
M) (N7)

Where R_, ., (N*) = I:::—:i being proportional to Egm,:rpg}, then, our optical [electrical]
conductivity model can thus be assumed to be as:

6o(N, rg(x T,E) = og(N,1ar0,% T,E) =

ﬁ: X H(N, rge,% T) X ﬂq—; X H(N, r400,5% T) X

|:E_[Egn-_'ﬁgpi'_f:::'f::)‘_lEanEFan]]‘ (Dhmlxm}’ and E'[Egnnlﬁgpl;_'f:::;::ﬁEanﬁFPD)]}‘ (Dhmlxcm)’ (18)
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z
Where % = 7.7480735 X 1075 ohm™,
™ T

It should be noted here that:

I

mxh

for given (N, r4.4,x T) —physical conditions, and

(ii) as T2 0Kand N* =0 [or Ep_y(gpe)(N*)] = 0,according to: H(N, r4,x,T) = 0, and
for a given E, [E—E_yy (zpn] = [E— Eonirep]=Constant, then from Equations (16-18),
ngrg; (E)= Constant, g (E)=0, ko (E)=0, £,5(E) =(n.)* = Constant,

£2002e1(E) = 0, and o<qpg; (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.?

Using Equations (16-18), one obtains all the analytically results, due to the optical
phenomenon (OP) as: [o,(E), x5(E), £.5(E), and o5 (E)], and to the electro-optical
phenomenon ([E-OP]) as: [0 (E), kg (E), £, £ (E), and g (E}],

[w(E)® Bnth kpg(pg) (N7)

E 2 X Bopfan) ()
(2mp)ax Mgy Losntep)!

X [kea(ep) (N*) X agacap) [rau:a:ux)]] X Gy (N, 4, T),  (199)

e
=

Iq* E—Eqopn;(pnid
— 2q gna(gpa)
Ko(E) = — X H(N,r..% T) X [ ] and
D[: j ”'~E}xzfraaapn|:'BXE [ *Hdla)s ) E_[Egn'_':gpﬂ+EFn'ﬁFp3_EFnu':Fpu3]
20° E—Egnz(eps) z
_ 2q gnz(gpz)
Ke(E) = — ¥ H(N, ry.,xT x[ ] , 19b
E[ ] ”'~E}xzfreaspacax}: [ dle) ) E_[Egnzigpﬂ+EFn|jFp‘_'|_EFm:njFp|:lj] ( )

Which gives: k[kz](E = Eony(ep1) [Eenz(epy 1) = 0, and x[kg] (E = c0) = 0, as those given
in Ref.[?,

¢f|-|:j1

E—Egna(gps) 2
£.q(E) = * H(N,rgr.,% T K[ STS EPS ] and
20 Efree space B [: »Hdla)r ) E_[Egnﬂ_igpﬂ+Eijij_EFm:l|jFp|:|‘_'|]
4q° E-Egpz(gpa .
£.-(E) = X H(N,r5.7,% T ::-([ (19¢)
IE Efres space ™ E (’ *dla)r ) E_[Egnzigp:ﬂ‘l'EFn[ij_Ean[Fpuj] !

Which gives: ;g (E= Egnl,:gpﬂ[Egnz,:gpﬂ]) =0,and s (E— o0) = 0, as those given

Za[2E]

in Ref. and
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%o (E) =
o}
2 E—Ep.(ens 2
__*d XH[N,rd,«EJ,x,T)X[ En:lgpsl ] (em™!) and
fien(E) X2frmg spECe : E_[Egn'_':gpﬂ"'EFn':pr'_Ean':Fpufl]
#q° [ E—Egnz(gpa) i|‘ -1
g (E) =—————— X H[N,ry;.%xT) % cm "), 19d
E ( j hen(E)%2freq space [ dia) ) E_[Egnzigpﬂ"'Eijij_EFnu[Fpuj] ( j ( )

Which gives: o, [og] (E =E e [Egnzigpz}]) =0, and %, [ocg] (E— o) =47q1XH[N,rd,:a),x,T)=Constant,

Reng Xefrae space

as those given in Ref.™

Using the (OP - [E-OP]) transition, given in Eq. (15), at E = E_,1(zp1) T Ernrrg), the optical
conductivity, ogr, given in Eq. (18), in which my,(x) = m,(x) is now replaced by
m,., (), has a same form with that of the electrical conductivity, oz, given in our recent
work!™, for such the (OP - [E-OP))- transition. So, from Equations (18, 19b, 19c, 19d), and

for E = E 1 (gpn) [E 23] + Egn(rp), ONES Obtains respectively, as:

gnligp

oor(N.taca.% T E) = % X H(N,14¢2),%,T) X( —— ) (o)

Epno(Fpo) ohmxecm

Having the same form with that of oz (N,ra.,x T)M, as:

z Eo_r 2
. —a ) Fo(Fp) ( 1 )
oer(N.rac), % T,E) = Z— X H(N, 1400, %, T) X (Epmmp.ﬂ) ——), (20a)
Kot (N, ragay, % T,E) = 2q° x H(N, ryg xT)X(M)Zand
OT VY Tdlahess 1o n':}::'xzfraespacax':Egn‘_':gp‘_"'l'EFn[ij} »Ld(a)s e EFno (Fpa)
zg® Epn(Fp) 2
ier (N, Ty, % T,E) = — = X H(N,rgcp.x T x(—) ,  (20b
ET[: dla) ) n{E)} X 2¢ree space % (Egnz(gpz) TEFnlFp)) [: dla) ) Efno (Fpa) ( )

4q1

g0 (N, T4ry,% T,E) = X H(N, 100, %,T) X [ —2nfel " and
20T dia) (@

Zfres spacax':Egn:':gpﬂ+EFn':Fp3} EfnolFpol
4q° Epnirp -
257 (N, Tgra).% T,E) = X H(N, rg xT)}((— (20c)
‘ET( rldia)erse L . i i rldia)e -
a) Zfree spacax'~£gn1lgpﬂ+EFanpﬁ a) EFno(Fpol

th:]2

hen(E)xefreg space

Epy z
® I—I[N,rd,:ﬂ,x,T) ® (Fn—w) (em™1) and

DCUT [N’ rd':ﬂ;‘”x’ T’E) = EFm:lI'FPm

: Bratrn \2
o Nrsr.x%T.E) = *a ®* H(N,ry,xT) % —Fulfpl em™1). 20d
ET dia) dia)

hen(E)xefrgg SpAECE Efna(Fpal
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One notes here that (i) the electrical conductivity oz (N, rs...% T), given in Eq. (2a), is an
essential result, being used to determine the following electrical-and-thermoelectric

coefficients, and (ii) as noted in Eq. (15), at this discontinuous (OP - [E-OP])- transition,
given in the discontinuous case: Epyepp(m,(x)) = EFH.;FP;.(mE.:V} (x)) , since
m, (x) < m,,(x) for given x, corresponding to: oor(m,(x)) > ogp (mc,:v} [x]). In our

recent work™, all the electrical-and-thermoelectric properties were investigated for this

discontinuous case.

Some optical coefficients, obtained in Equations (18, 19b-19d, 20a-20d) for given
[N,rd.;ap,x,T) -physical conditions, are reported in the following Table 3, in which

OgT =~ OgT-
Noting that H(N, r4),% T) is a constant for given (N, r4¢).%, T)-physical conductions

Table 3: As noted above, H(N,r4,.% T) is a constant for given (N,rg.,x T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given

as follows.

EineV oo (E) Ko (E) €20 (E) g (E)

Egnl'igpl} 0 0 0 0

[Egniigpﬂ + EFn(Pp}] ) To1 Kot 2071 Mot

E = o0 2% S Constant 0 0 __‘e=® ___Constant
e f ﬁ"—'ﬂx-ngrsespace

EineV oz(E) kg (E) £, (E) g (E)

Egrﬂ(gp:} 0 0 0 0

[Egnzigpz} * Egnirp] O Ker Z2ET Kgr

E— o 2% _,Constant 0 0 — %%  _,Constant
Tk Reng X 2free space

Therefore, for given [N,ry.,).x. T], all the numerical results of [o4(E), x5 (E), £20 (E), and
g (E)], due to the OP and those of [og(E), ¥z (E), £, (E), and oz (E)], due to the E-OP,
being determined respectively from Equations (18, 19b-19d], for any E, could thus be used to

explain all their corresponding past-or-future experimental results.
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ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [, = m_,;(x)[m, (x)]]

Here, if denoting, for majority electrons (holes), the thermal conductivity by

O eror) (N Taca- % T) 0N .:::ix , and the Lorenz number L Dby:
2 2
L=2x (?) = 2.4429637 (wx;f“’) = 24429637 X 1078 (V2x K™2), then the well-

known Wiedemann-Frank law states that the ratio, —=E"2%  due to the (E-OP and OP)
CET [OT]

transition, respectively, is proportional to the temperature T(K), as:

OTh.ET[0T](Nrd (2% T)
ogT (0T (Nra (2% T)

=L xT. (21)

Further, the resistivity is found to be given by: perrory(Nrara), % T) = 1/0grior (Nira. % T),
noting again that N* = N — Nep,, rypp) (Taga) %)

E
s

In Eg. (20), one notes that at T= 0 K, ogrop (N,r44).% T = 0K) is proportional to Efno(Fpoy

&
or to (N*)=Thus, from Eq. (21), one has: ogrior(N = Nepainpp)s Tata)» % T = 0K) = 0 and

also OThET[OT] [N = NCDH':NDFI}’ rdl:a:lrer = GK:] =QatN*= 0, at which the MIT occurs.

Electrical Coefficients

The relaxation time Tzrror; is related to ogrpor by™:

_ My s ()% Mg -
Teror] (N Tare) . T) = aET[DT](N,rd.;ﬂ,x,zjﬁm . Therefore, the mobility

Weror) IS given by:

_ axrerpon (Nra o xT) _ SET[OT] (M.rgraxT) ( cm”'] 22)
m;“.m(x}}c m, gx (N gerv1) Ve

HET[OT] [N’ Fa(a) % T) = HeT[oT] (N erdEa]JT)

Here, at T= OK, pgrern(N*rae.T) is thus proportional to (N*)Y3, since
Sgror) (N Tae), T = 0K) is proportional to  (N9)¥® Thus
TET[DT] [:N$ = ﬂ’rd(a}!T = ':'K:] =0 and I"LET[DT] (N* =0, rd(a}!T = ﬂKj =0 at N =0 . at

which the MIT occurs.

Then, the Hall factor is defined by:

trerorJepDE _ _Gu(3) y = n _ nkpT and
(<eT[0T: FD pel” [G2 (1% En(p)(Nra(e.xT)  Epngpp)(NoragxT)’

Fyerior (N T % T) = [

therefore, the Hall mobility yields:
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HuET[OT] [N’rdia}’x’ T) = UeT[OT] (Nr Taia)-*% T) X T'yET[OT] (N, (23)

Noting that, at T=0K, since rygrom(Niraee,xT)=1 , one therefore gets:

tuerior] (N Taa), % T) = Berjon (N Taca. % T)-

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

Dgr DT-I:N"rdI:E:l"x"TJ _ N dEFﬂupp\ RBXT lﬂEnipfl':'-‘:' _ 3L dEnipfl':U} kg |3=L 24
—ELOT ale - = % =E" x(u = S XTx(u—2—)%= [Z,  (24)
rgTioTy(Nrar).xT) — g dn*® q du m du a oy

Where Dgror (N, raca.x T) is the diffusion coefficient, &, (1) is defined in Eq. (11), and
the mobility ngrrory(N.racm.x T)is determined in Eq. (22). Then, by differentiating this
function &,,,,; (u) with respect to u, one thus obtains i"dﬁjﬂ Therefore, Eq. (17) can also be
rewritten as:

Der o (Nora@T) _ kpxT V' (u)xwiu)-v{u)xw' (u)

= Xxu - ,
HET[OT] (M.rage) =T) ! W (u)

where Wf[u] = ABu®?! and Viiw=ul42 ze_du(]_ —du) + ‘AuB 1F(u) (1 + EB) _|.4 h“s+mi .
2+bu E+emn E

One remarks that: (i) as u—0, one has: W?*~1 and u[V'XW—-VxW']~1, and

N ] oyl I_.; . . L 2. .2
therefore: ap® o kBT and (i) as u—o , one has: W2~ A2u?® and
n q

u[V! X W— VX W'] % 2au®2A%u®® | and therefore, in this highly degenerate case and at
T=0K, the above generalized Einstein relation is reduced to the usual Einstein one:

DET[0T) (NrgaxT)
wgroT) (Nrace . xT)

EEFW,FPD} (N*)/a. In other words, Eq. (24) verifies the correct limiting

conditions.

Furthermore, in the present degenerate case (u > 1), Eq. (24) gives:

DET[DT-lzN;Fdej.-X.-T:' 2 EFnu"Fpu""':'-‘:' 4 (hu *H2en EJ
. - Mo ——————X |1+ -X 5 I
wgrior; (Nrag xT) 3 a9 3 (1+hu F4cu EJ
4.-3 Eu 3739855 4
= / = — =
Where a = [3y/T/4] [ ) and c o @)

www.wijert.org 1ISO 9001: 2015 Certified Journal 192




Cong et al. World Journal of Engineering Research and Technology

Thermoelectric Coefficients
Here, as noted above, Eg,gy) (m,(x)) > EFH.;FP}(mE,:v} [x]) O Enip) (m,(x)) = Ealp) (mc,:v} [x]) for

a given T, since m.(x)<m,,(x) for given X, corresponding to:

Oot [mr (X:J) = Opt (m:(v} (x) )

Then, from Eq. (20a), obtained for ogrigry(N,raca).x T), the well-known Mott definition for

the thermoelectric power or for the Seebeck coefficient, Sgrqry, is found to be given by:

8lnogy| -7 kg, 3lnoeriory(nep
ET[UT][N rd|g:I;x T)——K—Xk T:’{ HUETDT] =i>(—B>( “OET[0T .Eﬂ w.l:I.
dE E=Epn(Fp) 3 q agﬂ[m

Then, using Eq. (11), for the degenerate case, &, = 0, one gets, by putting

z

Fsper[om [N, r.j{&}:X;T) =(1-— 7

B E

T
EKGQ(Y:EN.P\'J

-n* _ kg ., ZFspET[O0Ty(NT) [ax1 2%En (p) T
g N.rgro.x%T R G L Y e ¥——— = —24L X
ET[DT](_ (a) ) 3 g En (p) \ e (1+5><E:ip:|:'.)

5 ZTET[OTIMott (E e

K ) =0, 2'HTET[EITZIHE"-‘It - IxE,

1+ ZTET[0T Mott n(p) ) (25)
according to:
— 5><Enip31 —
8SeT10T] _ |3>-<L % 9 % TaE Y [3xL % 2 % ZTeromMore %[1— ZTE.'T[DT-Mm]_
FEn g ‘\.l w (stﬁnip:.z‘)z y [1+ z'I'E]'[EI'TjI!vu-h:n:rJ2
L

Here, one notes that: (i) as €,¢,) — + or&,¢,) — +0, one has a same limiting value of

=
Serory’ Serpor; = —0, (i) at &y = *J'— ~ 1.8138, since B—En[ﬂ- = 0, one therefore gets:

a minimum ( Sgpor;) = —VL~ —1.563 x 107* ( ] and (iii) at £,¢,) = 1 one obtains:

min.

Sexjory & —1322 X 107 (7).

Further, the figure of merit, ZT, is found to be defined by:

_ EZ}CGE}(T _ st e ZTET[DT'HEILT
ZT:ET[DT] (N, I‘d,:&},}{, T) = " - T - [1+ ZTET[DT_MDH]Z. (26)

www.wijert.org 1ISO 9001: 2015 Certified Journal 193




Cong et al. World Journal of Engineering Research and Technology

~ B(ZT . 5 - ..
Here, one notes that (i) —ifr®T) _ ; y SET0T; 2 %ET(0M), Seromy < 0. (i) at

BEnip L Hnip
. l'F - . 2 ZTgr0T1) _ . : =
Eatp) = N 1.8138, since —[_'_Bin-:pn =0, one gets: a maximum [ZTET[GT])mm =1

,and ZTerpormen = 1, and (iii) at §,y =1, one obtains: ZTgep = 0.715 and

Iz

T
ZTET[DT]Mu:utt =3 ~ 3.290,

Finally, the first Van-Cong coefficient, VC1ggqry, Can be defined by:

ds v 85 AL
) - ETom (V) _ ET[0T] ., _ © *mip]
VC1grom (N.raco, % T) = —N* X (I8 (£ ) =N* x Tt . N (27)
[ =

T

being equal to O for £ s

I!'.I':F':' = NI 3!

and the second Van-Cong coefficient, VC2grqar), as:

VC2er0m] (N,rgey, % T) =T X VC 1eriom (V). (28)

the Thomson coefficient, Ts, by:

= d Sgriory (VY _ & SgTroT: FEn ()
TSET[DT] [N,rd.:E},X,T) =TX —dT[— (E ) =T E'En.;[p;. % ;Tp ’ (29)
[

|

being equal to O for £ —

I!'.I':F':' = d\ll 3’
and the Peltier coefficient, Ptgr(g, as:

PterioT [N, ra(a):% T) =T X Serer (V) (30)

One notes here that for given physical conditions N (or T) and for the decreasing &), since

. —d SgTroTH
VClgror (N,racq.x T) and TSero1] (N,r44,% T) are expressed in terms of —l—~dN_ and

—
d SgT[oT ) [ _
—dT[—-, one haS [VC 1ET[CIT]-"TSET[DT]] =<0 fOI‘ En':p} = 1‘|? y [VC]'ET[GT]’TSET[CIT]] =0 fOI’
= [
Enlp) = 3 and [ VClgpory Tseror] = 0 for &, =::ﬂq|? , stating also that for
(-
I L
En':p:' - 1‘|?-
i) § ., determined in Eg. (25), thus resents a same minimum
ET[OT] q p
—_— 'I'_E J— —3 E
(Serom)__ L~ 1563 X 10 [K]
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(i) ZTgrer , determined in Eqg. (26), therefore presents a same maximum:

[ZTET[DT])mm=1, since the variations of  ZTgror; are expressed in terms of

[VC1erory: TSeriori] ¥ Seroryr SeTror) < 0

Furthermore, it is interesting to remark that the VC2griqr;-coefficient is related to our

generalized Einstein relation (24) by:

ke _  3sgrory . Peror)(Nra@sT) fv? kg [3xL
X VC2 N,ra%T)=— % : (_) kg _  [3xL 1
a ET[Dﬂ[ dla) ) FEn(p) werpory(NrawxT) \k /' @ T 4w (31)

according, in this work, with the use of our Eq. (25), to:

_ DerpoT; (M.rare x.T)

= ¥ 2 X
EETOT W Mrar 2:%T)

ZTET[DT-MuttK[l— ETE.'T[DT-M.:tt] (V)

UCEET[UT] (Nrrd{a}!xl T) = [1+ ZTET[DT[\{ntr_-l:

Of course, our relation (31) is reduced to: 2—2{‘2—:- VClgror; and  VC2grror;, being

determined respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*(p¥)— Ge(1—x)Si(x) [Si(1— x)Ge(x)] — crystalline alloys, 0 =x =<1 , X
being the concentration, the optical coefficients, and the electrical-and-thermoelectric laws,
relations, and various coefficients, being enhanced by:

(i) our static dielectric constant law, =(ry..%), rar.) being the donor (acceptor) d(a)-radius,

given in Equations (1a, 1b),

(ii) our accurate Fermi energy, Eg,zp), given in Eq. (11) and accurate with a precision of the

order of 2.11 x 107* [9], affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients ,
(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally
(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a),
are now investigated, basing on our physical model, and Fermi-Dirac distribution
function, as those given in our recent works.™ 2
It should be noted here that for x=0, these obtained numerical results may be reduced to those
given in the n(p)-type degenerate Ge[Si]-crystals.®! Then, some important remarks can be

repoted as follows.
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(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpy,icpp), defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
N &batcop). being obtained with a precision of the order of 2.89 x 1077 , respectively, as
given in our recent works.!®! Therefore, the effective electron (hole)-density can be defined
as: N* =N —Nepuiepp) 2 N —N&acppy» N being the total impurity density, as that

observed in the compensated crystals.

(2) The ratio of the inverse effective screening length k., ., to Fermi wave number kg,

at 0 K, R .py (N¥), defined in Eq. (7), is valid at any N*.

(3) From Equations (20a, 21-30), for any given X, rg;,; and N (or T), with increasing T (or

decreasing N), one obtains: (i) for =_ [« . 1.8135, While the numerical results of the

= 3
Seebeck coefficient Sgrorp present a same minimum (Serror1) . (3 1563 % 10—4%},
those of the figure of merit ZTgrpy Show a same maximum (ZTgrigr) max. = 1, (i) for
Eatpy = 1, the numerical results of Sgrpgry, ZTgrior, the Mott figure of merit ZTerorniomn

the first Van-Cong coefficient VC1griqr;, and the Thomson coefficient Tsgrory, present the

same results: —1.322x 107*Z , 0.715, 3290, 1.105x 107*Z, and 1.657 X 107*=,

= . .
respectively, and finally (iii) forg_, , = |'“? ~ 1.8138, ZTerommon = 1, @S those given in

( N }
our recent work.™ It seems that these same results could represent a new law in the

thermoelectric properties, obtained in the degenerate case (£,¢,) = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eg. (31) by:

9SeT[0T] | DerjoT;(Norate%T) [v:) kg

kg _
“E % VC2 N, ri.,%T)=— \ v ke
q ET[Dﬂ[ Tala)r® ) dEnip) neroTy(Nora = T) q

—
_ [3L .
= |—, according,

K W ™

in this work, to:

D (Morare T ZT Mot X[1— ZT : )
_ Derjomy| d:& ) % 7 % ——ET[0T]Mott [ E'T[ET Mott] (V) . being
HET[OT] (Mirg raxT) [1+ ZTET[OT) Mott]

VC2griomy (Norata) % T)

. DET[0T] . . . .
reduced to: E{‘; , VClgpor; and VC2grgq, determined respectively in Equations (24,

27, 28). This can be a new result.
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(5) Finally, for given [N,rg,,x, T], all the numerical results of [o4(E), ¥5(E)}, £, (E), and
g (E)], given in the OP, and those of [oz(E), ¥z(E), £,£(E), and o<z (E)], given in the E-
OP, being determined respectively from Equations (18, 19b-19d], for any E, could thus be
used to explain all their corresponding past-or-future experimental results. Therefore, this can
also be explained for ogrigr(N,ra¢s,% T), obtained in Eq. (20a) for the (OP - [E-OP])-

transition, and their derived electrical-and-thermoelectric results given in Equations (21-31).
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