World Journal of Engineering Research and Technology WJERT www.wjert.org SJIF Impact Factor: 7.029 # OPTICO-ELECTRICAL AND ELECTRO-OPTICAL PHENOMENA IN n(p)-TYPE DEGENERATE "COMPENSATED" GaP(1-x) Sb(x)-CRYSTALLINE ALLOY (13) Prof. Dr. Huynh Van Cong* Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France. Article Received on 21/07/2025 Article Revised on 12/08/2025 Article Accepted on 01/09/2025 ## *Corresponding Author Prof. Dr. Huynh Van Cong Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France. #### **ABSTRACT** In $\mathbf{n^+(p^+)} - \mathbf{p(n)} - \mathbf{GaP_{1-x}Sb_x}$ - crystalline alloy, $0 \le x \le 1$, various optical, electrical and thermoelectric laws, relations, and coefficients, being enhanced by: our static dielectric constant law given in Equations (1a, 1b), accurate Fermi energy given in Eq. (11), and finally, in particular physical conditions given in Eq. (15), a same form of optical-and-electrical conductivities $\sigma_{0[E]}$, determined in Equations (18, 20a) for optico-electrical and electro-optical phenomena, are now investigated, by basing on the same physical model and mathematical treatment method, as those used in our recent works^[1, 2, 3], noting that, for x=0, these obtained numerical results are reduced to those given in the n(p)-type degenerate **GaP -crystal**. [4,5] In the following, for given physical conditions, all the optical coefficients are expressed as functions of the effective photon energy: $E^* \equiv E - E_{gn1(gp1)}$, E and $E_{gn1(gp1)}$, being the photon energy and the optical band gap. Then, some important remarks can be reported as follows. From our optical [electrical] conductivity model, $\sigma_{0-EP[E-OP]}(E^*)$, determined in Eq. (18), all the optical, electrical, thermoelectric coefficients are determined, as those given in Equations (19a-19d). In particular, for the optico-electrical phenomenon (**O-EP**), for which $E = E_{gn1(gp1)} + E_{Fn(Fp)}$, as that given in Eq. (15), one observes that the optical conductivity σ_0 has a same form with that of the electrical conductivity for the electro-optical phenomenon (**E-OP**), σ_E , as those determined in Eq. (20a). One notes that this was used to determine the new laws, relations, and coefficients, investigated for the optical, electrical, and thermoelectric properties, observed in $n^+(p^+) - p(n) - GaP_{1-x} Sb_x$ - crystalline alloy, as those reported in Table 3 and also in Equations (18, 19a-19d, 20a-20d, 21-31). **KEYWORDS**: Optical-and-electrical conductivity, Seebeck coefficient (S), Figure of merit (ZT), First Van-Cong coefficient (VC1), Second Van-Cong coefficient (VC2), Thomson coefficient (Ts), Peltier coefficient (Pt). #### INTRODUCTION In the $n^+(p^+)$ – $GaP_{1-x}Sb_x$ -crystalline alloy, $0 \le x \le 1$, x being the concentration, the optical coefficients, the electrical-and-thermoelectric laws, the relations, and various coefficients, being enhanced by: - (i) our static dielectric constant law, $\varepsilon(r_{d(a)},x)$, $r_{d(a)}$ being the donor (acceptor) d(a)-radius, given in Equations (1a, 1b), - (ii) our accurate Fermi energy, $E_{Fn(Fp)}$, given in Eq. (11) and accurate with a precision of the order of 2.11×10^{-4} [9], affecting all the expressions of optical, electrical, and thermoelectric coefficients, - (iii)our optico-electrical phenomenon (O-EP) and electro-optical phenomenon (E-OP), defined in Eq. (15), and finally - (iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now investigated by basing on our physical model, and Fermi-Dirac distribution function, as those given in our recent works. [1, 2, 3] It should be noted here that for x=0, these obtained numerical results may be reduced to those given in the n(p)-type degenerate GaP-crystal. [3-16] Then, some important remarks can be repoted as follows. (1) As observed in Equations (3, 5, 6), the critical impurity density $N_{CDn(CDp)}$, defined by the generalized Mott criterium in the metal-insulator transition (MIT), is just the density of electrons (holes), localized in the exponential conduction (valence)-band tail (EBT). $N_{CDn(CDp)}^{EBT}$, being obtained with a precision of the order of 2.92 \times 10⁻⁷, as given in our recent works. [1, 3] Therefore, the effective electron (hole)-density can be defined as: $N^* \equiv N - N_{CDn(CDp)} \simeq N - N_{CDn(CDp)}^{EBT}$, N being the total impurity density, as that observed in the compensated crystals. - (2) The ratio of the inverse effective screening length $k_{sn(sp)}$ to Fermi wave number $k_{Fn(kp)}$ at 0 K, $R_{sn(sp)}(N^*)$, defined in Eq. (7), is valid at any N^* . - (3) From Equations (20a, 21-30), for any given x, $r_{d(a)}$ and N (or T), with increasing T (or decreasing N), one obtains: (i) for $\xi_{n(p)} = \sqrt{\frac{\pi^2}{a}} \simeq 1.8138$, while the numerical results of the Seebeck coefficient $S_{ET[0T]}$ present a same minimum $\left(S_{ET[0T]}\right)_{min.} \left(\simeq -1.563 \times 10^{-4} \frac{V}{K}\right)$, those of the figure of merit $ZT_{ET[0T]}$ show a same maximum $(ZT_{ET[0T]})_{max.} = 1$, (ii) for $\xi_{n(p)} = 1$, the numerical results of $S_{ET[0T]}$, $ZT_{ET[0T]}$, the Mott figure of merit $ZT_{ET[0T]Mott}$, the first Van-Cong coefficient $VC1_{ET[0T]}$, and the Thomson coefficient $Ts_{ET[0T]}$, present the same results: $-1.322 \times 10^{-4} \frac{V}{K}$, 0.715, 3.290, $1.105 \times 10^{-4} \frac{V}{K}$, and $1.657 \times 10^{-4} \frac{V}{K}$, respectively, and finally (iii) for $\xi_{n(p)} = \sqrt{\frac{\pi^2}{a}} \simeq 1.8138$, $ZT_{ET[0T]Mott} = 1$, as those given in our recent work [1]. It seems that these same results could represent a new law in the thermoelectric properties, obtained in the degenerate case $(\xi_{n(p)} \ge 0)$. - (4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by: $$\begin{split} &\frac{k_{\text{B}}}{q} \times \text{VC2}_{\text{E[O]}}\big(N, r_{\text{d(a)}}, x, T\big) \equiv -\frac{\partial S_{\text{E[O]}}}{\partial \xi_{n(p)}} \times \frac{D_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)}{\mu_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)} \left(\frac{V^2}{K}\right), \quad \frac{k_{\text{B}}}{q} = \sqrt{\frac{3 \times L}{\pi^2}} \;, \; \text{according, in this work, to:} \\ &\text{VC2}_{\text{E[O]}}\big(N, r_{\text{d(a)}}, x, T\big) \equiv -\frac{D_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)}{\mu_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)} \times 2 \times \frac{ZT_{\text{E[O]Mott}} \times [1 - ZT_{\text{E[O]Mott}}]^2}{\left[1 + ZT_{\text{E[O]Mott}}\right]^2} \;\; (V) \;, \; \text{being reduced to:} \quad \frac{D_{\text{E[O]}}}{\mu_{\text{E[O]}}} \;, \\ &\text{VC1}_{\text{E[O]}} \;\; \text{and} \;\; \text{VC2}_{\text{E[O]}}, \; \text{determined respectively in Equations (24, 27, 28).} \;\; \text{This can be a new result.} \end{split}$$ (5) Finally, for given [N, $r_{d(a)}$, x, T], all the numerical results of [$\sigma_{0-EP}(E)$, $\kappa_{0-EP}(E)$, $\varepsilon_{20-EP}(E)$, and $\alpha_{0-EP}(E)$], given in the O-EP, and those of [$\sigma_{E-OP}(E)$, $\kappa_{E-OP}(E)$, $\varepsilon_{2E-OP}(E)$, and $\alpha_{E-OP}(E)$], given in the E-OP, being determined respectively from Equations (18, 19b-19d), for any E, could thus be used to explain all their corresponding past-or-future experimental results. Therefore, from particular physical conditions given in Eq. (15), one observes that the optical conductivity σ_0 has a same form with that of the electrical conductivity, σ_E , given in Eq. (20a), being used to determine the new laws, relations, and coefficients, investigated for the optical, electrical, and thermoelectric properties, observed in $n^+(p^+) - p(n) - GaP_{1-x}Sb_x$ -crystalline alloy, as those reported in Table 3 and also in Equations (18, 19a-19d, 20a-20d, 21-31). It should be noted here that some important results given in Ref.^[1] are now performed. In the following, many important sections are presented in order to investigate all the optical coefficients and electrical-and-thermoelectric ones, given in the $n^+(p^+) - GaP_{1-x}Sb_x$ - crystalline alloys at low temperature $T(\geq 0 \text{ K})$. ### OUR STATIC DIELECTRIC CONSTANT LAW AND GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION First of all, in the $\mathbf{n^+(p^+)} - \mathbf{GaP_{1-x}Sb_{x^-}}$ crystalline alloy, at T=0 K^[1, 2, 3], we denote: the donor (acceptor) d(a)-radius by $\mathbf{r_{d(a)}}$, the corresponding intrinsic one by: $\mathbf{r_{do(ao)}} = \mathbf{r_{P(Ga)}}$, respectively, the effective averaged numbers of equivalent conduction (valence)-bands by: $\mathbf{g_{c(v)}}$, the unperturbed reduced effective electron (hole) mass in conduction (valence) bands by $\mathbf{m_{c(v)}(x)/m_o}$, $\mathbf{m_o}$ being the free electron mass, the relative carrier mass by: $\mathbf{m_r(x)} \equiv \frac{\mathbf{m_c(x)} \times \mathbf{m_v(x)}}{\mathbf{m_c(x)} + \mathbf{m_v(x)}} < \mathbf{m_{c(v)}(x)}$, for given x , the unperturbed relative static dielectric constant by: $\epsilon_o(x)$, and the intrinsic band gap by: $E_{go}(x)$, as those given in the Following Table 1. ### Table 1: In the $GaP_{1-x}Sb_x$ -crystalline alloy, the different values of energy-band-structure parameters, for a given x, are given in the following.^[3] In the $$GaP_{1-x}Sb_x$$ -crystalline alloy, in which $r_{do(ao)} = r_{P(Ga)} = 0.110$ (0.126) nm, we have $[3]$: $$g_{c(v)}(x) = 1 \times x + 1x(1-x) = 1 \qquad , \qquad m_{c(v)}(x)/m_o = 0.047 \ (0.3) \times x + 0.13 \ (0.5) \times (1-x) \qquad ,$$ $$\epsilon_o(x) = 15.69 \times x + 11.1 \times (1-x), \ E_{go}(x) = 0.81 \times x + 1.796 \times (1-x).$$ Here, the effective carrier mass $m_{n(p)}^*(x)$ is equal to $m_{c(v)}(x)$. Therefore,
we can define the effective donor (acceptor)-ionization energy in absolute values as: $E_{do(ao)}(x) = \frac{{}^{12600\times [m_{n(p)}^*(x)/m_o]}}{[\epsilon_o(x)]^2} \text{ meV} \ , \quad \text{and} \quad \text{then,} \quad \text{the isothermal bulk modulus,} \quad \text{by:} \\ B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{3}\right)\times (r_{do(ao)})^3}.$ #### Our Static Dielectric Constant Law $[m_{n(p)}^*(x) \equiv m_{c(v)}(x)]$ Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant $\varepsilon(\mathbf{r_{d(a)}},\mathbf{x})$, developed as follows. At $\mathbf{r}_{d(a)} = \mathbf{r}_{do(ao)}$, the needed boundary conditions are found to be, for the impurity-atom volume $V = (4\pi/3) \times (\mathbf{r}_{d(a)})^3$, $V_{do(ao)} = (4\pi/3) \times (\mathbf{r}_{do(ao)})^3$, for the pressure p, $\mathbf{p}_o = \mathbf{0}$, and for the deformation potential energy (or the strain energy) α , $\alpha_o = \mathbf{0}$. Further, the two important equations, used to determine the α -variation, $\Delta \alpha \equiv \alpha - \alpha_0 = \alpha$, are defined by $: \frac{dp}{dV} = -\frac{B}{V}$ and $p = -\frac{d\alpha}{dV}$, giving rise to $: \frac{d}{dV}(\frac{d\alpha}{dV}) = \frac{B}{V}$. Then, by an integration, one gets: $$\left[\Delta\alpha(r_{\texttt{d}(\texttt{a})},x)\right]_{\texttt{n}(\texttt{p})} = \texttt{B}_{\texttt{do}(\texttt{ao})}(x) \times \left(V - V_{\texttt{do}(\texttt{ao})}\right) \times \ln\left(\frac{v}{V_{\texttt{do}(\texttt{ao})}}\right) = \texttt{E}_{\texttt{do}(\texttt{ao})}(x) \times \left[\left(\frac{r_{\texttt{d}(\texttt{a})}}{r_{\texttt{do}(\texttt{ao})}}\right)^3 - 1\right] \times \ln\left(\frac{r_{\texttt{d}(\texttt{a})}}{r_{\texttt{do}(\texttt{ao})}}\right)^3 \geq 0.$$ Furthermore, we also showed that, as $r_{d(a)} > r_{do(ao)}$ ($r_{d(a)} < r_{do(ao)}$), the compression (dilatation) gives rise to the increase (the decrease) in the energy gap $E_{gn(gp)}(r_{d(a)},x)$, and the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)},x)$ in absolute values, obtained in the effective Bohr model, which is represented respectively by : $\pm \left[\Delta\alpha(r_{d(a)},x)\right]_{n(a)}$, $$E_{gno(gpo)}(r_{d(a)},x) - E_{go}(x) = E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_{o}(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] = + \left[\Delta \alpha(r_{d(a)},x) \right]_{n(p)},$$ for $r_{d(a)} \ge r_{do(ao)}$, and for $r_{d(a)} \le r_{do(ao)}$, $$E_{gno(gpo)}(r_{d(a)},x) - E_{go}(x) = E_{d(a)}(r_{d(a)},x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\epsilon_{o}(x)}{\epsilon(r_{d(a)})} \right)^2 - 1 \right] = -\left[\Delta \alpha(r_{d(a)},x) \right]_{n(p)}.$$ Therefore, one obtains the expressions for relative dielectric constant $\epsilon(r_{d(a)},x)$ and energy band gap $\mathbb{E}_{gn(gp)}(r_{d(a)},x)$, as: $$(i) \text{-for } r_{d(a)} \geq r_{do(ao)}, \quad \text{since } \epsilon(r_{d(a)}, x) = \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being a } \text{new } \epsilon(r_{d(a)}, x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being a } \text{new } \epsilon(r_{d(a)}, x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being a } \text{new } \epsilon(r_{d(a)}, x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being a } \text{new } \epsilon(r_{d(a)}, x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being a } \text{new } \epsilon(r_{d(a)}, x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being a } \text{new } \epsilon(r_{d(a)}, x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being } \epsilon(x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \leq \epsilon_o(x), \text{ being } \epsilon(x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}}} \leq \epsilon_o(x), \text{ being } \epsilon(x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}}} \leq \epsilon_o(x), \text{ being } \epsilon(x) - \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}}} \leq \epsilon_o(x), \text{ being } \epsilon(x) - \frac{\epsilon_o(x)}{r_{do(ao)}} = \frac{\epsilon_o(x)}{\sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right]}} \leq \epsilon_o(x), \text{ being } \epsilon(x) - \frac{\epsilon_o(x)}{r_{do(ao)}} = \frac{\epsilon_$$ law, $$E_{gno(gpo)}\big(r_{d(a)},x\big) - E_{go}(x) = E_{d(a)}\big(r_{d(a)},x\big) - E_{do(ao)}(x) = E_{do(ao)}(x) \\ \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \\ \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \\ \geq 0, \ \ (1a) \\ \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \left[\left$$ according to the increase in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, with increasing $r_{d(a)}$ and for a given x, and $$(\textbf{ii}) \text{-for } r_{d(a)} \leq r_{do(ao)}, \text{ since } \epsilon(r_{d(a)}, x) = \frac{\epsilon_o(x)}{\sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3}} \geq \epsilon_o(x), \text{ with a condition, given }$$ by: $$\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 < 1$$, being a **new** $\epsilon(r_{d(a)}, x)$ -law, $$E_{gno(gpo)}\big(r_{d(a)},x\big) - E_{go}(x) = E_{d(a)}\big(r_{d(a)},x\big) - E_{do(ao)}(x) = -E_{do(ao)}(x) \\ \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \\ \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \leq 0, \quad (1b)$$ Corresponding to the decrease in both $E_{gno(gpo)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, with decreasing $r_{d(a)}$ and for a given x. It should be noted that, in the following, all the electrical-and-thermoelectric properties strongly depend on this **new** $\varepsilon(\mathbf{r_{d(a)}},\mathbf{x})$ -**law**. Furthermore, the effective Bohr radius $a_{Bn(Bp)}(r_{d(a)},x)$ is defined by: $$a_{Bn(Bp)}(r_{d(a)}, x) \equiv \frac{\epsilon(r_{d(a)}, x) \times \hbar^{2}}{m_{n(p)}^{*}(x) \times m_{o} \times q^{2}} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)}, x)}{m_{n(p)}^{*}(x)}. \tag{2}$$ #### Generalized Mott Criterium in the MIT $[m_{n(p)}^*(x) \equiv m_{c(v)}(x)]$ Now, it is interesting to remark that the critical total donor (acceptor)-density in the MIT at T=0 K, $N_{CDn(NDp)}(r_{d(a)},x)$, was given by the Mott's criterium, with an empirical parameter, $M_{n(p)}$, as^[1,2,3]: $$N_{CDn(CDp)}(r_{d(a)},x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)},x) = M_{n(p)}, M_{n(p)} = 0.25,$$ (3) depending thus on our **new** $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law. This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (**WS**) radius $\mathbf{r}_{sn}(sp)$, in the Mott's criterium, being characteristic of interactions, by: $$r_{\text{sn}\,(\text{sp}),M}\big(N,r_{\text{d(a)}},x\big) \equiv \left(\frac{3}{4\pi N}\right)^{1/3} \times \frac{1}{a_{\text{Bn}\,(\text{Bp})}(r_{\text{d(a)}},x)} = 1.1723 \times 10^8 \times \left(\frac{1}{N}\right)^{1/3} \times \frac{m_{\text{n(p)}}^*(x) \times m_{\text{o}}}{\epsilon(r_{\text{d(a)}},x)}, \tag{4}$$ being equal to, in particular, at $N = N_{CDn(CDp)}(r_{d(a)},x)$: $r_{sn(sp),M}(N_{CDn(CDp)}(r_{d(a)},x),r_{d(a)},x) = 2.4813963$, for any $(r_{d(a)},x)$ -values. Then, from Eq. (4), one also has: $$N_{CDn(CDp)}(r_{d(a)},x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)},x) = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}} \times \frac{1}{24813963} = 0.25 = (WS)_{n(p)} = M_{n(p)},$$ (5) explaining thus the existence of the Mott's criterium. Furthermore, by using $M_{n(p)}=0.25$, according to the empirical Heisenberg parameter $\mathcal{H}_{n(p)}=0.47137$, as those given in our previous work^[3], we have also showed that $N_{\text{CDn(CDp)}}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail $N_{\text{CDn(CDp)}}^{EBT}$, with a precision of the order of 2.92×10^{-7} , respectively .^[3] It shoud be noted that the values of $M_{n(p)}$ and $\mathcal{H}_{n(p)}$ could be chosen so that those of $N_{CDn(CDp)}$ and $N_{CDn(CDp)}^{EBT}$ are found to be in good agreement with their experimental results. Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined, as that given in compensated materials: $$N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x) = N^*, \text{ for a presentation simplicity.}$$ (6) In summary, as observed in our previous paper^[3], for a given x and an increasing $r_{d(a)}$, $\epsilon(r_{d(a)},x)$ decreases, while $E_{gno(gpo)}(r_{d(a)},x)$, $N_{CDn(NDp)}(r_{d(a)},x)$ and $N_{CDn(CDp)}^{EBT}(r_{d(a)},x)$ increase, affecting strongly all the optical, electrical, and
thermoelectric coefficients, as those observed in following Sections. #### PHYSICAL MODEL In the $n^+(p^+)$ – $GaP_{1-x}Sb_x$ - crystalline alloy, the reduced effective Wigner-Seitz (WS) radius $r_{sn(sp)}$, characteristic of interactions, being given in Eq. (4), in which N is replaced by N*, is now defined by: $$\begin{split} \gamma \times r_{sn\,(sp)}(N^*) &\equiv \frac{k_{Fn\,(Fp)}^{-1}}{\alpha_{Bn\,(Bp)}} < 1 \;,\; r_{sn\,(sp)}\big(N, r_{d(a)}, x\big) \equiv \left(\frac{3g_{c(v)}}{4\pi N^*}\right)^{1/3} \times \frac{1}{\alpha_{Bn\,(Bp)}(r_{d(a)}, x)} \;,\; \text{ being proportional to } \\ N^{*^{-1/3}}. \;\; \text{Here, } \gamma = (4/9\pi)^{1/3} \;,\; k_{Fn\,(Fp)}(N^*) \equiv \left(\frac{3\pi^2 N^*}{g_{c(v)}}\right)^{\frac{1}{3}} \text{ is the Fermi wave, } g_{c(v)} \text{ being the effective averaged numbers of equivalent conduction (valence)-bands.} \end{split}$$ Then, the ratio of the inverse effective screening length $k_{sn(sp)}$ to Fermi wave number $k_{Fn(kp)}$ is defined by: $$R_{sn(sp)}(N^*) \equiv \frac{k_{sn(sp)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{sn(sp)}^{-1}} = R_{snWS(spWS)} + \left[R_{snTF(spTF)} - R_{snWS(spWS)}\right] e^{-r_{sn(sp)}} < 1, \tag{7}$$ #### being valid at any N*. Here, these ratios, $R_{snTF(spTF)}$ and $R_{snWS(spWS)}$, can be determined as follows. First, for $N \gg N_{CDn(NDp)}(r_{d(a)},x)$, according to the **Thomas-Fermi (TF)-approximation**, the ratio $R_{snTF(spTF)}(N^*)$ is reduced to $$R_{snTF(spTF)}(N^*) \equiv \frac{k_{snTF(spTF)}}{k_{Fn(Fp)}} = \frac{k_{Fn(Fp)}^{-1}}{k_{snTF(spTF)}^{-1}} = \sqrt{\frac{4\gamma r_{sn(sp)}}{\pi}} \ll 1,$$ (8) being proportional to N*-1/6 Secondly, for $N \ll N_{CDn(NDp)}(r_{d(a)})$, according to the Wigner-Seitz (WS)-approximation, the ratio $R_{snWS(snWS)}$ is respectively reduced to $$R_{sn(sp)WS}(N^*) \equiv \frac{k_{sn(sp)WS}}{k_{Fn}} = 0.5 \times \left(\frac{3}{2\pi} - \gamma \frac{d[r_{sn(sp)}^2 \times \mathcal{E}_{CE}(N^*)]}{dr_{sn(sp)}}\right), \tag{9a}$$ Where $E_{CE}(N^*)$ is the majority-carrier correlation energy (CE), being determined by: $$E_{CE}(N^*) = \frac{_{-0.87553}}{_{0.0908+r_{sn}(sp)}} + \frac{\frac{_{0.87553}}{_{0.0908+r_{sn}(sp)}} + \left(\frac{2[1-ln(2)]}{\pi^2}\right) \times ln(r_{sn}(sp)) - 0.093288}{1 + 0.03847728 \times r_{sn}^{1.67378876}}.$$ Furthermore, in the highly degenerate case, the physical conditions are found to be given by: $$\frac{k_{\text{Fn}(\text{Fp})}^{-1}}{a_{\text{Bn}(\text{Bp})}} < \frac{\eta_{n(p)}}{E_{\text{Fno}(\text{Fpo})}} \equiv \frac{1}{A_{n(p)}} < \frac{k_{\text{Fn}(\text{Fp})}^{-1}}{k_{\text{sn}(\text{sp})}^{-1}} \equiv R_{\text{sn}(\text{sp})} < 1, \ \eta_{n(p)}(N^*) \equiv \frac{\sqrt{2\pi \times (\frac{N^*}{g_{c(v)}})}}{\epsilon(r_{d(a)})} \times q^2 k_{\text{sn}(\text{sp})}^{-1/2}, \tag{9b}$$ Which gives: $$A_{n(p)}(N^*) = \frac{E_{Fno(Fpo)}(N^*)}{\eta_{n(p)}(N^*)}$$, $E_{Fno(Fpo)}(N^*) \equiv \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{n(p)}^*(X) \times m_o}$. #### BAND GAP NARROWING (BGN) BY N AND BY T First, the BGN by N is found to be given by^[2]: $$\Delta E_{gn(gp);N}\left(N^*, r_{d(a)}, x\right) \simeq a_1 + \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)}, x)} \times N_r^{\frac{1}{3}} + a_2 \times \frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)}, x)} \times N_r^{\frac{1}{3}} \times \left(2.503 \times \left[-E_{CE}(r_{sn(sp)})\right] \times r_{sn(sp)}\right) + a_3 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)}, x)}\right]^{\frac{5}{4}} \times \sqrt{\frac{m_{V(c)}}{m_{n(p)}^*(x)}} \times N_r^{\frac{1}{4}} + 2a_4 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)}, x)}\right]^{\frac{1}{2}} \times N_r^{\frac{1}{2}} + 2a_5 \times \left[\frac{\varepsilon_o(x)}{\varepsilon(r_{d(a)}, x)}\right]^{\frac{3}{2}} \times N_r^{\frac{1}{6}}, N_r = \frac{N^*}{9.999 \times 10^{17} \text{ cm}^{-3}},$$ $$(10a)$$ Here, $$a_1 = 3.8 \times 10^{-3} (eV)$$, $a_2 = 6.5 \times 10^{-4} (eV)$, $a_3 = 2.85 \times 10^{-3} (eV)$, $a_4 = 5.597 \times 10^{-3} (eV)$, and $a_5 = 8.1 \times 10^{-4} (eV)$. Therefore, at T=0 K and N* = 0, and for any $r_{d(a)}$, one gets: $\Delta E_{gn(gp)} = 0$, according to the metal-insulator transition (MIT). Secondly, one has^[2]: $$\Delta E_{gn(gp),T}(T) = 0.20251 \times \left(\left[1 + \left(\frac{2T}{440.0613 \, \text{K}} \right)^{2.201} \right]^{\frac{1}{2.201}} - 1 \right). \tag{10b}$$ #### FERMI ENERGY AND FERMI-DIRAC DISTRIBUTION FUNCTION #### Fermi Energy Here, for a presentation simplicity, we change all the sign of various parameters, given in the $p^+-\text{GaP}_{1-x}\text{Sb}_x\text{-crystalline alloy,}\quad\text{in order to obtain the same one, as given in the } \\ n^+-\text{GaP}_{1-x}\text{Sb}_x\text{-crystalline alloy,}\quad\text{according to the reduced Fermi energy} \\ E_{Fn(Fp)}\,,\,\xi_{n(p)}(N,r_{d(a)},x,T)\equiv\frac{E_{Fn(Fp)}(N,r_{d(a)},x,T)}{k_BT}>0 \\ (<0)\,,\,\,\text{obtained respectively in the degenerate} \\ \text{(non-degenerate) case.}$ For any $(N, r_{d(a)}, x, T)$, the reduced Fermi energy $\xi_{n(p)}(N, r_{d(a)}, x, T)$ or the Fermi energy $E_{Fn(Fp)}(N, r_{d(a)}, x, T)$, obtained in our previous paper^[9], obtained with a precision of the order of 2.11×10^{-4} , is found to be given by: $$\xi_{n(p)}(u) \equiv \frac{E_{Fn(Fp)}(u)}{k_BT} = \frac{G(u) + Au^BF(u)}{1 + Au^B} \equiv \frac{V(u)}{W(u)}, \ A = 0.0005372 \ and \ B = 4.82842262, \eqno(11)$$ Where u is the reduced electron density, $u(N, r_{d(a)}, x, T) \equiv \frac{N^*}{N_{c(v)}(T, x)}$, $N_{c(v)}(T, x) = 2g_{c(v)} \times \left(\frac{m^*_{n(p)}(x) \times m_o \times k_B T}{2\pi \hbar^2}\right)^{\frac{2}{3}}$ (cm⁻²), $F(u) = au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}}, \ a = \left[3\sqrt{\pi}/4\right]^{2/3}, \ b = \frac{1}{g} \left(\frac{\pi}{a}\right)^2, \ c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4, \ and \ G(u) \simeq Ln(u) + 2^{-\frac{3}{2}} \times u \times e^{-du};$ $d = 2^{3/2} \left[\frac{1}{\sqrt{17}} - \frac{3}{16}\right] > 0.$ So, in the non-degenerate case $(u \ll 1)$, one has: $E_{Fn(Fp)}(u) = k_BT \times G(u) \simeq k_BT \times Ln(u)$ as $u \to 0$, the limiting non-degenerate condition, and in the very degenerate case $(u \gg 1)$, one gets: $E_{Fn(Fp)}(u \gg 1) = k_BT \times F(u) = k_BT \times au^{\frac{2}{3}} \left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)^{-\frac{2}{3}} \simeq \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{n(p)}^*(x) \times m_0}$ as $u \to \infty$, the limiting degenerate condition. In other words, $\xi_{n(p)} \equiv \frac{E_{Fn(Fp)}}{k_BT}$ is accurate, and it also verifies the correct limiting conditions. In particular, as $T \to 0$ K, since $u^{-1} \to 0$, Eq. (11) is reduced to: $E_{Fno(Fpo)}(N^*) \equiv \frac{\hbar^2 \times k_{Fn(Fp)}^2(N^*)}{2 \times m_{n(p)}^*(x) \times m_o}$, being proportional to $(N^*)^{2/3}$, and also equal to 0 at $N^* = 0$, according to the MIT and noting that $E_{Fno(Fpo)}\left(m_{n(p)}^*(x) = m_r(x)\right) > E_{Fno(Fpo)}\left(m_{n(p)}^*(x) = m_{c(v)}(x)\right)$ since $m_r(x) < m_{c(v)}(x)$ for given x. In the following, it should be noted that all the optical and electrical-and-thermoelectric properties strongly depend on such the accurate expression of $\xi_{n(p)}(N, r_{d(a)}, x, T)$.^[9] #### Fermi-Dirac Distribution Function (FDDF) The Fermi-Dirac distribution function (FDDF) is given by: $f(E) \equiv (1 + e^{\gamma})^{-1}$, $\gamma \equiv (E - E_{Fn(Fp)})/(k_BT)$. So, the average of $\mathbf{E}^{\mathbf{p}}$, calculated using the FDDF-method, as developed in our previous works^[1,6] is found to be given by: $$\langle E^p \rangle_{\text{FDDF}} \equiv G_p(E_{\text{Fn}(\text{Fp})}) \times E_{\text{Fn}(\text{Fp})}^p \equiv \int_{-\infty}^{\infty} E^p \times \left(-\frac{\partial f}{\partial E} \right) dE \,, \qquad -\frac{\partial f}{\partial E} = \frac{1}{k_\text{B} T} \times \frac{e^{\gamma}}{(1+e^{\gamma})^2} \,.$$ Further, one notes that, at 0 K, $-\frac{\partial f}{\partial E} = \delta (E - E_{Fno(Fpo)})$, $\delta (E - E_{Fno(Fpo)})$ being the Dirac delta (δ) -function. Therefore, $G_p(E_{Fno(Fpo)}) = 1$. Then, at low T, by a variable change $\gamma \equiv (E - E_{Fn(Fp)})/(k_BT)$, one has: $$\begin{split} &G_p\big(E_{Fn(Fp)}\big)\equiv 1+E_{Fn(Fp)}^{-p}\times\int_{-\infty}^{\infty}\frac{e^{\gamma}}{(1+e^{\gamma})^2}\times\big(k_BT\gamma+E_{Fn(Fp)}\big)^pd\gamma = 1+\sum_{\mu=1,2,...}^{p}C_p^{\beta}\times(k_BT)^{\beta}\times E_{Fn(Fp)}^{-\beta}\times I_{\beta}\quad,\\ &\text{where }C_p^{\beta}\equiv p(p-1)...(p-\beta+1)/\beta! \qquad\text{and the integral }I_{\beta}\text{ is given by:} \end{split}$$ $$\begin{split} I_{\beta} &= \int_{-\infty}^{\infty} \frac{\gamma^{\beta} \times e^{\gamma}}{(1+e^{\gamma})^{2}} \, d\gamma = \int_{-\infty}^{\infty} \frac{\gamma^{\beta}}{(e^{\gamma/2} + e^{-\gamma/2})^{2}} \, d\gamma, \text{ vanishing for old values of } \beta. \text{ Then, for even values of } \beta = 2n, \text{ with } n = 1, 2, \dots, \text{ one obtains:} \\ I_{2n} &= 2 \int_{0}^{\infty} \frac{\gamma^{2n} \times e^{\gamma}}{(1+e^{\gamma})^{2}} \, d\gamma \; . \end{split}$$ Now, using an identity $(1+e^{\gamma})^{-2} \equiv \sum_{s=1}^{\infty} (-1)^{s+1} s \times e^{\gamma(s-1)}$, a variable change: $s\gamma = -t$, the Gamma function: $\int_0^{\infty} t^{2n} e^{-t} dt \equiv \Gamma(2n+1) = (2n)!$, and also the definition of the Riemann's zeta function: $\zeta(2n) \equiv 2^{2n-1} \pi^{2n} |B_{2n}|/(2n)!$, B_{2n} being the Bernoulli numbers, one finally gets: $I_{2n} = (2^{2n} - 2) \times \pi^{2n} \times |B_{2n}|$. So, from above Eq. of $\langle E^p \rangle_{FDDF}$, we get in the degenerate case the following ratio: $$G_{p}\left(E_{Fn(Fp)}\right) \equiv \frac{\langle E^{p}\rangle_{FDDF}}{E_{Fn(Fp)}^{p}} = 1 + \sum_{n=1}^{p} \frac{p(p-1)...(p-2n+1)}{(2n)!} \times (2^{2n} - 2) \times |B_{2n}| \times y^{2n} \equiv G_{p \ge 1}(y), \tag{12}$$ Where $$y\equiv\frac{\pi}{\xi_{n(p)}(N^*,T)}=\frac{\pi k_BT}{E_{Fn(Fp)}(N^*,T)}$$, noting that $G_{p=1}(y\equiv\frac{\pi
k_BT}{E_{Fn(Fp)}}=\frac{\pi}{\xi_{n(p)}})=1$, and as $T\to 0$ K, $G_{p>1}(y\to 0)\to 1$. Then, some usual results of $G_{p\geq 1}(y)$ are given in the following Table 2, being needed to determine all the following optical and electrical-and-thermoelectric properties. Table 2: Expressions for $G_{p>1}(y\equiv\frac{\pi}{\xi_{n(p)}})$, due to the Fermi-Dirac distribution function, are used to determine the electrical-and-thermoelectric coefficients. #### OPTICAL-AND-ELECTRICAL PROPERTIES Optico-Electrical Phenomenon – Electro-Optical Phenomenon (O-EP – [E-OP])-Transition $[m_{n(p)}^* \equiv m_r(x) [m_{c(v)}(x)]]$ First off on, for a presentation simplicity, we change all the sign of various parameters, given in the p^+ – $GaP_{1-x}Sb_x$ - crystalline alloy, in order to obtain the same one, as given in the n^+ – $GaP_{1-x}Sb_x$ -crystalline alloy, according to the reduced Fermi energy $E_{Fn(Fp)}$, $\xi_{n(p)}(N, r_{d(a)}, x, T) \equiv \frac{E_{Fn(Fp)}(N, r_{d(a)}, x, T)}{k_B T} > 0 (< 0)$, obtained respectively in the degenerate (non-degenerate) case, giving: $E_{Fno(Fpo)} \equiv E_{Fn(Fp)}(N, r_{d(a)}, x, T = 0)$. Then, in the $n^+(p^+)$ – $GaP_{1-x}Sb_x$ -crystalline alloy, and for the temperature T(K), One has: (i) in the (**E-OP**), the reduced band gap is defined by: $$E_{gn2(gp2)} \equiv E_{c(v)} - E_{vo(co)} = E_{gni(gpi)} - \Delta E_{gn(gp);N}(N^*) - \Delta E_{gn(gp);T}(T), \tag{13}$$ Where $E_{gni(gpi)}$ is the intrinsic bang gap, $\Delta E_{gn(gp)}(N^*)$ and $\Delta E_{gn(gp)}(T)$ are respectively the reduced band gaps, due to the N*-and-T effects, as those determined in Equations (10a, 10b), and (ii) in the (O-EP), the photon energy is defined by: $\mathbf{E} \equiv \hbar \omega$, and the optical band gap by: $\mathbf{E}_{gn1(gp1)} \equiv \mathbf{E}_{gn2(gp2)} + \mathbf{E}_{Fn(Fp)}$. Therefore, for $$E \ge E_{gn1(gp1)}(E_{gn2(gp2)})$$, the effective photon energy E^* is found to be given by: $$E^* \equiv E - E_{gn1(gp1)}(E_{gn2(gp2)}) \ge 0. \tag{14}$$ From above Equations, one notes that: $$\begin{split} E^* &\equiv [E - E_{gn1(gp1)}] = E_{Fn(Fp)} \;, \quad \text{given in the } \quad \textbf{O-EP}, \quad \text{in which } E = \left[E_{gn1(gp1)} + E_{Fn(Fp)}\right] \; \text{and} \\ m^*_{n(p)}(x) &= m_r(x), \quad \text{and} \quad E^* &\equiv E - E_{gn2(gp2)} = E_{Fn(Fp)} \; , \quad \text{given in the } E \text{-OP}, \quad \text{in which,} \\ E &= \left[E_{gn2(gp2)} + E_{Fn(Fp)}\right] \qquad \text{and} \qquad m^*_{n(p)}(x) = m_{c(v)}(x), \qquad \text{noting} \qquad \text{that} \\ E_{Fn(Fp)}\left(m^*_{n(p)}(x) = m_r(x)\right) > E_{Fn(Fp)}\left(m^*_{n(p)}(x) = m_{c(v)}(x)\right), \\ \text{since } m_r(x) < m_{c(v)}(x), \quad \text{for a given } x. \; (15) \end{split}$$ Eq. (15) thus shows that, in both O-EP and E-OP, the Fermi energy-level penetrations into conduction (valence)-bands, observed in the $n^+(p^+)$ – type degenerate $GaP_{1-x}Sb_x$ -crystalline alloy, $E_{Fn(Fp)}$, are well defined. #### **Optical Coefficients** The optical properties for any medium, defined in the O-EP and E-OP, respectively, according to $[m_{n(p)}^* \equiv m_r(x) [m_{c(v)}(x)]]$, can be described by the complex refraction: $\mathbb{N}_{0-EP[E-OP]} \equiv n_{0-EP[E-OP]} - i\kappa_{0-EP[E-OP]}$, $n_{0-EP[E-OP]}$ and $\kappa_{0-EP[E-OP]}$ being the refraction index and the extinction coefficient, the complex dielectric function: $\mathcal{E}_{0-EP[E-OP]} = \epsilon_{10-EP[1E-OP]} - i\epsilon_{20-EP[2E-OP]}$, where $i^2 = -1$, and $\mathcal{E}_{0-EP[E-OP]} = \mathbb{N}_{0-EP[E-OP]}^2$. Further, if denoting the normal-incidence reflectance and the optical absorption by $\mathbb{R}_{0-EP[E-OP]}$ and $\infty_{0-EP[E-OP]}$, and the effective joint density of states by: $$\begin{split} & JDOS_{n(p)O-EP[E-OP]}(E) \equiv \frac{1}{2\pi^2} \times \left(\frac{2m_{n(p)}^*(x)}{\hbar^2}\right)^{3/2} \times \left[\frac{E-E_{gn1(gp1)}(E_{gn2(gp2)})}{E-[E_{gn1(gp1)}(E_{gn2(gp2)})+E_{Fn(Fp)}-E_{Fno(Fpo)}]}\right]^2 \times \sqrt{E_{Fno(Fpo)}} \,, \text{ and } \\ & F_{O-EP[E-OP]}(E) \equiv \frac{\hbar q^2 \times |v(E)|^2}{n_0[\epsilon]^{(E)} \times cE \times \epsilon (r_{d(a)},x) \times \epsilon_{free \,\, space}}, \,\, one \,\, gets^{[2]} \colon \\ & \alpha_{O-EP[E-OP]}(E) = JDOS_{n(p)O-EP[E-OP]}(E) \times F_{O-EP[E-OP]}(E) = \frac{E \times \epsilon_{2O-EP[2E-OP]}(E)}{\hbar cn_0[\epsilon]^{(E)}} = \frac{2E \times \kappa_{O-EP[E-OP]}(E)}{\hbar c} = \frac{4\pi \sigma_{O-EP[E-OP]}(E)}{\epsilon n_{O-EP[E-OP]}(E) \times \epsilon (r_{d(a)},x) \times \epsilon_{free \,\, space}}, \end{split}$$ $$\begin{split} \epsilon_{10-\text{EP}[1E-\text{OP}]}(E) &\equiv n_{0-\text{EP}[E-\text{OP}]}{}^2 - \kappa_{0-\text{EP}[E-\text{OP}]]}{}^2 \;,\;\; \epsilon_{20-\text{EP}[2E-\text{OP}]}(E) \equiv 2\kappa_{0-\text{EP}[E-\text{OP}]}n_{0-\text{EP}[E-\text{OP}]} \;,\;\; \text{and} \\ R_{0-\text{EP}[E-\text{OP}]}(E) &\equiv \frac{\left[n_{0-\text{EP}[E-\text{OP}]-1}\right]^2 + \kappa_{0-\text{EP}[E-\text{OP}]}^2}{\left[n_{0-\text{EP}[E-\text{OP}]+1}\right]^2 + \kappa_{0-\text{EP}[E-\text{OP}]}^2} \;. \end{split} \tag{16}$$ It should be noted that, such the above joint density of states yeilds: (i) as $E=E_{gn1(gp1)}(E_{gn2(gp2)})\quad,\quad JDOS_{n(p)0-EP[E-OP]}(E)=0\quad,\quad \text{and}\quad (ii)\quad \text{as}\quad E\to\infty\quad,$ $JDOS_{n(p)0-EP[E-OP]}(E)\to \frac{1}{2\pi^2}\times \left(\frac{2m_{n(p)}^*(x)}{\hbar^2}\right)^{3/2}\times \sqrt{E_{Fno(Fpo)}}.$ Further, $\varepsilon_{\text{free space}} = 8.854187817 \times 10^{-12} \left(\frac{c^2}{N \times m^2}\right)$ is the permittivity of the free space, -q is the charge of the electron, $|\mathbf{v_0}_{[E]}(E)|$ is the matrix elements of the velocity operator between valence (conduction)-and-conduction (valence) bands, and the refraction index $\mathbf{n_0}_{[E]}$ is found to be defined by^[2]: $$n_{0-EP[E-OP]}(E, r_{d(a)}) \equiv n_{\infty}(r_{d(a)}) + \sum_{i=1}^{4} \frac{B_{oi}E+C_{oi}}{E^{2}-B:E+C_{i}} \rightarrow n_{\infty}(r_{d(a)}), \text{ as } E \rightarrow \infty,$$ (17) Where the values of B_{oi} , C_{oi} , B_{i} and C_{i} are given in Ref.^[2] Now, the optical [electrical] conductivity $\sigma_{0-EP[E-OP]}$ can be defined and expressed in terms of the kinetic energy of the electron (hole), $E_k \equiv \frac{\hbar^2 \times k^2}{2 \times m_{D(D)}^2 (x) \times m_D}$, k being the wave number, as: $$\begin{split} &\sigma_{0-\text{EP}[E-\text{OP}]}(k) \equiv \frac{q^2 \times k}{\pi \times \hbar} \times \frac{k}{k_{\text{sn}(\text{sp})}} \times \left[k \times a_{\text{Bn}\,(\text{Bp})}\right] \times \left(\frac{E_k}{\eta_{\,\text{n}(\text{p})}}\right)^{\!\frac{1}{2}} \left(\frac{1}{\text{ohm} \times \text{cm}}\right)\!, \text{ which is thus proportional to } E_k^2, \\ &\text{Where } \quad \frac{q^2}{\pi \times \hbar} = 7.7480735 \times 10^{-5} \text{ ohm}^{-1}. \end{split}$$ Then, we obtain: $\langle E^2 \rangle_{FDDF} \equiv G_2(y = \frac{\pi k_B T}{E_{Fn(Fp)}}) \times E_{Fn(Fp)}^2$, and $G_2(y) = \left(1 + \frac{y^2}{a}\right) \equiv G_2(N, r_{d(a)}, x, T)$, with $y \equiv \frac{\pi}{\xi_{n(p)}}$, $\xi_{n(p)} = \xi_{n(p)}(N, r_{d(a)}, x, T)$ for a presentation simplicity. Therefore, from above equations (16, 17), if denoting the function $H(N, r_{d(a)}, x, T)$ by: $$\begin{split} &H\big(E,N,r_{d(a)},x,T\big) = \\ &\left[\frac{k_{Fn(Fp)}(N^*)}{R_{Sn\,(Sp)}(N^*)} \times \left[k_{Fn(Fp)}\left(N^*\right) \times a_{B\,n(Bp)}\big(r_{d(a)},x\big)\right] \times \sqrt{A_{n\,(p)}(N^*)} = \frac{E_{Fno\,(Fpo)}(N^*)}{\eta_{n\,(p)}(N^*)}\right] \\ &\times G_2\big(N,r_{d(a)},x,T\big), \end{split}$$ Where $R_{sn(sp)}(N^*) \equiv \frac{k_{sn(sp)}}{k_{Fn(Fp)}}$, being proportional to $E_{Fno(Fpo)}^2$. Then, our optical [electrical] conductivity models, defined in the O-EP and E-OP, respectively, for a simply representation, can thus be assumed to be as: $$\begin{split} \sigma_{O-EP}\big(E,N,\mathbf{r}_{d(a)},x,T\big) &= \\ \frac{q^2}{\pi\times\hbar} \times H\big(E,N,\mathbf{r}_{d(a)},x,T\big) \times \left[\frac{E-E_{gn1(gp1)}}{E-\left[E_{gn1(gp1)}+E_{Fn(Fp)}-E_{Fno(Fp0)}\right]\right]^2} \left(\frac{1}{ohm\times cm}\right), & \text{and } \frac{q^2}{\pi\lambda} \times H\big(E,N,\mathbf{r}_{d(a)},x,T\big) \times \left[\frac{E-E_{gn2(gp2)}}{E-\left[E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fp0)}\right]\right]^2} \left(\frac{1}{ohm\times cm}\right). \end{split} \tag{18}$$ It should be noted here that: (i) $\sigma_{0-EP[E-OP]}(E=E_{gn1(gp1)}[E_{gn2(gp2)}])=0$, and $\sigma_{0-EP[E-OP]}(E\to\infty)\to Constant$ for given $(N,r_{d(a)},x,T)$ -physical conditions, and (ii) as $T \to 0$ K and $N^* = 0$ [or $E_{Fno(Fpo)}(N^*) = 0$], according to: $H(H, N, r_{d(a)}, x, T) = 0$, and for a given E, $[E - E_{gn1(gp1)}] = [E - E_{gni(gpi)}] = Constant$, then from Equations (16-18), $n_{0-EP[E-0P]}(E) = 0$ Constant, $\sigma_{0-EP[E-0P]}(E) = 0$, $\kappa_{0-EP[E-0P]}(E) = 0$, $\varepsilon_{10-EP[1E-0P]}(E) = (n_{\infty})^2 = Constant$, $\varepsilon_{20-EP[2E-0P]}(E) = 0$, and $\alpha_{0-EP[E-0P]}(E) = 0$, according to the metal-insulator transition (MIT). This result (18) should be new, in comparison with that, obtained from an improved Forouhi-Bloomer parameterization, as given in our previous work. [2] Using Equations (16-18), one obtains all the analytically results as: $$\frac{|v(E)|^2}{E} = \frac{8\pi^2 \hbar}{(2m_r)^{\frac{3}{2}} \times \sqrt{\eta_{n(p)}}} \times \left[\frac{k_{Fn(Fp)}(N^*)}{R_{sn(sp)}(N^*)} \times \left[k_{Fn(Fp)}(N^*) \times a_{Bn(Bp)}(r_{d(a)}, x) \right] \right] \times G_2(N, r_{d(a)}, x, T), \tag{19a}$$ $$\kappa_{0-EP}(E) = \frac{2q^2}{n(E)\times \epsilon(r_{d(a)},X)\times \epsilon_{free\,space}\times E} \times \\ \\ H\big(E,N,r_{d(a)},x,T\big) \times \left[\frac{E-E_{gn2(gp2)}}{E-\left[(E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2 \quad and and$$ $$\kappa_{E-Op}(E) = \frac{2q^2}{n(E) \times \epsilon(r_{d(a)}, X) \times \epsilon_{free \, space} \times E} \times H(E, N, r_{d(a)}, x, T) \times \left[\frac{E - E_{gn2(gp2)}}{E - \left[(E_{gn2(gp2)} + E_{Fn(Fp)} -
E_{Fno(Fpo)}\right]\right]^2}, \tag{19b}$$ Which gives: $\kappa_{0-EP-[E-0P]}(E=E_{gn1(gp1)}[E_{gn2(gp2)}])=0$, and $\kappa_{0-EP-[E-0P]}(E\to\infty)\to 0$, as those given in Ref. [2], $$\epsilon_{20-EP}(E) = \frac{4q^2}{\epsilon(r_{d(a)},X) \times \epsilon_{free\,space} \times E} \times \\ \\ H\big(E,N,r_{d(a)},x,T\big) \times \left[\frac{E-E_{gn2(gp2)}}{E-\left[(E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2 \\ \text{ and } \\ \frac{1}{2} \left[\frac{E-E_{gn2(gp2)}}{E-\left[(E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2 \left[\frac{E-E_{gn2(gp2)}}{E-E_{gn2(gp2)}}\right]^2 \\ \frac{1}{2} \left[\frac{E-E_{gn2(gp2)}}{E-E_{gn2(gp2)}}\right]^2 \\ \frac{1}{2} \left[\frac{E-E_{gn2(gp2)}}{E-E_{gn2(gp2)}}\right] \left[\frac{E-E_{gn2$$ $$\varepsilon_{2E-OP}(E) = \frac{4q^2}{\varepsilon(r_{d(a)},X) \times \varepsilon_{free \, space} \times E} \times H(E,N,r_{d(a)},x,T) \times \left[\frac{E-E_{gn2(gp2)}}{E-\left[(E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2, \tag{19c}$$ Which gives: $\epsilon_{20-EP[2E-0P]}(E=E_{gn1(gp1)}[E_{gn2(gp2)}])=0$, and $\epsilon_{20-EP[2E-0P]}(E\to\infty)\to 0$, as those given in Ref. [2], and $$\alpha_{E-OP}\left(E\right) = \frac{4q^2}{\hbar cn(E) \times \epsilon(r_{d(a)},X) \times \epsilon_{free\,space}} \times H\left(E,N,r_{d(a)},x,T\right) \times \left[\frac{E-E_{gn2(gp2)}}{E-\left[(E_{gn2(gp2)}+E_{Fn(Fp)}-E_{Fno(Fpo)}\right]}\right]^2 \ \left(\frac{1}{cm}\right) \ \ (19d)$$ Which gives: $\alpha_{0-EP-[E-0P]}$ ($E=E_{gn1(gp1)}[E_{gn2(gp2)}]$) = 0, and $\alpha_{0-EP-[E-0P]}(E\to\infty)\to Constant$, as those given in Ref.^[2] Now, from Equations (18, 19b, 19c, 19d), using Eq. (15), ones obtains respectively, as: $$\sigma_0 \left(E, N, r_{d(a)}, x, T \right) = \frac{q^2}{\pi \times \hbar} \times H \left(E, N, r_{d(a)}, x, T \right) \times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}} \right)^2 \left(\frac{1}{ohm \times cm} \right),$$ Having the same form with that of $\sigma_{\mathbb{E}}(N, r_{d(a)}, x, T)$ [1], as: $$\sigma_{E}(E,N,r_{d(a)},x,T) = \frac{q^{2}}{\pi \times \hbar} \times H(E,N,r_{d(a)},x,T) \times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fno)}}\right)^{2} \left(\frac{1}{ohm \times cm}\right), \tag{20a}$$ $$\kappa_0\big(E,N,r_{d(a)},x,T\big) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ H\big(E,N,r_{d(a)},x,T\big) \times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2 \text{ and } \\ h_0(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_1(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_1(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_1(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_1(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{Fn(Fp)})} \times \\ h_1(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{fn(Fp)})} \times \\ h_1(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{fn(Fp)})} \times \\ h_2(E,N,r_{d(a)},x,T) = \frac{2q^2}{n(E)\times E(r_{d(a)},X)\times E_{free\,space}\times (E_{gn1(gp1)}+E_{fn(Fp)}\times (E_{gn1(gp$$ $$\kappa_{E}\big(E,N,r_{d(a)},x,T\big) = \frac{2q^{2}}{n(E)\times\epsilon(r_{d(a)},x)\times\epsilon_{free\,\,space}\times(E_{gn2(gp2)}+E_{Fn(Fp)})} \times H\big(E,N,r_{d(a)},x,T\big) \times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^{2}, \tag{20b}$$ $$\epsilon_{20}\big(E,N,\mathrm{r}_{d\,(a)},x,T\big) = \tfrac{4q^2}{\epsilon(r_{d(a)},X) \times \epsilon_{free\,space} \times (E_{gn1}(gp1) + E_{Fn(Fp)})} \times \\ H\big(E,N,\mathrm{r}_{d\,(a)},x,T\big) \times \left(\tfrac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2 \text{ and }$$ $$\epsilon_{2E}\big(E,N,r_{d(a)},x,T\big) = \frac{4q^2}{\epsilon_{(\Gamma d(a)}X) \times \epsilon_{free \, space} \times (E_{gn2(gp2)} + E_{Fn(Fp)})} \times H\big(E,N,r_{d(a)},x,T\big) \times \left(\frac{E_{Fn(Fp)}}{E_{Fno(Fpo)}}\right)^2 \tag{20c}$$ Some optical coefficients, obtained from Equations (18, 19b-19d, 20a-20d) for given $(E, N, r_{d(a)}, x, T)$ -physical conditions, are reported in the following Table 3, in which $\sigma_0 > \sigma_E$, since $m_r(x) < m_{c(v)}(x)$, for a given x, noting that $H(E, N, r_{d(a)}, x, T)$ is a constant for given $(E, N, r_{d(a)}, x, T)$. Table 3: As noted above, $H(E, N, r_{d(a)}, x, T)$ is a constant for given $(N, r_{d(a)}, x, T)$ -physical conductions, then, some optical coefficients, for some particular values of E, are given as follows. | E in eV | $\sigma_{0-EP}(E)$ | $\kappa_{0-EP}(E)$ | $\epsilon_{20-EP}(E)$ | $\alpha_{0-EP}(E)$ | |---|--|--------------------------|-----------------------|---| | E _{gn1(gp1)} | 0 | 0 | 0 | 0 | | $[\mathtt{E}_{\mathtt{gni}(\mathtt{gpi})} + \mathtt{E}_{\mathtt{Fn}(\mathtt{Fp})}]$ | σ_0 | κ_0 | ε ₂₀ | ∝ ₀ | | $E \to \infty$ | $\frac{q^2 \times H}{\pi \times \hbar} \rightarrow Constant$ | $\rightarrow 0$ | → 0 | $\frac{^{4q^2 \times H}}{^{hcn}_{80} \times \epsilon(r_{d(a)}x) \times \epsilon_{free space}} \neg Constant$ | | | | | | | | E in eV | $\sigma_{E-\text{OP}}(E)$ | $\kappa_{E-OP}(E)$ | $\epsilon_{2E-OP}(E)$ | α_{E-OP} (E) | | $E_{gn2(gp2)}$ | 0 | 0 | 0 | 0 | | $[E_{gn2(gp2)} + E_{Fn(Fp)}]$ | σ_{E} | $\kappa_{\underline{E}}$ | ϵ_{2E} | $\propto_{\mathbf{E}}$ | | $E \rightarrow \infty$ | $\frac{q^2 \times H}{\pi \times \hbar} \rightarrow Constant$ | → 0 | → 0 | 4q²xH →Constant | #### ELECTRICAL-AND-THERMOELECTRIC PROPERTIES $[m_{n(p)}^* \equiv m_{c(v)}(x)[m_r(x)]$ Here, if denoting, for majority electrons (holes), the thermal conductivity by $\sigma_{Th.E[0]}(N,r_{d(a)},x,T) \quad \text{in} \quad \frac{W}{cm\times K} \quad , \quad \text{and} \quad \text{the} \quad \text{Lorenz} \quad \text{number} \quad L \quad \text{by:} \\ L = \frac{\pi^2}{3}\times\left(\frac{k_B}{q}\right)^2 = 2.4429637 \left(\frac{W\times\text{ohm}}{K^2}\right) = 2.4429637\times 10^{-8} \left(V^2\times K^{-2}\right) \quad , \quad \text{then} \quad \text{the} \quad \text{well-known}$ Wiedemann-Frank law states that the ratio, $\frac{\sigma_{Th.E[0]}}{\sigma_{E[0]}}, \quad \text{due to the (E-OP and O-EP) transition,}$ respectively, is proportional to the temperature T(K), as: $$\frac{\sigma_{\text{Th.E[O]}(N,r_{\text{d(a)}},x,T)}}{\sigma_{\text{E[O]}(N,r_{\text{d(a)}},x,T)}} = L \times T. (21)$$ Further, the resistivity is found to be given by: $\rho_{E[0]}(N, r_{d(a)}, x, T) \equiv 1/\sigma_{E[0]}(N, r_{d(a)}, x, T)$, noting again that $N^* \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$. In Eq. (20), one notes that at T=0 K, $\sigma_{E[0]}(N, r_{d(a)}, x, T=0K)$ is proportional to $E^2_{Fno(Fpo)}$, or to $(N^*)^{\frac{4}{3}}$. Thus , from Eq. (21), one has: $\sigma_{E[0]}(N=N_{CDn(NDp)}, r_{d(a)}, x, T=0K)=0$ and also $\sigma_{Th.E[0]}(N=N_{CDn(NDp)}, r_{d(a)}, x, T=0K)=0$ at $N^*=0$, at which the MIT occurs. #### **Electrical Coefficients** The relaxation time $\tau_{E[0]}$ is related to $\sigma_{ET[0T]}$ by^[1]: $\tau_{E[0]}(N,r_{d(a)},x,T) \equiv \sigma_{E[0]}(N,r_{d(a)},x,T) \times \frac{m_{n(p)}^*(x)\times m_o}{q^2\times (N^*/g_{c(v)})} \ .$ Therefore, the mobility $\mu_{E[0]}$ is given by: $$\mu_{E[0]}\big(N, r_{d(a)}, x, T\big) \equiv \ \mu_{E[0]}\big(N^*, r_{d(a)}, T\big) = \frac{q \times \tau_{E[0]}(N, r_{d(a)}, x, T)}{m_{n(p)}^*(x) \times m_o} = \frac{\sigma_{E[0]}(N, r_{d(a)}, x, T)}{q \times (N^*/g_{c(v)})} \ (\frac{cm^2}{V \times s}). \tag{22}$$ Here, at T=0K, $\mu_{E[0]}(N^*, r_{d(a)}, T)$ is thus proportional to $(N^*)^{1/3}$, since $\sigma_{E[0]}(N^*, r_{d(a)}, T=0K)$ is proportional to $(N^*)^{4/3}$. Thus, $\tau_{E[0]}(N^*=0, r_{d(a)}, T=0K)=0$ and $\mu_{E[0]}(N^*=0, r_{d(a)}, T=0K)=0$ at $N^*=0$, at which the MIT occurs. Then, the Hall factor is defined by: $$r_{\text{HE}\,[\text{HO}]}(N,r_{\text{d}(a)},x,T) \equiv \frac{(\tau_{\text{E}\,[D]}^{\,2})_{\text{FDDF}}}{[(\tau_{\text{E}\,[D]})_{\text{FDDF}}]^{2}} = \frac{G_{4}(y)}{[G_{2}\,(y)]^{2}}, \ \ y \equiv \frac{\pi}{\xi_{n(p)}(N,r_{\text{d}\,(a)},x,T)} = \frac{\pi k_{\text{B}}T}{E_{\text{Fn}\,(\text{Fp})}(N,r_{\text{d}\,(a)},x,T)}, \ \ \text{and therefore, the}$$ Hall mobility yields: $$\mu_{\text{HE[HO]}}(N, r_{d(a)}, x, T) \equiv \mu_{\text{E[O]}}(N, r_{d(a)}, x, T) \times r_{\text{HE[HO]}}(N^*, T) \left(\frac{cm^2}{V_{\times s}}\right), \tag{23}$$ Noting that, at T=0K, since $r_{\text{HE}[\text{HO}]}(N, r_{\text{d(a)}}, x, T) = 1$, one therefore gets: $\mu_{\text{HE}[\text{HO}]}(N, r_{\text{d(a)}}, x, T) \equiv \mu_{\text{E}[\text{O}]}(N, r_{\text{d(a)}}, x, T).$ #### Our generalized Einstein relation Our generalized Einstein relation is found to be defined as^[1]:
$$\frac{\frac{D_{\text{E}[0]}(N,r_{\text{d}(a)},x,T)}{\mu_{\text{E}[0]}(N,r_{\text{d}(a)},x,T)}}{\frac{1}{\mu_{\text{E}[0]}(N,r_{\text{d}(a)},x,T)}} \equiv \frac{N^*}{q} \times \frac{dE_{\text{Fn}(\text{Fp})}}{dN^*} \equiv \frac{k_{\text{B}} \times T}{q} \times \left(u \frac{d\xi_{\text{n}(p)}(u)}{du}\right) = \sqrt{\frac{3 \times L}{\pi^2}} \times T \times \left(u \frac{d\xi_{\text{n}(p)}(u)}{du}\right), \qquad \frac{k_{\text{B}}}{q} = \sqrt{\frac{3 \times L}{\pi^2}} \;, \tag{24}$$ Where $D_{E[0]}(N, r_{d(a)}, x, T)$ is the diffusion coefficient, $\xi_{n(p)}(u)$ is defined in Eq. (11), and the mobility $\mu_{E[0]}(N, r_{d(a)}, x, T)$ is determined in Eq. (22). Then, by differentiating this function $\xi_{n(p)}(u)$ with respect to u, one thus obtains $\frac{d\xi_{n(p)}(u)}{du}$. Therefore, Eq. (17) can also be rewritten as: $\frac{D_{E[0]}(N, r_{d(a)}, x, T)}{\mu_{E[0]}(N, r_{d(a)}, x, T)} = \frac{k_B \times T}{q} \times u \frac{V'(u) \times W(u) - V(u) \times W'(u)}{W^2(u)}$ Where $$W'(u) = ABu^{B-1}$$ and $V'(u) = u^{-1} + 2^{-\frac{3}{2}}e^{-du}(1 - du) + \frac{2}{3}Au^{B-1}F(u)\left[\left(1 + \frac{3B}{2}\right) + \frac{4}{3} \times \frac{bu^{-\frac{4}{3} + 2cu^{-\frac{3}{3}}}}{1 + bu^{-\frac{4}{3} + cu^{-\frac{3}{3}}}}\right]$ One remarks that: (i) as $u \to 0$, one has: $W^2 \simeq 1$ and $u[V' \times W - V \times W'] \simeq 1$, and therefore: $\frac{D_{E[O]}(u)}{\mu_{E[O]}} \simeq \frac{k_B \times T}{q}$, and (ii) as $u \to \infty$, one has: $W^2 \approx A^2 u^{2B}$ and $u[V' \times W - V \times W'] \approx \frac{2}{3} a u^{2/3} A^2 u^{2B}$, and therefore, in this **highly degenerate case** and at T=0K, the **above generalized Einstein** relation is reduced to the usual Einstein one: $\frac{D_{E[O]}(N_i r_{d(a)}, x_i T)}{\mu_{E[O]}(N_i r_{d(a)}, x_i T)} \approx \frac{2}{3} E_{Fno(Fpo)}(N^*)/q$. In other words, Eq. (24) verifies the correct limiting conditions. Furthermore, in the present degenerate case ($u \gg 1$), Eq. (24) gives: $$\frac{D_{\text{E[O]}}(N_i r_{\text{d(a)}}, x_i, T)}{\mu_{\text{E[O]}}(N_i r_{\text{d(a)}}, x_i, T)} \simeq \frac{2}{3} \times \frac{E_{\text{Fno}(\text{Fpo})}(u)}{q} \times \left[1 + \frac{4}{3} \times \frac{\left(bu^{-\frac{4}{3}} + 2cu^{-\frac{8}{3}}\right)}{\left(1 + bu^{-\frac{4}{3}} + cu^{-\frac{8}{3}}\right)}\right] \,,$$ where $$a = \left[3\sqrt{\pi}/4\right]^{2/3}$$, $b = \frac{1}{8} \left(\frac{\pi}{2}\right)^2$ and $c = \frac{62.3739855}{1920} \left(\frac{\pi}{2}\right)^4$. #### **Thermoelectric Coefficients** Here, as noted above, $E_{Fn(Fp)}\big(m_r(x)\big) > E_{Fn(Fp)}\big(m_{c(v)}(x)\big) \text{ or } \xi_{n(p)}\big(m_r(x)\big) > \xi_{n(p)}\big(m_{c(v)}(x)\big) \text{ for a given T, since } m_r(x) < m_{c(v)}(x) \text{ for given x, corresponding to: } \sigma_0\big(m_r(x)\big) > \sigma_E\big(m_{c(v)}(x)\big).$ Then, from Eq. (20a), obtained for $\sigma_{E[0]}(N, r_{d(a)}, x, T)$, the well-known Mott definition for the thermoelectric power or for the Seebeck coefficient, $S_{E[0]}$, is found to be given by: $$S_{\text{E[O]}}\big(N, r_{\text{d(a)}}, x, T\big) \equiv \frac{-\pi^2}{3} \times \frac{k_{\text{B}}}{q > 0} \times k_{\text{B}}T \times \frac{\partial \ln \sigma_{\text{E[O]}}}{\partial E}\Big]_{E = E_{\text{Fn(Fo)}}} = \frac{-\pi^2}{3} \times \frac{k_{\text{B}}}{q} \times \frac{\partial \ln \sigma_{\text{E[O]}}(\xi_{\text{n(p)}})}{\partial \xi_{\text{n(p)}}}.$$ Then, using Eq. (11), for the degenerate case, $\xi_{n(p)} \geq 0$, one gets, by putting $F_{SbE[0]}(N, r_{d(a)}, x, T) \equiv \left[1 - \frac{y^2}{3 \times G_2\left(y = \frac{\pi}{E-C_1}\right)}\right],$ $$\begin{split} S_{\text{E[O]}}\big(N, r_{\text{d(a)}}, x, T\big) &\equiv \frac{-\pi^2}{3} \times \frac{k_{\text{B}}}{q} \times \frac{2F_{\text{SbE[O]}}(N^*, T)}{\xi_{n(p)}} = -\sqrt{\frac{3\times L}{\pi^2}} \times \frac{2\times \xi_{n(p)}}{\left(1 + \frac{3\times \xi_{n(p)}^2}{\pi^2}\right)} = -2\sqrt{L} \times \frac{\sqrt{2T_{\text{E[O]Mott}}}}{1 + 2T_{\text{E[O]Mott}}} \left(\frac{V}{K}\right) < 0, \quad ZT_{\text{E[O]Mott}} &= \frac{\pi^2}{3\times \xi_{n(p)}^2} \end{split}$$ according to: $$\frac{\partial \, S_{\text{E[O]}}}{\partial \, \xi_{\text{n(p)}}} = \sqrt{\frac{3 \times L}{\pi^2}} \times 2 \times \frac{\frac{3 \times \xi_{\text{n(p)}}^2}{\pi^2} - 1}{\left(1 + \frac{3 \times \xi_{\text{n(p)}}^2}{\pi^2}\right)^2} = \sqrt{\frac{3 \times L}{\pi^2}} \times 2 \times \frac{ZT_{\text{E[O]Mott}} \times \left[1 - ZT_{\text{E[O]Mott}}\right]}{\left[1 + ZT_{\text{E[O]Mott}}\right]^2}.$$ Here, one notes that: (i) as $\xi_{n(p)} \to +\infty$ or $\xi_{n(p)} \to +0$, one has a same limiting value of $S_{E[0]}$: $S_{E[0]} \to -0$, (ii) at $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$, since $\frac{\partial S_{E[0]}}{\partial \xi_{n(p)}} = 0$, one therefore gets: a minimum $\left(S_{E[0]}\right)_{min.} = -\sqrt{L} \simeq -1.563 \times 10^{-4} \left(\frac{V}{K}\right)$, and (iii) at $\xi_{n(p)} = 1$ one obtains: $S_{E[0]} \simeq -1.322 \times 10^{-4} \left(\frac{V}{K}\right)$. Further, the figure of merit, ZT, is found to be defined by: $$ZT_{E[0]}(N, r_{d(a)}, x, T) \equiv \frac{S^2 \times \sigma_{E[0]} \times T}{\kappa} = \frac{S^2}{L} = \frac{4 \times ZT_{E[0]Mott}}{[1 + ZT_{E[0]Mott}]^2}.$$ (26) Here, one notes that: (i) $\frac{\partial (ZT_{E[0]})}{\partial \xi_{n(p)}} = 2 \times \frac{S_{E[0]}}{L} \times \frac{\partial S_{E[0]}}{\partial \xi_{n(p)}}$, $S_{E[0]} < 0$, (ii) at $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$, since $\frac{\partial (ZT_{E[0]})}{\partial \xi_{n(p)}} = 0$, one gets: a maximum $\left(ZT_{E[0]}\right)_{max} = 1$, and $ZT_{E[0]Mott} = 1$, and (iii) at $\xi_{n(p)} = 1$, one obtains: $ZT_{E[0]} \simeq 0.715$ and $ZT_{E[0]Mott} = \frac{\pi^2}{3} \simeq 3.290$. Finally, the first Van-Cong coefficient, VC1_{E101}, can be defined by: $$VC1_{E[0]}(N, r_{d(a)}, x, T) \equiv -N^* \times \frac{d S_{E[0]}}{dN^*} \left(\frac{V}{K}\right) = N^* \times \frac{\partial S_{E[0]}}{\partial \xi_{n(p)}} \times -\frac{\partial \xi_{n(p)}}{\partial N^*}, \tag{27}$$ being equal to 0 for $\xi_{n(p)}=\sqrt{\frac{\pi^2}{a}}$, and the second Van-Cong coefficient, VC2_{E [0]}, as: $$VC2_{E_{1}01}(N, r_{d(a)}, x, T) \equiv T \times VC1_{E_{1}01}(V),$$ (28) the Thomson coefficient, Ts, by: $$Ts_{E[0]}\left(N, r_{d(a)}, x, T\right) \equiv T \times \frac{dS_{E[0]}}{dT}\left(\frac{V}{K}\right) = T \times \frac{\partial S_{E[0]}}{\partial \xi_{n(p)}} \times \frac{\partial \xi_{n(p)}}{\partial T}, \tag{29}$$ being equal to 0 for $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}}$, and the Peltier coefficient, Pt_{E (0)}, as: $$Pt_{E[0]}(N, r_{d(a)}, x, T) \equiv T \times S_{E[0]}(V).$$ (30) One notes here that for given physical conditions N (or T) and for the decreasing $\xi_{n(p)}$, since $VC1_{E[0]}(N, r_{d(a)}, x, T)$ and $Ts_{E[0]}(N, r_{d(a)}, x, T)$ are expressed in terms of $\frac{-d \, S_{E[0]}}{dN^*}$ and $\frac{d \, S_{E[0]}}{dT}$, one has: $$[\ VC1_{E[0]}, Ts_{E[0]}] < 0 \quad \text{for} \quad \xi_{n(p)} > \sqrt{\frac{\pi^2}{a}} \quad , \quad [\ VC1_{E[0]}, Ts_{E[0]}] = 0 \quad \text{for} \quad \xi_{n(p)} = \sqrt{\frac{\pi^2}{a}} \quad , \quad \text{and} \quad [VC1_{E[0]}, Ts_{E[0]}] > 0 \quad \text{for} \quad \xi_{n(p)} < \sqrt{\frac{\pi^2}{a}} \quad , \quad \text{and} \quad [VC1_{E[0]}, Ts_{E[0]}] > 0 \quad \text{for} \quad \xi_{n(p)} < \sqrt{\frac{\pi^2}{a}} \quad , \quad \text{and} \quad [VC1_{E[0]}, Ts_{E[0]}] > 0 \quad \text{for} \quad \xi_{n(p)} < \sqrt{\frac{\pi^2}{a}} \quad , \quad \text{and} \quad [VC1_{E[0]}, Ts_{E[0]}] > 0 \quad \text{for} \quad \xi_{n(p)} < \sqrt{\frac{\pi^2}{a}} \quad , \quad \text{for} \quad \xi_{n(p)} < \sqrt{\frac{\pi^2}{a}} \quad .$$ - (i) $S_{E[0]}$, determined in Eq. (25), thus presents **a same minimum** $\left(S_{E[0]}\right)_{min.} = -\sqrt{L} \simeq -1.563 \times 10^{-4} \left(\frac{V}{K}\right)$, - (ii) $ZT_{E[0]}$, determined in Eq. (26), therefore presents **a same maximum:** $(ZT_{E[0]})_{max.} = 1$, since the variations of $ZT_{E[0]}$ are expressed in terms of $[VC1_{E[0]}, Ts_{E[0]}] \times S_{E[0]}, S_{E[0]} < 0$. Furthermore, it is interesting to remark that the VC2_{E[0]} -coefficient is related to our generalized Einstein relation (24) by: $$\frac{k_{\text{B}}}{q} \times \text{VC2}_{\text{E[O]}} \big(N, r_{\text{d(a)}}, x, T \big) \equiv -\frac{\partial \, S_{\text{E[O]}}}{\partial \, \xi_{n(p)}} \times \frac{D_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)}{\mu_{\text{E[O]}} \big(N, r_{\text{d(a)}}, x, T \big)} \left(\frac{V^2}{K} \right), \\ \frac{k_{\text{B}}}{q} = \sqrt{\frac{a \times L}{\pi^2}} \,, \tag{31}$$ According, in this work, with the use of our Eq. (25), to: $$VC2_{\text{E[O]}}\big(N, r_{\text{d(a)}}, x, T\big) \equiv -\frac{D_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)}{\mu_{\text{E[O]}}(N, r_{\text{d(a)}}, x, T)} \times 2 \times \frac{ZT_{\text{E[O]Mott}} \times [1 - ZT_{\text{E[O]Mott}}]^2}{\left[1 + ZT_{\text{E[O]Mott}}\right]^2} \ (V).$$ Of course, our relation (31) is reduced to: $\frac{v_{E[0]}}{v_{E[0]}}$, $VC1_{E[0]}$ and $VC2_{E[0]}$, being determined respectively by Equations (24, 27, 28). This may be a new result. #### **CONCLUDING REMARKS** Some important concluding remarks can be repoted as follows. In the $n^+(p^+)$ – $GaP_{1-x}Sb_x$ – crystalline alloy, $0 \le x \le 1$, x being the concentration, the optical coefficients, and the electrical-and-thermoelectric laws, relations, and various coefficients, being enhanced by: - (i) our static dielectric constant law, $\epsilon(r_{d(a)},x)$, $r_{d(a)}$ being the donor (acceptor) d(a)-radius, given in Equations (1a, 1b), - (ii) our accurate Fermi energy, $E_{Fn(Fp)}$, given in Eq. (11) and accurate with a precision of the order of 2.11×10^{-4} [9], affecting all the expressions of optical, and electrical-andthermoelectric coefficients, - (iii) our optical-and-electrical transformation duality given in Eq. (15), and finally - (iv)our optical-and-electrical conductivity models, given in Eq. (18, 20a), are now investigated,
basing on our physical model, and Fermi-Dirac distribution function, as those given in our recent works.^[1, 2] It should be noted here that for x=0, these obtained numerical results may be reduced to those given in the n(p)-type degenerate GaP-crystal. [1, 3] Then, some important remarks can be repoted as follows. (1) As observed in Equations (3, 5, 6), the critical impurity density $N_{CDn(CDp)}$, defined by the generalized Mott criterium in the metal-insulator transition (MIT), is just the density of electrons (holes), localized in the exponential conduction (valence)-band tail (EBT). $N_{CDn(CDp)}^{EBT}$, being obtained with a precision of the order of 2.92×10^{-7} , respectively, as given in our recent works. [3] Therefore, the effective electron (hole)-density can be defined as: $N^* \equiv N - N_{CDn(CDp)} \simeq N - N_{CDn(CDp)}^{EBT}$, N being the total impurity density, as that observed in the compensated crystals. - (2) The ratio of the inverse effective screening length $k_{sn(sp)}$ to Fermi wave number $k_{Fn(kp)}$ at 0 K, $R_{sn(sp)}(N^*)$, defined in Eq. (7), is valid at any N^* . - (3) From Equations (20a, 21-30), for any given x, $r_{d(a)}$ and N (or T), with increasing T (or decreasing N), one obtains: (i) for $\xi_{n(p)} = \sqrt{\frac{\pi^2}{a}} \simeq 1.8138$, while the numerical results of the Seebeck coefficient $S_{ET[0T]}$ present a same minimum $\left(S_{E[0]}\right)_{min.} \left(\simeq -1.563 \times 10^{-4} \frac{V}{K}\right)$, those of the figure of merit $ZT_{E[0]}$ show a same maximum $(ZT_{E[0]})_{max.} = 1$, (ii) for $\xi_{n(p)} = 1$, the numerical results of $S_{E[0]}$, $ZT_{E[0]}$, the Mott figure of merit $ZT_{E[0]Mott}$, the first Van-Cong coefficient $VC1_{E[0]}$, and the Thomson coefficient $Ts_{E[0]}$, present the same results: $-1.322 \times 10^{-4} \frac{V}{K}$, 0.715, 3.290, $1.105 \times 10^{-4} \frac{V}{K}$, and $1.657 \times 10^{-4} \frac{V}{K}$, respectively, and finally (iii) for $\xi_{n(p)} = \sqrt{\frac{\pi^2}{a}} \simeq 1.8138$, $ZT_{E[0]Mott} = 1$, as those given in our recent work [1]. It seems that these same results could represent a new law in the thermoelectric properties, obtained in the degenerate case $(\xi_{n(p)} \ge 0)$. - (4) Further, our electrical-and-thermoelectric relation is given in Eq. (31) by: $$\begin{split} &\frac{k_B}{q} \times \text{VC2}_{E[0]}\big(N, r_{d(a)}, x, T\big) \equiv -\frac{\partial S_{E[0]}}{\partial \xi_{n(p)}} \times \frac{D_{E[0]}(N, r_{d(a)}, x, T)}{\mu_{E[0]}(N, r_{d(a)}, x, T)} \Big(\frac{V^2}{K}\Big), \quad \frac{k_B}{q} = \sqrt{\frac{3 \times L}{\pi^2}} \;, \; \text{according, in this work, to:} \\ &\text{VC2}_{E[0]}\big(N, r_{d(a)}, x, T\big) \equiv -\frac{D_{E[0]}(N, r_{d(a)}, x, T)}{\mu_{E[0]}(N, r_{d(a)}, x, T)} \times 2 \times \frac{ZT_{E[0]Mott} \times [1 - ZT_{E[0]Mott}]}{[1 + ZT_{E[0]Mott}]^2} \;\; (V) \;, \; \text{being reduced to:} \; \frac{D_{E[0]}}{\mu_{E[0]}} \;, \\ &\text{VC1}_{E[0]} \;\; \text{and} \;\; \text{VC2}_{E[0]}, \; \text{determined respectively in Equations (24, 27, 28).} \; \text{This can be a new result.} \end{split}$$ (5) Finally, for given [N, $r_{d(a)}$, x, T], all the numerical results of [$\sigma_{0-EP}(E)$, $\kappa_{0-EP}(E)$, $\varepsilon_{20-EP}(E)$, and $\alpha_{0-EP}(E)$], given in the O-EP, and those of [$\sigma_{E-OP}(E)$, $\kappa_{E-OP}(E)$, $\varepsilon_{2E-OP}(E)$, and $\alpha_{E-OP}(E)$], given in the E-OP, being determined respectively from Equations (18, 19b-19d] and also reported in Table 3, for any E, could thus be used to explain all their corresponding past-orfuture experimental results. Therefore, one observes that the optical conductivity σ_0 has a same form with that of the electrical conductivity, σ_E , given in Eq. (20a), being used to determine the new laws, relations, and coefficients, investigated for the electrical and thermoelectric properties, observed in $n^+(p^+) - p(n) - GaP_{1-x}Sb_x$ - crystalline alloy, as those reported in Table 3 and also in Equations (18, 19b-19d, 20a-20d, 21-31). #### **REFERENCES** - 1. Van Cong, H. Optical-Electrical Phenomenon _ Electro-Optical Phenomenon-Transition, Observed in n(p)-Type Degenerate GaP(1-x)Sb(x)-Crystalline Alloy (12). WJERT, 2025; 11(8): 78-100. - 2. Van Cong, H. Optical Coefficients in the n(p)-Type Degenerate GaP(1-x) Sb(x) Crystalline Alloy, Due to the New Static Dielectric Constant-Law and the Generalized Mott Criterium in the Metal-Insulator Transition (18). WJERT, 2024; 10(12): 326-351. - Van Cong, H. New Critical Impurity Density in Metal-Insulator Transition, obtained in n(p)-Type Degenerate GaP_{1-x} As_x[Te_x,Sb_x] –Crystalline Alloys, being Just That of Carriers Localized in Exponential Band Tails (IV). WJERT, 2024; 10(5): 14-29. - 4. Van Cong H. Same maximum figure of merit ZT(=1), due to the effect of impurity size, obtained in the n(p)-type degenerate Ge -crystal ($\xi_{n(p)} \ge 1$), at same reduced Fermi energy $\xi_{n(p)} = \sqrt{\frac{\pi^2}{3}} \simeq 1.8138$, same minimum Seebeck coefficient (S) $_{min.} \left(\simeq -1.563 \times 10^{-4} \frac{V}{K} \right)$, same maximum (ZT) $_{max.} = 1$, and same (ZT) $_{Mott} \left(= \frac{\pi^2}{3\xi_{n(p)}^2} = 1 \right)$, SCIREA Journal of Physics., 2023; 8(4): 407-430. - 5. Van Cong, H. Same Maximal Figure of Merit ZT(=1), Due to the Effect of Impurity Size, Obtained in the n(p)-Type Degenerate GaAs-Crystal ($\xi_{n(p)} \ge 1$), at Same Reduced Fermi Energy $\xi_{n(p)}$ (= 1.8138) and Same Minimum Seebeck Coefficient $S = -1.563 \times 10^{-4} \frac{V}{K}$, at which Same (ZT)_{Mott} $\left(= \frac{\pi^2}{3 \xi_{n(p)}^2} = 1 \right)$. SCIREA Journal of Physics, 2023; 8(2): 133-157. - 6. Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. American Journal of Modern Physics, 2018; 7(4): 136-165. - 7. Kim, H. S. et al. Characterization of Lorenz number with Seebeck coefficient measurement. APL Materials, 2015; 3(4): 041506. - 8. Hyun, B. D. et al. Electrical-and-Thermoelectric Properties of 90%Bi₂Te₃ 5%Sb₂Te₃ 5%Sb₂Se₃ Single Crystals Doped with SbI₂. Scripta Materialia, 1998; 40(1): 49-56. - 9. Van Cong, H. and Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., 1993; 73: 1545-1546. - 10. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State Communications, 1984; 49: 697-699. - 11. Van Cong, H. Diffusion coefficient in degenerate semiconductors. Phys. Stat. Sol. (b), 1984; 101: K27. - 12. Van Cong, H. and Doan Khanh, B. Simple accurate general expression of the Fermi-Dirac integral $F_i(a)$ and for j > -1. Solid-State Electron., 1992; 35(7): 949-951. - 13. Van Cong, H. New series representation of Fermi-Dirac integral $F_i(-\infty < a < \infty)$ for arbitrary j> -1, and its effect on $F_i(a \ge 0_+)$ for integer $j \ge 0$. Solid-State Electron., 1991; 34(5): 489-492. - 14. Van Cong, H. and G. Mesnard. Thermoelectric effects of heavily doped semiconductors at low temperatures. Phys. Stat. Sol. (b), 1972; 50(1): 53-58. - 15. Van Cong, H. Fermi energy and band-tail parameters in heavily doped semiconductors. Journal of Physics and Chemistry of Solids, 1975; 36(11): 1237-1240. - 16. Van Cong, H. Quantum efficiency and radiative lifetime in degerate n-type GaAs. Journal of Physics and Chemistry of Solids, 1981; 36(11): 95-99.