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ABSTRACT 

In - crystalline alloy, , various 

optical, electrical and thermoelectric laws, relations, and coefficients, 

being enhanced by: our static dielectric constant law given in 

Equations (1a, 1b), accurate Fermi energy given in Eq. (11), and 

finally, in particular physical conditions given in Eq. (15), a same form 

of optical-and-electrical conductivities , determined in Equations 

(18, 20a) for optico-electrical and electro-optical phenomena, are now 

investigated, by basing on the same physical model and mathematical 

treatment method, as those used in our recent works
[1, 2, 3]

, noting that, 

for x=0, these obtained numerical results are reduced to those given in  

the n(p)-type degenerate  -crystal.
[4,5]

 In the following, for given physical conditions, all 

the optical coefficients are expressed as functions of  the effective photon energy : 

, E and , being the photon energy and the optical band gap. Then, 

some important remarks can be reported as follows. From our optical [electrical] conductivity 

model, , determined in Eq. (18), all the optical, electrical, thermoelectric 

coefficients are determined, as those given in Equations (19a-19d).  In particular, for the 

optico-electrical phenomenon (O-EP), for which + , as that given in Eq. 

(15), one observes that the optical conductivity  has a same form with that of the electrical 

conductivity for the electro-optical phenomenon (E-OP), , as those determined in Eq. 

(20a). One notes that this was used to determine the new laws, relations, and coefficients, 
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investigated for the optical, electrical, and thermoelectric properties, observed in 

- crystalline alloy, as those reported in Table 3 and also in Equations 

(18, 19a-19d, 20a-20d, 21-31).  

 

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit 

(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson 

coefficient (Ts), Peltier coefficient (Pt). 

 

INTRODUCTION 

In the -crystalline alloy, , x being the concentration, the optical 

coefficients, the electrical-and-thermoelectric laws, the relations, and various coefficients, 

being enhanced by: 

(i) our static dielectric constant law, , being the donor (acceptor) d(a)-radius, 

given in Equations (1a, 1b),  

(ii) our accurate Fermi energy, , given in Eq. (11) and accurate with a precision of the 

order of  [9], affecting all the expressions of optical, electrical, and 

thermoelectric coefficients ,  

(iii)our optico-electrical phenomenon (O-EP) and electro-optical phenomenon (E-OP), 

defined in Eq. (15), and finally  

(iv) our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now 

investigated by basing on our physical model, and Fermi-Dirac distribution function, as 

those given in our recent works.
[1, 2, 3]

 

 

It should be noted here that for x=0, these obtained numerical results may be reduced to those 

given in the n(p)-type degenerate GaP-crystal.
[3-16]

 Then, some important remarks can be 

repoted as follows. 

 

(1) As observed in Equations (3, 5, 6), the critical impurity density , defined by the 

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of 

electrons (holes), localized in the exponential conduction (valence)-band tail (EBT)  

, being obtained with a precision of the order of , as given in our recent 

works.
[1, 3]

 Therefore, the effective electron (hole)-density can be defined as: 

, N being the total impurity density, as that observed in the 

compensated crystals. 
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(2) The ratio of the inverse effective screening length to Fermi wave number  at 

0 K, , defined in Eq. (7), is valid at any . 

 

(3) From Equations (20a, 21-30), for any given x,  and N (or T), with increasing T (or 

decreasing N), one obtains: (i) for , while the numerical results of the 

Seebeck coefficient  present a same minimum , those of 

the figure of merit  show a same maximum , (ii) for , the 

numerical results of ,  , the Mott figure of merit , the first Van-Cong 

coefficient , and the Thomson coefficient  present the same results: 

 , 0.715, 3.290, , and , respectively, and finally (iii) 

for , , as those given in our recent work [1]. It seems that 

these same results could represent a new law in the thermoelectric properties, obtained in 

the degenerate case ( ). 

 

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by: 

 ,    ,  according, in this work, to: 

, being reduced to:  , 

   and   , determined respectively in Equations (24, 27, 28). This can be a new 

result. 

 

(5) Finally, for given , all the numerical results of [ , , , 

and  , given in the O-EP, and those of [ , , , and  , 

given in the E-OP, being determined respectively from Equations (18, 19b-19d), for any E, 

could thus be used to explain all their corresponding past-or-future experimental results. 

Therefore, from particular physical conditions given in Eq. (15), one observes that the optical 

conductivity  has a same form with that of the electrical conductivity, , given in Eq. 

(20a), being used to determine the new laws, relations, and coefficients, investigated for the 

optical, electrical, and thermoelectric properties, observed in - 

crystalline alloy, as those reported in Table 3 and also in Equations (18, 19a-19d, 20a-20d, 

21-31). 

 

It should be noted here that some important results given in Ref.
[1]

 are now performed. 
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In the following, many important sections are presented in order to investigate all the optical 

coefficients and electrical-and-thermoelectric ones, given in the - 

crystalline alloys at low temperature . 

 

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT 

CRITERIUM IN THE METAL-INSULATOR TRANSITION 

First of all, in the - crystalline alloy, at T=0 K
[1, 2, 3]

, we denote: the donor 

(acceptor) d(a)-radius by , the corresponding intrinsic one by: = , respectively, 

the effective averaged numbers of equivalent conduction (valence)-bands by: , the 

unperturbed reduced effective electron (hole) mass in conduction (valence) bands by 

,  being the free electron mass, the relative carrier mass by:  

, for given x , the unperturbed relative static dielectric constant by: , and the 

intrinsic band gap by: , as those given in the Following Table 1. 

 

Table 1: In the -crystalline alloy, the different values of energy-band-structure 

parameters, for a given x, are given in the following.
[3]

 

___________________________________________________________________________ 

In the -crystalline alloy, in which = =0.110 (0.126) nm, we have
[3]

:  

, , 

, .  

 

Here, the effective carrier mass  is equal to  Therefore, we can define the 

effective donor (acceptor)-ionization energy in absolute values as: 

, and then, the isothermal bulk modulus, by: 

. 

 

Our Static Dielectric Constant Law  

 

Here, the changes in all the energy-band-structure parameters, expressed in terms of the 

effective relative dielectric constant , developed as follows. 

 

At , the needed boundary conditions are found to be, for the impurity-atom 

volume V , , for the pressure p, , and for the 

deformation potential energy (or the strain energy) , . Further, the two important 
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equations, used to determine the  -variation, ∆  ≡  − , are defined by : =−  and 

p=−  , giving rise to :  ( )= . Then, by an integration, one gets: 

= ×(V− )× ln ( )= . 

 

Furthermore, we also showed that, as , the compression 

(dilatation) gives rise to the increase (the decrease) in the energy gap , and the 

effective donor (acceptor)-ionization energy  in absolute values, obtained in the 

effective Bohr model, which is represented respectively by : , 

, 

for  , and for , 

. 

 

Therefore, one obtains the expressions for relative dielectric constant  and energy 

band gap , as: 

(i)-for  ,  since = ≤ , being a new -

law, 

 

  (1a) 

 

according to the increase in both  and , with increasing  and for a 

given x, and 

 

(ii)-for , since = ≥ , with a condition, given 

by: ,  being a new -law, 

 

 ,  (1b) 

 

Corresponding to the decrease in both  and , with decreasing  

and for a given x. 
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It should be noted that, in the following, all the electrical-and-thermoelectric properties 

strongly depend on this new -law. 

 

Furthermore, the effective Bohr radius  is defined by: 

.                                                          (2) 

 

Generalized Mott Criterium in the MIT  

 

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at 

T=0 K, , was given by the Mott’s criterium, with an empirical parameter, 

, as
[1, 2, 3]

: 

,  ,                                        (3) 

depending thus on our new -law. 

 

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz 

(WS) radius , in the Mott’s criterium, being characteristic of interactions, by: 

,                        (4) 

 

being equal to, in particular, at N= : = 

2.4813963, for any )-values. Then, from Eq. (4), one also has: 

,                     (5) 

explaining thus the existence of the Mott’s criterium. 

 

Furthermore, by using , according to the empirical Heisenberg parameter 

, as those given in our previous work
[3]

, we have also showed that  is 

just the density of electrons (holes) localized in the exponential conduction (valence)-

band tail  , with a precision of the order of .
[3]

 

 

It shoud be noted that the values of  and  could be chosen so that those of  

and  are found to be in good agreement with their experimental results. 

 

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can 

be defined, as that given in compensated materials: 

)= , for a presentation simplicity.                          (6) 
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In summary, as observed in our previous paper
[3]

, for a given x and an increasing , 

 decreases, while ,  and  increase, 

affecting strongly all the optical, electrical, and thermoelectric coefficients, as those observed 

in following Sections. 

 

PHYSICAL MODEL 

In the - crystalline alloy, the reduced effective Wigner-Seitz (WS) radius 

, characteristic of interactions, being given in Eq. (4), in which N is replaced by is 

now defined by: 

,  , being proportional to 

. Here, ,  is the Fermi wave,  being the effective 

averaged numbers of equivalent conduction (valence)-bands. 

 

Then, the ratio of the inverse effective screening length to Fermi wave number  

is defined by: 

                    (7) 

 

being valid at any . 

 

Here, these ratios, , can be determined as follows. 

 

First, for , according to the Thomas-Fermi (TF)-approximation, the 

ratio  is reduced to 

,                                                               (8) 

being proportional to . 

 

Secondly, for , according to the Wigner-Seitz (WS)-approximation, the 

ratio  is respectively reduced to 

,                                                              (9a) 

 

Where  is the majority-carrier correlation energy (CE), being determined by: 

 . 
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Furthermore, in the highly degenerate case, the physical conditions are found to be given by: 

,  ,                         (9b) 

 

Which gives:   , . 

 

BAND GAP NARROWING (BGN) BY N AND BY T  

First, the BGN by N is found to be given by
[2]

: 

(10a) 

 

Here, , , , , and 

. 

 

Therefore, at T=0 K and , and for any , one gets: , according to the 

metal-insulator transition (MIT). 

 

Secondly, one has
[2]

: 

.                                                         (10b) 

 

FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION 

Fermi Energy 

Here, for a presentation simplicity, we change all the sign of various parameters, given in the 

-crystalline alloy,  in order to obtain the same one, as given in the 

-crystalline alloy, according to the reduced Fermi energy 

, , obtained respectively in the degenerate 

(non-degenerate) case. 

 

For any , the reduced Fermi energy  or the Fermi energy 

,  obtained in our previous paper
[9]

, obtained with a precision of the order of 

, is found to be given by: 

,  and                               (11) 
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Where u is the reduced electron density, , , 

, , , and ; 

. 

 

So, in the non-degenerate case ( ), one has:  as , 

the limiting non-degenerate condition, and in the very degenerate case ( ), one gets: 

  as , the limiting 

degenerate condition. In other words,  is accurate, and it also verifies the correct 

limiting conditions. 

 

In particular, as , since , Eq. (11) is reduced to:  , 

being proportional to , and also equal to 0 at , according to the MIT and noting 

that  since  for given 

x. 

 

In the following, it should be noted that all the optical and electrical-and-thermoelectric 

properties strongly depend on such the accurate expression of .
[9]

 

 

Fermi-Dirac Distribution Function (FDDF) 

The Fermi-Dirac distribution function (FDDF) is given by: ,  

. 

 

So, the average of , calculated using the FDDF-method, as developed in our previous 

works
[1, 6]

 is found to be given by: 

,      . 

 

Further, one notes that, at 0 K, ,  being the Dirac -

function. Therefore, . 

 

Then, at low T, by a variable change , one has: 

, 

where       and the integral  is given by: 
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, vanishing for old values of . Then, for even values of 

, with n=1, 2, …, one obtains: 

 . 

 

Now, using an identity , a variable change: , the 

Gamma function: , and also the definition of the Riemann’s zeta 

function: ,  being the Bernoulli numbers, one finally gets: 

.  So, from above Eq. of , we get in the degenerate case the 

following ratio: 

,                     (12) 

 

Where , noting that  , and as T , 

. 

 

Then, some usual results of  are given in the following Table 2, being needed to 

determine all the following optical and electrical-and-thermoelectric properties. 

 

Table 2: Expressions for , due to the Fermi-Dirac distribution function, are 

used to determine the electrical-and-thermoelectric coefficients.
 

__________________________________________________________________________ 

                                                                                     

             

_________________________________________________________________________ _ 

 

OPTICAL-AND-ELECTRICAL PROPERTIES 

Optico-Electrical Phenomenon  Electro-Optical Phenomenon (O-EP  [E-OP])-Transition 

 

 

First off on, for a presentation simplicity, we change all the sign of various parameters, given 

in the - crystalline alloy, in order to obtain the same one, as given in the 

-crystalline alloy, according to the reduced Fermi energy 

, , obtained respectively in the degenerate 

(non-degenerate) case, giving: . 
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Then, in the -crystalline alloy, and for the temperature T(K), One has: 

(i) in the (E-OP), the reduced band gap is defined by: 

,                                            (13) 

 

Where   is the intrinsic bang gap,   and  are respectively the 

reduced band gaps, due to the -and-T effects, as those determined in Equations (10a, 10b), 

and 

 

(ii) in the (O-EP), the photon energy is defined by: , and the optical band gap by: 

. 

 

Therefore, for , the effective photon energy  is found to be given by: 

.                                                                   (14) 

 

From above Equations, one notes that: 

, given in the O-EP, in which and 

 and , given in the E-OP, in which, 

and  noting that 

since  for a given x. (15) 

 

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into 

conduction (valence)-bands, observed in the  type degenerate  -crystalline 

alloy,  are well defined. 

 

Optical Coefficients 

The optical properties for any medium, defined in the O-EP and E-OP, respectively, 

according to , can be described by the complex 

refraction:  ,  and   being the 

refraction index and the extinction coefficient, the complex dielectric function: 

, where , and . Further, 

if denoting the normal-incidence reflectance and the optical absorption by  and 

, and the effective joint density of states by:  
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, and 

, one gets
[2]

: 

  

 

, , and  

 .                                                                             (16) 

 

It should be noted that, such the above joint density of states yeilds: (i) as 

, , and (ii) as , 

. 

 

Further,  is the permittivity of the free space, -q is the 

charge of the electron,  is the matrix elements of the velocity operator between 

valence (conduction)-and-conduction (valence) bands, and the refraction index  is found 

to be defined by
[2]

: 

, as ,                                      (17) 

 

Where  the values of ,  are given in Ref.
[2]

 

 

Now, the optical [electrical] conductivity  can be defined and expressed in terms of 

the kinetic energy of the electron (hole), ,  k being the wave number, as: 

 , which is thus proportional to , 

Where   . 

 

Then, we obtain: , and = , with 

,  for a presentation simplicity. 
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Therefore, from above equations (16, 17), if denoting the function H  by: 

  

 

Where , being proportional to . Then, our optical [electrical] 

conductivity models, defined in the O-EP and E-OP, respectively, for a simply representation, 

can thus be assumed to be as: 

  

 

It should be noted here that: 

(i) , and  for given 

physical  conditions, and 

 

(ii) as T  and  [or , and  for a given 

E, =Constant, then from Equations (16-18),  (E)= 

Constant,  , , , 

, and , according to the metal-insulator  transition (MIT).  

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.
[2]

 

 

Using Equations (16-18), one obtains all the analytically results as: 

                 (19a) 

 

and 

 

,              (19b) 

 

Which gives: , and , as those 

given in Ref.
[2]

, 
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             (19c) 

 

Which gives: , and , as those 

given in Ref.
[2]

, and 

  

 

     (19d) 

 

Which gives: , and    , 

as those given in Ref.
[2]

 

 

Now, from Equations (18, 19b, 19c, 19d), using Eq. (15), ones obtains respectively, as:    

 

 

Having the same form with that of    [1], as: 

                                   (20a) 

 

 and 

 

,        (20b) 

 

 and 

 

           (20c) 

 

 

 

                   (20d) 

 

Some  optical coefficients, obtained from Equations (18, 19b-19d, 20a-20d) for given 

 -physical conditions, are reported in the following Table 3, in which  , 
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since  for a given x, noting that  is a constant for given  

. 

 

Table 3: As noted above,  is a constant for given -physical 

conductions, then, some optical coefficients, for some particular values of E, are given as 

follows.
 

__________________________________________________________________________ 

E in eV                                                                          

                      0                          0                         0                               0 

]                                                                                              

                         Constant             0                0                Constant 

_________________________________________________________________________ _ 

E in eV                                                                   

                     0                           0                      0                           0 

]                                                                                      

                            Constant           0             0        Constant 

_________________________________________________________________________ _ 

 

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES  

Here, if denoting, for majority electrons (holes), the thermal conductivity by 

 in , and the Lorenz number L by: 

, then the well-known 

Wiedemann-Frank law states that the ratio, , due to the (E-OP and O-EP) transition, 

respectively, is proportional to the temperature T(K), as: 

. (21) 

 

Further, the resistivity is found to be given by: , noting 

again that . 

 

In Eq. (20), one notes that at T= 0 K,  is proportional to , or to 

, from Eq. (21), one has:  and 

also  at , at which the MIT occurs. 
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Electrical Coefficients 

The relaxation time  is related to  by
[1]

: 

 . Therefore, the mobility  is given by: 

.                        (22) 

 

Here, at T= 0K,  is thus proportional to   is 

proportional to . ,  and  at 

, at which the MIT occurs. 

 

Then, the Hall factor is defined by: 

, , and therefore, the 

Hall mobility yields: 

,                                                  (23) 

 

Noting that, at T=0K, since , one therefore gets: 

. 

 

Our generalized Einstein relation 

Our generalized Einstein relation is found to be defined as
[1]

: 

,          ,        (24) 

 

Where  is the diffusion coefficient,  is defined in Eq. (11), and the 

mobility  is determined in Eq. (22). Then, by differentiating this function 

 with respect to u, one thus obtains . Therefore, Eq. (17) can also be rewritten 

as:  

 

Where  and . 

 

One remarks that: (i) as , one has:  and , and therefore: 

, and (ii) as , one has:  and , and 

therefore, in this highly degenerate case and at T=0K, the above generalized Einstein 
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relation is reduced to the usual Einstein one: . In other words, 

Eq. (24) verifies the correct limiting conditions. 

 

Furthermore, in the present degenerate case ( ), Eq. (24) gives: 

, 

where ,    and  

 

Thermoelectric Coefficients 

Here, as noted above,  or for a 

given T, since  for given x, corresponding to: . 

 

Then, from Eq. (20a), obtained for , the well-known Mott definition for the 

thermoelectric power or for the Seebeck coefficient, , is found to be given by: 

. 

 

Then, using Eq. (11), for the degenerate case, , one gets, by putting 

, 

 

,  

 

according to: 

. 

 

Here, one notes that: (i) as , one has a same limiting value of : 

, (ii) at , since one therefore gets: a minimum 

, and (iii) at  one obtains: 

. 
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Further, the figure of merit, ZT, is found to be defined by: 

.                                                            (26) 

 

Here, one notes that: (i)  (ii) at , since 

, one gets: a maximum  , and (iii) at , one 

obtains:  and . 

  

Finally, the first Van-Cong coefficient, , can be defined by: 

,                                      (27) 

 

being equal to 0 for  , 

 

and the second Van-Cong coefficient, , as: 

,                                    (28) 

 

the Thomson coefficient, Ts , by: 

,                         (29) 

 

being equal to 0 for , 

 

and the Peltier coefficient, , as: 

.                                         (30) 

 

One notes here that for given physical conditions N (or T) and for the decreasing , since 

 and  are expressed in terms of  and , one has: 

[  for  , [  for , and 

[ , stating also that for : 

(i) , determined in Eq. (25), thus presents a same minimum 

, 

(ii) , determined in Eq. (26), therefore presents a same maximum: , 

since the variations of   are expressed in terms of [ . 
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Furthermore, it is interesting to remark that the -coefficient is related to our 

generalized Einstein relation (24) by: 

 ,  ,                                          (31) 

 

According, in this work, with the use of our Eq. (25), to: 

 

 

Of course, our relation (31) is reduced to:  ,       and   , being determined 

respectively by Equations (24, 27, 28). This may be a new result.  

 

CONCLUDING REMARKS 

Some important concluding remarks can be repoted as follows. 

In the , x being the concentration, the optical 

coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients, 

being enhanced by: 

(i) our static dielectric constant law, , being the donor (acceptor) d(a)-radius, 

given in Equations (1a, 1b),  

(ii) our accurate Fermi energy, , given in Eq. (11) and accurate with a precision of the 

order of 
[9]

, affecting all the expressions of optical, and electrical-and-

thermoelectric coefficients ,  

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally  

(iv) our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now 

investigated, basing on our physical model, and Fermi-Dirac distribution function, as 

those given in our recent works.
[1, 2]

 

 

It should be noted here that for x=0, these obtained numerical results may be reduced to those 

given in the n(p)-type degenerate GaP-crystal.
[1, 3]

 Then, some important remarks can be 

repoted as follows. 

 

(1) As observed in Equations (3, 5, 6), the critical impurity density , defined by the 

generalized Mott criterium in the metal-insulator transition (MIT), is just the density of 

electrons (holes), localized in the exponential conduction (valence)-band tail (EBT)  

, being obtained with a precision of the order of , respectively, as given 



www.wjert.org                         ISO 9001: 2015 Certified Journal       

Cong.                                              World Journal of Engineering Research and Technology 

  

 

 

 

 

  

in our recent works.
[3]

 Therefore, the effective electron (hole)-density can be defined as: 

, N being the total impurity density, as that observed in the 

compensated crystals. 

 

(2) The ratio of the inverse effective screening length to Fermi wave number  at 

0 K, , defined in Eq. (7), is valid at any . 

 

(3) From Equations (20a, 21-30), for any given x,  and N (or T), with increasing T (or 

decreasing N), one obtains: (i) for , while the numerical results of the 

Seebeck coefficient  present a same minimum , those of the 

figure of merit  show a same maximum , (ii) for , the numerical 

results of ,  , the Mott figure of merit , the first Van-Cong coefficient 

, and the Thomson coefficient  present the same results:  , 0.715, 

3.290, , and , respectively, and finally (iii) for , 

, as those given in our recent work [1]. It seems that these same results could 

represent a new law in the thermoelectric properties, obtained in the degenerate case 

( ). 

 

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by: 

 ,    ,  according, in this work, to: 

, being reduced to:  , 

   and   , determined respectively in Equations (24, 27, 28). This can be a new 

result. 

 

(5) Finally, for given , all the numerical results of [ , , , 

and  , given in the O-EP, and those of [ , , , and  , 

given in the E-OP, being determined respectively from Equations (18, 19b-19d] and also 

reported in Table 3, for any E, could thus be used to explain all their corresponding past-or-

future experimental results. Therefore, one observes that the optical conductivity  has a 

same form with that of the electrical conductivity, , given in Eq. (20a), being used to 

determine the new laws, relations, and coefficients, investigated for the electrical and 
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thermoelectric properties, observed in - crystalline alloy, as those 

reported in Table 3 and also in Equations (18, 19b-19d, 20a-20d, 21-31).  
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