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ABSTRACT

In n*(p*) — pln) — GaP,_,5h, - crystalline alloy, 0 =x<1, various

optical, electrical and thermoelectric laws, relations, and coefficients,
*Corresponding Author

Prof. Dr. Huynh Van
Cong
Université de Perpignan Via finally, in particular physical conditions given in Eq. (15), a same form

being enhanced by: our static dielectric constant law given in

Equations (1a, 1b), accurate Fermi energy given in Eg. (11), and

Domitia, Laboratoire de of optical-and-electrical conductivities o, determined in Equations
Mathématiques et Physique

(LAMPS), EA 4217,

Département de Physique,
52, Avenue Paul Alduy, F- treatment method, as those used in our recent workst % ¥, noting that,

(18, 20a) for optico-electrical and electro-optical phenomena, are now
investigated, by basing on the same physical model and mathematical

66 860 Perpignan, France. for x=0, these obtained numerical results are reduced to those given in

the n(p)-type degenerate GaP -crystal."**! In the following, for given physical conditions, all
the optical coefficients are expressed as functions of the effective photon energy :
E‘=E-E E and E being the photon energy and the optical band gap. Then,

enilgpils gnilgp1ls

some important remarks can be reported as follows. From our optical [electrical] conductivity
model, o5_gpz_op;(E*), determined in Eq. (18), all the optical, electrical, thermoelectric
coefficients are determined, as those given in Equations (19a-19d). In particular, for the
optico-electrical phenomenon (O-EP), for which E = E.y;(zps1 +Eeniepy» @S that given in Eq.
(15), one observes that the optical conductivity o, has a same form with that of the electrical
conductivity for the electro-optical phenomenon (E-OP), oz, as those determined in Eq.
(20a). One notes that this was used to determine the new laws, relations, and coefficients,
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investigated for the optical, electrical, and thermoelectric properties, observed in
n*(p*) —pln) — GaP,_, Sh,- crystalline alloy, as those reported in Table 3 and also in Equations
(18, 19a-19d, 20a-20d, 21-31).

KEYWORDS: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit
(ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson

coefficient (Ts), Peltier coefficient (Pt).

INTRODUCTION

In the n*(p*) — GaP;_,Sh,-crystalline alloy, 0 <x =1, X being the concentration, the optical

coefficients, the electrical-and-thermoelectric laws, the relations, and various coefficients,

being enhanced by:

(i) our static dielectric constant law, =(rs..x), ras Deing the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(if) our accurate Fermi energy, Eenegy, given in Eq. (11) and accurate with a precision of the

order of 2.11x107* [9], affecting all the expressions of optical, electrical, and
thermoelectric coefficients ,

(iii)our optico-electrical phenomenon (O-EP) and electro-optical phenomenon (E-OP),
defined in Eqg. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated by basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.[* 2]

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate GaP-crystal.**® Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncp, cpy,, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).
NEBaicop)» DEING obtained with a precision of the order of 2.92 x 10-7, as given in our recent

works.[& 3

Therefore, the effective electron (hole)-density can be defined as:
N* = N — Nepaicop ® N — NiFLcpp N being the total impurity density, as that observed in the

compensated crystals.
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(2) The ratio of the inverse effective screening length k
OK R

angzpy 1O FErMi wave number kg, at

(n=), defined in Eq. (7), is valid at any n-.

an(zp)

(3) From Equations (20a, 21-30), for any given X, ry;;; and N (or T), with increasing T (or
decreasing N), one obtains: (i) for Eu :*»EE 1.8138, while the numerical results of the
Seebeck coefficient g o, present a same minimum {SE"_[D':}mju.(E —-1.563 x 10-45], those of
the figure of merit ZTzrpr, Show a same maximum (ZTgrgr)mee. = 1, (ii) for g, ,, =1, the
numerical results of Sgr oy, ZTerpr, the Mott figure of merit ZTgrrpee, the first Van-Cong

coefficient VCigror, , and the Thomson coefficient Tsgrpp,. present the same results:

~1.322 x 10742, 0.715, 3.290, 1.105 x 107%, and 1.657 x 107, respectively, and finally (iii)

= . :
I~ ~ 1,8138, ITeromme = 1, @S those given in our recent work [1]. It seems that

2

for En pl =

these same results could represent a new law in the thermoelectric properties, obtained in

the degenerate case (5, = 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:
; =ﬂ'1—:, according, in this work, to:

Defo [(Mrg fay T} LT [o]mott ¥[1-ITg [o]r ot {v:]

3%r0)  Depo(NrapxT) (v:) kg
i)

kg
— ® V2| Norgrg.xT) = — - | =
q E[D'{ dla) % } Fngy  Repoy Mgt

K

VC2g 1y (Norgrg 2 T) = —

, being reduced to: L:E—D ,

peroNrg e T) [t+ ZTe o) menl E[D]

VClgp and VC2gy,, determined respectively in Equations (24, 27, 28). This can be a new

result.

(5) Finally, for given [N,rs..x T], all the numerical results of [og_gs(E), ®g_gp(E), £20_gp (EJ,
and o, _gp (EJ], given in the O-EP, and those of [og_qp(E), ®g_op(E), £25_0p(E), and oz_gp (EJ],
given in the E-OP, being determined respectively from Equations (18, 19b-19d), for any E,
could thus be used to explain all their corresponding past-or-future experimental results.
Therefore, from particular physical conditions given in Eg. (15), one observes that the optical
conductivity oy has a same form with that of the electrical conductivity, oz, given in Eq.
(20a), being used to determine the new laws, relations, and coefficients, investigated for the
optical, electrical, and thermoelectric properties, observed in a*(p*}—p(n) — GaP,_, Sh, -
crystalline alloy, as those reported in Table 3 and also in Equations (18, 19a-19d, 20a-20d,
21-31).

It should be noted here that some important results given in Ref.lY are now performed.
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In the following, many important sections are presented in order to investigate all the optical
coefficients and electrical-and-thermoelectric ones, given in the n*(p*)—GaP;_, Sh, -

crystalline alloys at low temperature T(= 0 K).

OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT
CRITERIUM IN THE METAL-INSULATOR TRANSITION

First of all, in the n* (p*) — GaP,_,Sb,- crystalline alloy, at T=0 K!*'? 2 we denote: the donor
(acceptor) d(a)-radius by r4c., the corresponding intrinsic one bY: ry, 0, =1e sy, respectively,
the effective averaged numbers of equivalent conduction (valence)-bands by: g..., the
unperturbed reduced effective electron (hole) mass in conduction (valence) bands by
e (%) X Iy ()

m, . (x)/m,, m, Deing the free electron mass, the relative carrier mass by: m,(x) = e ——
L¥) clX) (%)

< m.q, (x), fOr given x , the unperturbed relative static dielectric constant by: =,(x), and the

intrinsic band gap by: E.,(x), as those given in the Following Table 1.

Table 1: In the GaP;_,5b,-crystalline alloy, the different values of energy-band-structure

parameters, for a given x, are given in the following.®!

In the GaP;_,Shy-crystalline alloy, in Which rg, ., =rpea, =0.110 (0.126) nm, we havel:
fem@=1xx+1xl -0 =1 M ()/m, = 0.047 (0.3) xx +0.13(05) x (1 %)

g0 (%) = 15.69 x x+ 11,1 x (1 — %), Eg,(x) = 0.81 xx + 1.796 x (1 —x).

Here, the effective carrier mass m; () is equal to m.q, ). Therefore, we can define the

effective donor (acceptor)-ionization energy in absolute  values as:

L2600 [my i, () /Mg

—— meV
[Ec(x]]*

Edorasy ) = and then, the isothermal bulk modulus, by:

Egoran
Baotam x = AT

I_?,'x (Tao rac)

Our Static Dielectric Constant Law [mj, () = m, ()]

Here, the changes in all the energy-band-structure parameters, expressed in terms of the

effective relative dielectric constant z(r, .,.x), developed as follows.

Al 144, =Ta020), the needed boundary conditions are found to be, for the impurity-atom
volume V= (41/3) x (ras))", Voo = (41/3) % (raoqas; ), fOF the pressure p, p, = 0, and for the

deformation potential energy (or the strain energy) «, «, = 0. Further, the two important
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equations, used to determine the « -variation, A & = a —a, = «, are defined by : :E— —and

p= ;,glvmg rise to : ;(ﬂﬁ) . Then, by an integration, one gets:

[‘ﬂa{rﬂii)’x:]]u,:P:,:Bﬂn[anj {xjx(v_vﬂn[mj)x In (1'?:1:-";:\)): Edorae) () ¥ [(_'_:'J_ - 1] *In _"_L)- =0

rdn._:l:-__l Tdo (2o}

Furthermore, we also showed that, as ry. = ragan) (Tas < raose) » the compression
(dilatation) gives rise to the increase (the decrease) in the energy gap Egngp (rars-x), and the
effective donor (acceptor)-ionization energy Ed,}j{rd,}j,x} in absolute values, obtained in the

effective Bohr model, which is represented respectively by : + [ﬂr:t{rdl:ij,x]]m_m,

(Lmﬁ] - 1] =+ [ﬂﬂ(f’d.jajsx]]nm,

ElTda)

Egunujgpnj':rdujayx:] - Egn':x:] = Ed[aj'irdujayx:] - Ednujanj':x:] = Ednujanj':x:] X

for Tdray = Tdorao)s and for Tdray = Tdofao)r

o |
Egunujgpnj':rdujayx:] _Egn{x:] = Elﬂl:s.){rﬂ[ij-'x:] _Ednujanj':x:] = Edl:-[al:-j':x:] bt [(E—J - 1] == [":"a':rdujayx:]]m:m-

E(Tagay)

Therefore, one obtains the expressions for relative dielectric constant e(r4,,.x) and energy

band gap Egn(ep) (raca.x), as:

Eglx)

; T ;
'1+|:|rd_”: ]}du|i:
| g \Fdofass

(i)-for ras =ragrany, SINCE 2(ryq).x)= s <g,(x), being a New e(ry . x)-

law,

Egnceper () — Ego(3) = Bt (ra) — Bt 09 = Batao 69 % [ (22) — 1] x1n (220) 2 0, (1a)

according to the increase in both Eq ey (rae.x) and E gy (raceo.x), With increasing ry,; and for a

given x, and

A

T T -
:1—[| | ]xlul—d =)
A .

” w | I
\Tdo (20 / (2o

=>,(x), with a condition, given

(ii)-for Td(s) = Tdo(ao) since e(ra (x ¥)=

by: [(—'LL 1]><m R ) < 1, being a new e(ry . x)-law,

rdn:an_; |:'||:- (2o}

E qnotepor (Fater %) — Ego(9 = Eata (1ot %) — Eeataa 6 = ~Eaotaa 00 % | (222)" — 1] s1n (222) <0, (1b)

Tdo; ._:D) Tdofac)

Corresponding to the decrease in both Eygepe (race-x) and Egey (raca.x), With decreasing rye

and for a given x.
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It should be noted that, in the following, all the electrical-and-thermoelectric properties

strongly depend on this new e(ry ,,.x)-law.

Furthermore, the effective Bohr radius ag, gy (raca. %) Is defined by:

E:jrd:a;.xjxl: E(Tapay X0

——————=053x% 10 femx ——.
My, oy () 30 My iy (26D

)

aED::EPj{rﬂ::gjax:] =
Generalized Mott Criterium in the MIT [m;::Pj (x) = mm{xj]

Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at
T=0 K, Nepnmupg) (rags- %), was given by the Mott’s criterium, with an empirical parameter,
My gy, At >

.
Nepnieppy (Tagay.X) 2 X apn gpy (T a3 X) = Mpppy, My, = 0.25, (3)

depending thus on our New &(ry ;. x)-law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz

(WS) radius rg, s, in the Mott’s criterium, being characteristic of interactions, by:

7 Lf2  mp e (R)wme

rgu::gpn,m{?t r.a:;gyx]' = (J;N]m ¥ ———— = 11723 % 10° x (ﬁ] P S —— 4)

SgnapyFdiayX) BT pg)

being equal to, in particular, at N= Neppcpg, (rars.%) - Fan (sp). (NeDncopy Cagey - X): Faray X) =

2.4813963, for any (ry,.x)-values. Then, from Eq. (4), one also has:

i

1/ N3
MNeon(cop (Tae %) "? X 3gniep (racw.x) = (_)3 ® 2%113953 =0.25 = (WS)y) = Myp), (5)

4

explaining thus the existence of the Mott’s criterium.

Furthermore, by using M, =0.25, according to the empirical Heisenberg parameter
H,,, = 0.47137, as those given in our previous work™, we have also showed that Nepy cpy, is
just the density of electrons (holes) localized in the exponential conduction (valence)-

band tail. NET ., With a precision of the order of 2.92 x 107 , respectively .*

It shoud be noted that the values of m, ,, and 7, could be chosen so that those of Nepy cng,

and NE5Zcp, are found to be in good agreement with their experimental results.

Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can
be defined, as that given in compensated materials:

N*(N,rg4).%) =N — Nepnowpp (%)= N°, fOr a presentation simplicity. (6)
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In summary, as observed in our previous paper?, for a given x and an increasing Tdga
e(rara.x) decreases, While Eguospo;(rag %) , Nepnoop) (Facax) and NEBnicpp) (raca.®) INCrease,
affecting strongly all the optical, electrical, and thermoelectric coefficients, as those observed
in following Sections.

PHYSICAL MODEL
In the n*(p*) — GaP, _,Sb,- crystalline alloy, the reduced effective Wigner-Seitz (WS) radius
ramspy» ChAracteristic of interactions, being given in Eq. (4), in which N is replaced by n-,is

now defined by:

-1
FrRFE) ey

¥ X T (e (N7) = PR

1/3 . .
) x——=——, being proportional to

=1, rg l:rpfl{:q! rd[aij} = { Sgnap)(Tday®)
(8p) T

ZEn{EM)

e N

N Here, y = (4/97)Y2, Kpeep (N°) z( ]3 is the Fermi wave, g, being the effective

civl

averaged numbers of equivalent conduction (valence)-bands.

Then, the ratio of the inverse effective screening length k., .., to Fermi wave number kg,

sn(sp)

is defined by:

kensy _ Kearp Tanren
= = Rawsigpws + [RsuTFixpTFJ - Rsuwsixpwm]g e < 1 (7

Ropreny(N*) = =—
s0(Ep] Eeniep k‘sr}:m)

being valid at any N~.
Here, these ratios, Ryrp sprr; and Ragws spws;, Can be determined as follows.

First, for N » Nepnmpg (raca.x), according to the Thomas-Fermi (TF)-approximation, the

ratio Ryt e, (N°) is reduced to

R (N*) = Renrrsprey kl-:r};Fpg _ |4:"T:n:_:p) w1 (8)
TE(=pTEy W J = == = - ‘.
EFLEREES kenirpy Kireprey N O ’

being proportional to N*~*/¢,

Secondly, for N < Nepnmpg (racs), according to the Wigner-Seitz (WS)-approximation, the

ratio Rouws nws; 1S respectively reduced to

. Ken fmpywe drl o xErgiNT
Rinyapyus(N°) = 22085 g5 (i_r _ 1[_E§LJ]] (9a)

ker snisp)

Where Eqg(N*) is the majority-carrier correlation energy (CE), being determined by:

0.B7S553
—[LET7553 O.0908+T,

2[1-1mz24]
Mt LI (T oy ) - 0052288
snisp) " = -
0090 +Tgp (sp) 1+D0.0384 TFZEXT

Ecg(N°) =

1 ETZ7EETE
snisp)
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Furthermore, in the highly degenerate case, the physical conditions are found to be given by:

e

o
kEé:ij Mgy 1 ) Fp) - By . 2
= = = = RSU'ZSF') =1, T-I”':P:":N 1= *q° ksuusp‘w (9b)

Sgn{ep) EFnD:Fij n.\p) k:n sp) E'-Ed:iﬁj

lzarsep

42 el (N5

1 H . oy EFDD:FEDJ':N-:' —— FR{Fp) -
Which gIves. Anl:pj{}] :I_ Mg (97 ! EFDD':FFD:'{N :I Zxomig i (%) smg

BAND GAP NARROWING (BGN) BY NANDBY T
First, the BGN by N is found to be given by!?:

Eq (%) snun

1
":"Egu gp'lm{\q ey X}—Elj_-l-s& 3 ><‘\,'|3-|-3 XE( X\‘.l Xl[? 303 = [ EEE{Fsuusp\}]xrsuusp‘u}‘l'a'l

"

550810t 7 em—3 (108.)

4 3
gl ] N 4 20, [ ] NE, N, =

(Pd;a}l’.' E(Pd;a)-x.'

o~ I T
Ep (%) -.] (el ><f\.'||‘_j-|-234><[
:I:rd:ij_x_. ‘\Imn;p_) X g

Here, a, = 3.8 x 1073(eV), a, = 6.5 x 107%(eV), a, = 2.85 x 10~3(eV), a, = 5.597 x 10~*(eV), and
a; = 8.1 x 1074(eV).

Therefore, at T=0 K and n* =0, and for any r,,,, one gets: AE,,,, =0, according to the

En(Ep]

metal-insulator transition (MIT).

Secondly, one has:

BE g2 (T) = 020251 ([1 o 1). (10b)
FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION

Fermi Energy

Here, for a presentation simplicity, we change all the sign of various parameters, given in the
p* — GaP;_,Sh, -crystalline alloy, in order to obtain the same one, as given in the
n* — GaPy_,Sb, -crystalline alloy, according to the reduced Fermi energy

Eengrp (Mg T) H : H
EfnEp) + Enepy (N Faca) 2 T) = % = 0(<0), obtained respectively in the degenerate
(Fp) + Sm(p) =

(non-degenerate) case.

For any (N,rye.xT), the reduced Fermi energy &, (N.ra.xT) Or the Fermi energy
Egncepy (N, ra (. T), Obtained in our previous paper’®, obtained with a precision of the order of

2,11 = 107, is found to be given by:

E n 1 1 B | [
Epgpy () = R - S B = e A = 0.0005372 and B = 482842262, (11)

1+AuB
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E
(ijempekgT

Where u is the reduced electron density,u(N. rm,x,nz — Neta (T.6) = zgn.;vjx(—”@:—] (em™),

2mh

—du

- 4
_ 623729855 (z)°, and 6w = L) + 2 >< ux e g

1920 a

() :au§(1+bu_§+cu_§)-3, a=[vaAl”  b=10)"

So, in the non-degenerate case (u <« 1), One has: Egy gy, (u) = kgT x Glu) = kgT x Ln(u) aSu — 0,
the limiting non-degenerate condition, and in the very degenerate case (u = 1), one gets:

z _& N g gy (M7 o
Epngrpy @ » 1) =kgTx Fw) = kgTx aus (1 +bu3 +cu3) ~ = —""P—3as5y . m, the limiting

:}(I:I'.I P -I'K"I}(III

Ernp F[‘)

degenerate condition. In other words, &, = is accurate, and it also verifies the correct

limiting conditions.

12 sl [(N=

Fr[Fp)

In particular, as T - 0K, since u=* — 0, Eq. (11) is reduced t0: Egpgppe (N*) =

Mg e ()M !
being proportional to (n*)*/%, and also equal to 0 at N* = 0, according to the MIT and noting
that Enotepes (M) 69 = M0 ) = Eppotrpe (M () = megr, ) since m, (0 <m0 for given

X.

In the following, it should be noted that all the optical and electrical-and-thermoelectric

properties strongly depend on such the accurate expression of &, (N.rg(y.x. 1).

Fermi-Dirac Distribution Function (FDDF)
The Fermi-Dirac distribution function (FDDF) is given by: fEj= (1 +e)* ,

¥ = (E— Epnppy )/ (keT)

So, the average of EP, calculated using the FDDF-method, as developed in our previous

works™ ® is found to be given by:

2f a1 &¥
(EP)gppr = Gp (Epnerpy ) % EF.;..E»FH = [_EPx ( aE)dE T kT

kgT  [1+e7)3’

Further, one notes that, at 0 K, —% = 8(E — Egnorepoy ) S(E — Eznoepo, ) bEING the Dirac delta (5)-

function. Therefore, G, (Esnorepe;) = 1.

Then, at low T, by a variable change Y = (E — Egqgpy )/ (kg T), ONE has:
Go (Epnqpy) = 1+ By X J o e % (ke Ty + Efngep) dy = 1 + 300 x (TP x ELP e XIe

where le =plp-1)..(p—-B+1)/8!  and the integral I; is given by:
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= e - *

IE=—

dy = f — dy, vanishing for old values of g. Then, for even values of

—
= [1+e7]2 —= [eT /24 1/2)

B = 2n, with n=1, 2, ..., one obtains:

Y uel
(1+e712

Ly =2[;

Now, using an identity (1 +")~% = I, (—1)***s x e'*-% & variable change: sy = —t, the
Gamma function: [, t*"e~tdt = ['(2n + 1) = (2n)!, and also the definition of the Riemann’s zeta
function: 7(2n) = 2*"-*n™|B,,|/(2n)!, By, being the Bernoulli numbers, one finally gets:
Ly, = (2™ — 2} x ™ x |B;,|. S0, from above Eq. of (EP)gpne, We get in the degenerate case the
following ratio:

{EF} (p—1)..(p-2 5 5
Go (Ernqrpy) = 5220 = 1+ TP, BBt (230 9) x By | X y™® = Gpas (), (12)
FR(Fp) e

akgT _ @

noting that G,_,(v =

Where y = — TheT 17=1, and as T—0K,
nip (N

T)  Epnrep (8T Benrpy Enip)

Gpoy (¥ — 0) — 1.

Then, some usual results of G,.,(y) are given in the following Table 2, being needed to

determine all the following optical and electrical-and-thermoelectric properties.

Table 2: Expressions for Gp. (v Eﬁj, due to the Fermi-Dirac distribution function, are
n{p)

used to determine the electrical-and-thermoelectric coefficients.

Gz 2(¥) G2 (v) Gs 2 (¥) Gz (y) Gz p2(¥) Ga(y) Ggy2(v)
T (D) T G (e e ) )

OPTICAL-AND-ELECTRICAL PROPERTIES
Optico-Electrical Phenomenon — Electro-Optical Phenomenon (O-EP - [E-OP])-Transition
[, ) = mp 00 [y G]]

First off on, for a presentation simplicity, we change all the sign of various parameters, given
in the p* — GaP,_,Sb,- crystalline alloy, in order to obtain the same one, as given in the
n* — GaP,_,Sh, -crystalline alloy, according to the reduced Fermi energy

Epnrem (Nra@yeT)

_— = 0(<0), obtained respectively in the degenerate
aT

EFu::F‘pj ) Eu::pj'::q* rafa. % 1) =

(non-degenerate) case, giVing: Egyoepar = Erncrp) (N Taa.x. T = 0.
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Then, in the n* (p*) — GaP, _,Sh,-Crystalline alloy, and for the temperature T(K), One has:
(i) in the (E-OP), the reduced band gap is defined by:

Eg.'u:ig:p:) = Ecy — Evples = Egui:jg:pij - ":"Eg:uig'pl:N (N} — ":"Eg.'l:lig.'[:ll:'._{T:]’ (13)

Where  E.y i IS the intrinsic bang gap, AE.uqz(N*) and AE ., (T) are respectively the
reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b),
and

(i) in the (O-EP), the photon energy is defined by: E = hw, and the optical band gap by:

Egnitepy) = Egnatgpn + Epngepy-

Therefore, for E = E.p; (0 (Eznatepn ), the effective photon energy E* is found to be given by:

E* = E— Egnuteps) (Eenatepn) = 0. (14)

From above Equations, one notes that:

E* = [E— Egnitepn)] = Enrgy » 0iVEN in the O-EP, in which E=[Eguigpo + Eene] and
My () = m (), and E*=E-Egyepn = Epnrpy - given in the E-OP, in  which,
E = [Egnaigpz) + Entrp)] and My (%) = Mg (), noting that

Efnigp) (m,;;;p;.{xj = mr{xl]) = EFD;;ppj{m;;;pijx] = m,y (x)). SINCE m, (x) = m.,; ), for a given x. (15)

Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into
conduction (valence)-bands, observed in the n*(p*) — type degenerate GaP;_,5Sh.-crystalline

alloy, Egygy,. are well defined.

Optical Coefficients

The optical properties for any medium, defined in the O-EP and E-OP, respectively,
according to [m;::P:IEm[.{x:l me&]] , can be described by the complex
refraction: Mo_gpe-op; = no-epE-om — i%o-gpE-om » No-gpE-om aNd  xo_ppE-op; DEING the
refraction index and the extinction coefficient, the complex dielectric function:
E0-EP[E-0F] = £10-EP[E-0P] — iE20-EpE-0F), WHErE i* = —1, and Ep_gpg_opm = Mo_gp-op; - FUrther,
if denoting the normal-incidence reflectance and the optical absorption by Ry_gpg_os; and

®s_gee-opp and the effective joint density of states by:

www.wjert.orq 1SO 9001: 2015 Certified Journal




Cong. World Journal of Engineering Research and Technology

s famne P E-E
D05, p10-epE-0m (E) = 7 ( o3 J X

gni{zpt3 (Egnafzp)

% [Eppor and
[Esnhspia' Bgn2(gp2))+Ernirp)~Ernoippe)) v “Fao(fpe) »

kg?ulw(E)l® one getS[Z]:

Fo_epE-om(E) =

DolE] (E)=cExz(ry (@) *Efrae space

Exerp-erze-oflE!  2ExKo-grle-of'E!

oy _gp-op; (E) =ID0S,py0-gpE-om; (E) % Fo_gpg_op (E) = - = — =

Renge () ke
4'-“'_'D—EF[E—|:IP: 'E:I
I:|:|I:l-EI.='[E-I:l|.=':':E'-‘| #E(Tdray %) %Efroe :|;|=|:|zJ
z10-gppe-op (E) = No_gpE-op;” — Ko-EPE-0P) » £20-EppE-op; (E) = 2Ko_pE-opNo_gpE-op; » and
[ng- EF[E-DOF]~ 1] +K-D EF[E- |:-F'
R E)= 16
O-EP[E- DFI': )= [no- EF[E-DOF]] +1-] ( )

+K|:|—EL='[E—|:|P: )

It should be noted that, such the above joint density of states yeilds: (i) as

E =Egnitep (Egnztegpzt)  +  ID0Sppio-gp-om(E)=0 , and (i) as E-w

a2

1 mp e (Y
IDOSgpi0-EnE-0p (E) = T2 % 32 * ./ Eenocepo) -

FUIher, e space = 8.854187817 % 1072(_ ) is the permittivity of the free space, -q is the
charge of the electron, Ivu[E__ (E)| is the matrix elements of the velocity operator between
valence (conduction)-and-conduction (valence) bands, and the refraction index ng;, is found
to be defined by

B E+C g

Ro-gpe-0m (B Fate) = na(rata) + L 27 0 = ne (rata), @S E = o0, (17)
Where the values of B, C,;, B; and G; are given in Ref.[?

Now, the optical [electrical] conductivity oy _gpz_ap; Can be defined and expressed in terms of

the kinetic energy of the electron (hole), Ex = G

2 mn.;' (3=

, k being the wave number, as:

e

(Dhmm] which is thus proportional to E.*,

q?xk k By
o k) = ¥ % |k X g, reg x(—]
0-EP[E-OP] .[x, P [ E|:|I,E1:I.] —

Where % = 7.7480735 x 105 ohm™*,

Then, we obtain: (E2)eppe = Go(y = —o2) % EZy zp,» aNd G1(y)=(1 + )EG:{N, raca. % T), With

EFn [Fp)

e

= Ei Entp) = Encp [ N.rac0.x T) fOr a presentation simplicity.
nip)
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Therefore, from above equations (16, 17), if denoting the function H(N, ry.x T) by:
H(E, N.rgrg.xT) =
[;FLW % [Kpncep) (N*) % 2gprag) (Fara. @] % _‘J'Iﬁu iy (N*) =

=n ::pj':N-:'

Erno Fpey 1]

Mgy (N I % Gy(N rgnx T),

Ken=p)

Where R, (N*) = , being proportional to EZ &, - Then, our optical [electrical]

an:Fp_)
conductivity models, defined in the O-EP and E-OP, respectively, for a simply representation,
can thus be assumed to be as:

UD—EF{E‘N’ t"ﬂ[ﬂ,.‘(,]‘} = i UE_UP{E.“J,FH[@XJT}:

q_: ) E—E5n1;5p1_', - 1 2 Ty 2 .

mh * H{E’ N, Tyta) . T} ® E—[Egni;gpij+EFn;Fp;—Ean;Fpn;_] {nhmx:m) » and %X H(E‘ N rﬂiﬂ#x#]‘)x E- '3Exnlisrll":Fn:i;'Ean:m;_] (M)' (18)
It should be noted here that:

(|) UD—EF[E—DF:{E = Egnj_':gpﬂ[Egl:IE':gpﬂ]} =0 , and Op-EP[E-0F] (E = o) — Constant for given

(N, racm. % T) —physical conditions, and

(ii) as T— 0K and N* = 0 [OF Eppg e (N*) = 0], according to: H(H,N,r5(».x. T) = 0, and for a given
E, [E-Emugn]l = [E— Egmignl=Constant, then from Equations (16-18), ny_gpe-opy (E)=
Constant, op—gpE-op;(E) =0 , ®o_gpg-opE)=10 , Ew-eppe-op(E) =(n.)® = Constant ,
£20-gpze-op; (E) = 0, and o _gpe_pp; (E) = 0, according to the metal-insulator transition (MIT).

This result (18) should be new, in comparison with that, obtained from an improved Forouhi-

Bloomer parameterization, as given in our previous work.

Using Equations (16-18), one obtains all the analytically results as:

[w(E3|2 gtk kengr, N .
= 3 — o [kEuiPp:-m Ix aEn':Hpj{rﬂl:g:l-'x}] * C—;{N, rﬂ.;gg.,x,T}, (19a)
B T e Booppspy LH*)
(2m )T, M [=p)
K {E:] = :q: ki H{E N.rgrg.% T} ki E_Egrﬂ:gp:j ) and
- - i = I Lt
O-EF u'-ijs':rd:aj-x:'xsfru space *E dlal E_[':Egnligplj"'EFn:ij_Ean:Fpnj_

A0S ] , (19b)

E-[(Egnatapa)+Eenirp—Eeno trpo))

PR E-H -
Kg_oplE) = — % H(E, N, 10,5, T) % £

niE) =z (Tdray ) *E frae space #E

Which gives: x;_gp_ g_op(E= Eensteps) [Egnatepn]) =0, and wg_gp_g_op (E— ) = 0, as those

given in Ref.[?,

Enifgpa)
E-[(E E l E ] and
~|(Egnz(gpz;+Ernirpi—EFnorpo)

4g? E-E

B(rda) ) e free space B

% H(E, N g% T) %

£20-gplE) =
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En2gp2) ] . (19C)

N [ ——

4q: E-E

% H(E, N, rgrg.x.T) %

zze-op(E) =

E(rs ;:j-x:' *Efroe space =B

Which gives: E:D_Ep[:E_Dp:{E = Eg,,l.;gpﬂ[Eg,,:.;gpﬂ]} =0, and e;p_gpye-om (E — ) = 0, as those

given in Ref.!, and

aq? E-Egnz(gpz; ) i
eig_gp (E) =— X HIE N rgr.xT) = — | and
0 EF": :] EED'-E'JXE':rd:aj-K:'XEFrEE space { dlal } E_[':Egn::gp:j"‘EFn:ij_Ean:Fpnj_ Crm
43’ E-Egnzggpyy St
og_gp (E) = ——— X H(EN.rg00.xT) x [ —)  (19d)
hen Bl e (g 20 % froe space E_['.Egn::gp:j"'EFn: Fpi—EFnoiFpen) Cm

WhICh giVES DCD—EF—[E—DF: {E = Egul':g'pﬂ [Eguygpg'_‘l]} = D, and DCD—EF—[E—DF: {E —3 D::] - CDﬂSt&ﬂt,

as those given in Ref.™

Now, from Equations (18, 19b, 19c, 19d), using Eqg. (15), ones obtains respectively, as:

60 (E.N.rgex.T) = - x H(E Norga, % T) x( e ]

T ErnciFpe) chmxcm

Having the same form with that of og(N,ry5.xT) [1], as:

] Eeres 2
q Fr{Fp) 1
og (E. Nt x T) = 2= x H(E, N,rg0, Tx( ] ( )
E{ dla)s X } _—y { dla)- X } Ermn (Fpe) ohmem (209)
1q° Eenirp) :
HD{E’N’ rﬂ':ﬂ:"x'r} = DElwar 1 X H{EJ N, rarg). X T} X( 2] and
0B B (a0 % B free space™ (Egnizpy +Ernep) Fro{Fpo)

ig
nlE)xz( rara ) Efree space ™ (Egnzigpzy +Ernrp )

kg(EN, rgca % T) = x H(E, N, raca. % T) (ﬂ] (20b)

Eenciepe)

aq?

Ernrm) \°
% H(E. Nty T) % ( FriFp) J and

Eencirpey

£20(EN.rgre.x.T) =

E(Pray X ¥ Efree space [ B gnifgpi)+ B FriEp))

4g? ErniEm :
e28(ENirg %, T) = = % x H(E. N, rgrg. % T) % (—w ] (20c)
E(Tarap®) % Efree space™ (Egnzrzpz) +EFniEp ) EenciFpo)
4q? Eenrpy 1
n (E.N.rara, % T) = — ¥ HLE.N.rgpa.% T )X (—J (_) and
o { dtel } EEDI-E:'XE':EEH}}QXEFHE space { dla } EFnD:Fij cm
aq® Eenrpy §° 1
ocg (BN rgr0.x T) = — % H(E, N, rg0.%,T x(—] (£). 20d
E { dle } i‘~|:|:|'-E:":’{E':|:'|:1::_‘;*”f:':‘{EFr!n space l:: dtal } EFnD:Fij cm ( )

Some optical coefficients, obtained from Equations (18, 19b-19d, 20a-20d) for given

(E.N,r40.% T) -physical conditions, are reported in the following Table 3, in which oy = og,
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since m,®) =< m.,; ), for a given x, noting that H(E.N,ry,.xT) is a constant for given

{EJ M, Falral X, T}

Table 3: As noted above, H(E.M,ry.x T) is a constant for given (N.ry.. = T)-physical

conductions, then, some optical coefficients, for some particular values of E, are given as

follows.

EineV oo-gp (E) o-gp (E) £20-gp (E) g-gp (E)
Eqnz(epn 0 0 0 0

[Eeniizps) + Ekn(ep)] o K £20 og

E— < _Constant ~0 ~0 Wmﬁ#mmConstant
EineV og_op(E) wg_gpLE) z:p_qgplE) otg_pp (EJ

Eenatgpn) 0 0 0 0

[Eenzizpz) + Ekn(ep)] Og Kg E1E og

E— oo ”T:?H —~Constant -0 -0 m ~Constant

ELECTRICAL-AND-THERMOELECTRIC PROPERTIES [}, ;. = my 60 [m, O]

Here, if denoting, for majority electrons (holes), the thermal conductivity by

W
cmx K

ornepo; (N Taca) £ T) in , and the Lorenz number L by:

L= x(2) = 24420637 (F7) =2.4429637 x 107 (V3 x k%) , then the well-known

Wiedemann-Frank law states that the ratio, T’J due to the (E-OP and O-EP) transition,

respectively, is proportional to the temperature T(K), as:

Orhe[o](MragE;T)

= L= T.(21)

Oe[o] (ML @2 T

Further, the resistivity is found to be given by: pgg;(N.rara.%. T) = 1/0g g (N.1400.% T), NOtING

again that N* = N — Neppopp) (Tae) %)

In Eqg. (20), one notes that at T= 0 K, og g, (N.rra.% T = 0K) is proportional to EZ,, ¢, O t0
(N5.Thus , from Eq. (21), one has: og(N = Nepumog raeoxT = 0K) =0 and

alSO gy, gr0; (N = Nepnungy-Taca. % T = 0K) = 0 at N* = 0, at which the MIT occurs.
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Electrical Coefficients

The relaxation time =z, is related to ogy g7, by™:

M, -y (%) 5 Hig oy- . .
a0 (N, Taa) % T) = ogpoy (N rar, % T) % # . Therefore, the mobility ugy, is given by:

] ] (N 8oy ]
T} _ quE[D:(N-Ed:_a_:;-K-T} _ EE[D:[:N-['EIF}-K-T:: {:m: :] (22)

Vxs

HEqo; (Nrgia.xT) = ME[D;{” B TAT

m;:;p_:.':"{:'x ] Qx( N/ Ecpy )

Here, at T= OK, pgyp, (N*.ra.,.T) IS thus proportional to (N*)*2, since o (N*.rg.5. T = 0K) IS
proportional to (N*)*2. Thus, Tz (N* = 0,145, T = 0K) = 0 and pg (N* = 0.1, T=0K) = 0 at

N* = 0, at which the MIT occurs.

Then, the Hall factor is defined by:

{Te[o] YroDF Gel¥ T nkg T
r M ryg.xT) = - T=— -, V= =
HE[HO] { dlal :] [:q_-E [D::'FDDF] [E—; = v En m [N, [‘ﬂ:;).ﬂ'?_‘l B Fr{Fp) (M l'ﬂ::j-x»?.‘ '

and therefore, the

Hall mobility yields:

HHE[HD;{-"L Faca X T) = HE[D;{-"L Fata X T) X rg oy (N T) (=), (23)

Vxs

Noting that, at T=0K, since rygpe(N.rgw.xT)=1 , one therefore gets:

MeerHo) (N, Fara. 2 T) = pgpey (N, vy .x. T)

Our generalized Einstein relation

Our generalized Einstein relation is found to be defined as™:

Deol(Mramy®T)  N° GBenpgy  kgwT kg (2 (2L AL, gy () kg (2L
—=—x— = % (u = = = Tx|lu—=—1]) == = (24)
”E[D:(N-Ed:aj-x--.' q dN q du 4 m? du q a4 @2

Where Dgg;(N.rar.x.T) is the diffusion coefficient, Enpy(w) 1S defined in Eq. (11), and the

mobility ugq, (N.rgc0.% T) is determined in Eq. (22). Then, by differentiating this function

. . Ay iy (1) .
Encpy (1) With respect to u, one thus obtains # Therefore, Eqg. (17) can also be rewritten
. Depo(MrapyxT) _ kgxT V)W )= Vind W' (ud
as. pem (Mg Tl q *u W2 (u)

2 5 -_i—":u__
Where w'(u) = ABuB-t and V'(w) =u~* + 272791 — du) + 2auB~1F(u) (1 + 38) + 2,0 22 2

15be 34cu 3.

One remarks that: (i) asu—0, one has: w?=1 and u[V'x W—-VxW']=1, and therefore:
Dg[oy(u) o EaxT

- and (ii) asu — o=, one has: W2 = A%u®® and u[V'x W — V x W'] & 2au?/24%u"8, and

He[o]

therefore, in this highly degenerate case and at T=0K, the above generalized Einstein
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D[] (N a2 T)

relation is reduced to the usual Einstein one:

—r—— = Enoepoy (N*)/q. IN Other words,
d N e = =

EqQ. (24) verifies the correct limiting conditions.

Furthermore, in the present degenerate case (u 3 1), EQ. (24) gives:

Iy _* _E
. bu T+2cu T
EFnD:Fij'.uj 4 |-__
® 1 tox—=—=|,
1 ® | t+bu I+ou 3

1
1
]
II

DE[D:(N.Pd;aj.KT:: .
I-'E[D:(N.l'd;ag.}i'?}

0l | ka3

T i3

where a = [3v/4] ", b=2(2)" and ¢ = ZEEE= (3)°

Thermoelectric Coefficients

Here, as noted above, Esatep (my(0) = Egnerp) (Mo ) OF Eygpy (m,00) > &y (mey @) for a

given T, since m, () < m, ) for given x, corresponding to: op (m,(0) = g (m, G3).

Then, from Eq. (20a), obtained for ag o, (N.rca1. = T), the well-known Mott definition for the

thermoelectric power or for the Seebeck coefficient, sz, is found to be given by:

-2 k Alnogrg -k AlnogmlEnmpe)
x—“xkE]‘x—[' =T % TTEDlmip)
3 g0 JE E=Ernep 3 g 25

S0y (Norg .. T) =

Then, using Eg. (11), for the degenerate case, & =0, one gets, by putting

- ¥
FS]:IE[D:{NJ ran%T) = |1 - |
3G (y==—
Vo By /
g I[‘\] ) T} — —_':: kg 2Pspepo](N°T) _ [l Zxthn gy 9T J Il (oo v
E[I'_'I: -.lr'ﬂl_g:l.lx.l = 5 x X . - 2 x,-’ 3 E__:'.I_ ) T, R K
E q S T |1+ *Enrp | 1+ ZTg[olMott
\ ms J
-
0. ZTE[I'.'I:MI:-tt = =
- nip) y
according to:
3:-:En- -
8 5[] I'!xL <2 % e T ETe[o] Mot [1— ZTe[o]mete]
@Enipy Wy o - I-].+3HEn-E-:.-II‘ s - [1+ ZTe[o)mon]
\ m J

Here, one notes that: (i) as &,y — +9 or &y, — +0, One has a same limiting value of sg g,

.. = . 2 Sg[g) -
Sgi; — —0, (i) at E.,.;p3=ﬂ'721.8138, since -—— =10, one therefore gets: a minimum

Enm

¥

(Sepp), =—VI=-1563x107* (¥} , and (i) at Em=1 one obtains:

W

Seroy > ~1322 x 1074 (%),
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Further, the figure of merit, ZT, is found to be defined by:

SinoggnT 52 4% ITe o] Mot

ZTE[D: {}L Targ) X T} = — = T= m. (26)
'r_'ls[l:u‘I Sg[o] @ Sg[o] . _ I'.-[_: ) .

Here, one notes that: (i) — =2x——xo—— Sgpy =0 (il) at & = 7 = 1.8138, since
n(p) fnip) : Nz

S ZTgrop . . { } _ d (iii

gy 0, one gets: @ maximum ( ZTg;) =1 ,and ZTgguee = 1, and (iii) at &,y = 1, one

. -
obtains: ZTgg, =~ 0.715 and ZTgopen = = 3.290.

Finally, the first Van-Cong coefficient, vCig 4, can be defined by:

_ . ﬂSE[D: v ESE[D agn;p'
Vel (Norgran 2 T) = -N x — 2 (2] =N x 22 X (27)
being equal to 0 for & = |7,

and the second Van-Cong coefficient, vc2g q,, as:

VC2g 0, (N. 1. x T) =T x VClg g, (V), (28)

the Thomson coefficient, Ts, by:

ds v 35erm B ro
Tsgpo; (Norgrax T) =T x E[D (g ) =T Xﬁx E.;_f’, (29)
n 1l 1

being equal to O for ) = ﬂl'?,

and the Peltier coefficient, Ptz o, as:

PtE[D:l::H’ Fa(g). X, T} =Tx SE [ I:‘-?:I (30)

One notes here that for given physical conditions N (or T) and for the decreasing Entp)y SINCE

VC1g 0 (N.race, 2 T) and Tsgo; (N, rgee.x. T) are expressed in terms of “—=2 and = ==, one has:
wd [a2

[ VClgp, Tsgpl <0 for Eupm = _‘J"? v [ VClgp, Tsgpl=0 for Eum= _‘J"? , and

[VC1gop Tegp,] = 0 for Eygp < ﬂ ; ,statmg also that for &) = ﬂ"?:

(i) Sg; ., determined in  EQ. (25), thus presents a same minimum

(Sery), = —VI=~-1563 x 107 (3},

(ii) ZTgy,, determined in Eq. (26), therefore presents a same maximum: {ZTE[DZ}M.:L

since the variations of ZTgy, are expressed in terms of [VC1g g, Tsgp] % Sgpo;r Sgpop < 0.
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Furthermore, it is interesting to remark that the vczgy, -coefficient is related to our
generalized Einstein relation (24) by:

ESE:D: DE:D:r_N_['d:g;._KT} (1.;2) kg _ I!XL- (31)
ny  MepoyMragmxT) WK

q 4w’

“?“ X VC2g (N, g, 2 T) = —

According, in this work, with the use of our Eq. (25), to:

De[o] (Mg ] ZTE [o]Mott x[1- ITg [o]r ott] {v:]
pepo] (Hrag;nT) [t+ ZTe[mpmonl I

VC2g 10y (Norgre 2 T) = —

Dergt . .
uE;D; ,  VClgp, and VC2gy,, being determined
E[o] : :

Of course, our relation (31) is reduced to:

respectively by Equations (24, 27, 28). This may be a new result.

CONCLUDING REMARKS

Some important concluding remarks can be repoted as follows.

In the n*(p*) — GaP;_,Sh, — crystalline alloy, 0 < x <1, X being the concentration, the optical

coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients,

being enhanced by:

(i) our static dielectric constant law, =(rs..x), rarsy Deing the donor (acceptor) d(a)-radius,
given in Equations (1a, 1b),

(if) our accurate Fermi energy, Esnegy, given in Eq. (11) and accurate with a precision of the
order of 211 x10-* ! affecting all the expressions of optical, and electrical-and-
thermoelectric coefficients ,

(iii)our optical-and-electrical transformation duality given in Eq. (15), and finally

(iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now
investigated, basing on our physical model, and Fermi-Dirac distribution function, as
those given in our recent works.!*"?

It should be noted here that for x=0, these obtained numerical results may be reduced to those

given in the n(p)-type degenerate GaP-crystal.™ ® Then, some important remarks can be

repoted as follows.

(1) As observed in Equations (3, 5, 6), the critical impurity density Ncpy cpy,, defined by the
generalized Mott criterium in the metal-insulator transition (MIT), is just the density of
electrons (holes), localized in the exponential conduction (valence)-band tail (EBT).

NEBaicop) DEING obtained with a precision of the order of 2,92 x 10-7 , respectively, as given
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in our recent works.®! Therefore, the effective electron (hole)-density can be defined as:
N* = N — Nepnicop) = N — Nipoccpp N being the total impurity density, as that observed in the

compensated crystals.

(2) The ratio of the inverse effective screening length k to Fermi wave number kg, at

an(sp)

0 K, Ry e, (%), defined in Eq. (7), is valid at any N~

(3) From Equations (20a, 21-30), for any given X, ry» and N (or T), with increasing T (or
)
decreasing N), one obtains: (i) for Eu =1;%E 1.8138, while the numerical results of the

Seebeck coefficient sgr 5y, present a same minimum (Ser0;) (z —-1.563 x 10-45, those of the

min.
figure of merit ZTz 5, show a same Maximum (ZTggp, mee. = 1, (ii) for g, ,, = 1, the numerical
results of Sg;p;, ZTgp,, the Mott figure of merit ZTgq,.,, the first Van-Cong coefficient
VClg ;. and the Thomson coefficient Tsgy,. present the same results: —1.322 x 10'42, 0.715,

=

3.290, 1.105 = 10-45, and 1.657 x 10-45, respectively, and finally (iii) for & = N

=~ 1.8138,

ITeomere = 1, @S those given in our recent work [1]. It seems that these same results could

represent a new law in the thermoelectric properties, obtained in the degenerate case

(Eapy 2 0).

(4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by:

kg 5 . — _ 95gm Doy (M ayT) vy ke _ |'E : : : .

: X VC2g 0, (N, rg(. 2 T) = I (K] 2= |% ., according, in this work, to:

Depo(Mram=T] ZTg [o]mot |t — ZTE[o]Mott] . Ug[g]

V2ol MNorgraxT) = ————————x 2 — - Vv L
E[':'-{ race % T) pepo] (M) [1+ ZTa[opmon] (), being reduced to kefe] |

VClgp and VC2gq,, determined respectively in Equations (24, 27, 28). This can be a new

result.

(5) Finally, for given [N,rs..x. T], all the numerical results of [og_gp(E), ®g_gp(E}s £20-g2 (E),
and o_gp (E)], given in the O-EP, and those of [og_qp(E), ®g_op(E)s £25_0p(E), and og_gp (EI],
given in the E-OP, being determined respectively from Equations (18, 19b-19d] and also
reported in Table 3, for any E, could thus be used to explain all their corresponding past-or-
future experimental results. Therefore, one observes that the optical conductivity o, has a
same form with that of the electrical conductivity, oz, given in Eq. (20a), being used to

determine the new laws, relations, and coefficients, investigated for the electrical and
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thermoelectric properties, observed in n*(p*) —p(n) — GaP,_, Sb,- crystalline alloy, as those
reported in Table 3 and also in Equations (18, 19b-19d, 20a-20d, 21-31).
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