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ABSTRACT

This study presents a novel approach to mitigating peak-demand-
induced disruptions in power distribution networks through the
integration of solar distributed generation (DG) with an artificial neural
network (ANN) predictive controller. Addressing a critical gap in
existing grid response strategies which remain centralized and reactive,
the study develops a data-driven control architecture combining ETAP-
based load flow analysis with MATLAB/Simulink simulations of a
217.12 kW solar DG system. A Bayesian regularized ANN trained on
historical load profiles (residential, commercial, industrial) achieves
92% accuracy in predicting peak windows (09:00-18:00), enabling
proactive DG dispatch. During peak demand, the DG supplies 200 kW
(33% of total load), reducing grid dependence from 600 kW to 400 kW
and cutting service disruptions by 50%. Voltage fluctuations improve
from +10% to +5%. Unlike conventional demand response, this

solution maintains grid stability without load rescheduling, which is

critical for industrial users. Validated on Nigeria’s Cross River State Waterboard (CRSWB)

distribution network, this work demonstrates how machine learning-enhanced DG integration
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can transform passive distribution systems into resilient smart grids. The methodology is
scalable to other regions with unreliable centralized generation, offering a blueprint for

energy transition in developing economies.

KEYWORDS: Solar PV, Grid-tied DG system, Al-controlled, Smart grid, Renewable

integration, Machine learning optimization, Developing economies.

1. INTRODUCTION

Distributed generation (DG) refers to electricity generation from sources located near end-
users, contrasting with centralized power plants. It offers benefits such as increased energy
efficiency, reliability, and reduced transmission losses, while promoting renewable energy

Sources.

Historically, the energy sector emphasized centralized generation until co-generation systems
(combined heat and power) emerged, improving overall efficiency by providing both
electricity and heat locally (Zulu & Jayaweera, 2014). The late 20th century saw a rise in
renewable energy technologies like solar and wind, which facilitated decentralized power
generation. Net metering policies were introduced to allow consumers with DG systems to

contribute excess energy back to the grid (Kerby & Tarekegne, 2024).

This research focuses on maintaining power network stability amidst fluctuating load
demands through systematic implementation of grid-tied distributed generation which
reshapes the grid profile without rescheduling or disconnection of consumer load. Typically,
Demand response involves consumers adjusting their electricity usage based on grid
conditions or prices, helping to balance supply and demand and optimize system efficiency
(Aalami et al., 2010; Zulu & Jayaweera, 2014). Conversely, grid response, or grid flexibility,
refers to the power system's ability to adapt generation and electricity flow in response to
changing demands, which is essential for integrating variable renewable energy sources like
solar and wind. However, both demand and grid responses are centralized, often slow, and do
not account for distributed generation (DG) units located near load points. DG can provide
additional power sources, helping to balance generation and load while maintaining
acceptable voltage and frequency levels, especially during peak periods. Advancements in
power electronics and energy storage have been crucial for integrating DG with the grid,
enhancing reliability and managing fluctuations in renewable energy output. Microgrids and

smart grid technologies, which incorporate advanced communication and control systems,

www.wjert.orq 1SO 9001: 2015 Certified Journal 2




Ntem et al. World Journal of Engineering Research and Technology

further support DG integration. Despite its advantages, DG faces challenges such as

regulatory barriers, power quality issues, and the need for standardized technologies.

Policymakers have implemented various incentives to encourage DG adoption. The future of
power systems is expected to involve increased integration of communication technologies,
intelligent control, and active customer participation in energy management (Akpama et al.,
2020; Kavya et al., 2021). Neural networks are emerging as valuable tools for optimizing DG
placement and control, enhancing system reliability and efficiency across different load
types—industrial, commercial, and residential (Ahmad et al., 2017; Kavya et al., 2021).
Economically, DG can lower electricity costs by generating power close to consumers,
reducing transmission losses, and enhancing system resilience (Ahmad et al., 2017; Kerby &
Tarekegne, 2024). To mitigate peak demand grid service disruptions in a distribution power
network, this research adopts the machine learning optimization approach which uses
Acrtificial Neural Network (ANN) control technique to model distributed power system from
load profile data of an existing network. This work models the Cross River State waterboard
distribution network. The historic daily load profile data for residency, commercial and
industrial loads in the network was collected via smart meters at 30-minute intervals. The
Cross-river state water board has a responsibility to treat and supply portable water for
Calabar and its environs. To achieve this goal, power supply has to be adequately available to
meet the load demand for daily production schedule, both at peak and off-peak demand
periods. The Power Holding Company of Nigeria (PHCN) is currently the only functional
source of power. The water treatment plant section of the network is one of the most
important sections as it is responsible for over 60% of the total energy demand. A staff

quarters and an administrative office are other sections that are part of the power network.

1.1 Literature Review

The power system network is designed to transmit and distribute electricity efficiently and
reliably, while ensuring the balance between generation and demand, and maintaining the
required levels of voltage and frequency. The design and operation of the power system
network are critical to providing a stable and reliable supply of electricity to consumers.
Distributed generation (DG) presents a promising technique that ensures provision of stable
and reliable supply of electricity to consumers (Abdel-Rahman et al., 2019; Ahmad et al.,
2017). Electricity demand is dynamic, with the power grid experiencing varying stress across

the day. The peak demand period occurs when the total electricity demand across a power
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grid reaches its maximum level within a 24-hour period. During peak demand periods, the
power grid suffers significant stress while struggling to meet the high level of electricity
consumption (Koutsoukis et al., 2017). When the grid fails to keep up with peak demand,
grid service disruption occurs within the affected network leading to huge losses to both the
utility and the customer. This research models distributed generation with neural network
control as a grid resilience strategy to mitigate peak demand grid service disruptions in power
system (Hrisheekesha & Sharma, 2010; Kahrobaeian & Mohamed, 2015).

Some of the main distribution generation types include

i. Solar Photovoltaic (PV) Systems: These systems convert sunlight directly into electricity
using photovoltaic cells, usually installed on rooftops or in designated solar farms (Akpama
etal., 2011; Idoniboyeobu & Udoha, 2018; National Renewable Energy Laboratory, 2019).

ii. Microturbines: These are small-scale gas turbines that can generate electricity, often used
for combined heat and power (CHP) applications (Kilin et al., 2020).

iii. Wind Turbines: Small-scale wind turbines can be installed close to the point of use to
generate electricity from the wind (Ferris & Liu, 2016).

iv. Fuel Cells: Electrochemical components that transform chemical energy from fuels like

hydrogen directly into electricity, with high efficiency and low emissions (Jiang et al., 2023).

Aalami et al. (2010) modeled and prioritized demand response programs in power markets,
presenting an extended responsive load economic model, TOPSIS method, and AHP for
prioritizing demand response programs in power markets; the model is based on price
elasticity and customer benefit function. Numerical studies were conducted on the load curve
of the Iranian power grid in 2007. The modular nature of DG systems allows for easier
installation compared to large centralized plants, further promoting their feasibility and
attractiveness in the energy market. Abdel-Rahman et al. (2019) used the IEEE 33-bus radial
distribution system to evaluate the impact of distributed generation on distribution system
reliability; the optimal DG penetration level that maximizes reliability benefits was found to
be around 30-40% of the total system load. The paper concludes that proper planning, control
and coordination of DG is crucial to ensure improved reliability and stability in the operation
of distribution systems with high DG penetration. Abdolrasol et al. (2021) presented an
energy management scheduling scheme for microgrids in the virtual power plant system
using artificial neural networks. Artificial neural networks (ANN) effectively manage

microgrids in virtual power plants, reducing fuel consumption, CO, emissions, and
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increasing system efficiency compared to other solutions. Aderibigbe et al. (2022) reviewed
the impact of distributed generations on power systems stability, showing that distributed
generation can optimize power system stability, but current research lacks focus on artificial
intelligence, supervisory control, and data acquisition systems, highlighting a need for further
research. Gao and Zhu (2022) suggested a new objective function to increase the maximum
utilization ratio of demand response in voltage and reactive power optimization process; it
uses capacitors banks (CB), reactor banks (RB), and static var generator (SVG) and DR as
control variables to optimize the voltage and reactive power of power grid with optimal
regulation effect achieved in IEEE 33 bus distribution system. The paper further introduces
the demand response (DR) load, such as civil load and industrial load, to participate in the
optimization. Korukonda et al. (2022) presented a model-free adaptive neural controller for
standalone photovoltaic distributed generation systems with disturbances where the model-
free adaptive neural controller (ANC) improved the stability and robustness of standalone
photovoltaic distributed generation systems in the presence of disturbances and parameter

intermittencies.

While prior work (Abdel-Rahman et al., 2019; Aderibigbe et al., 2022) explores DG's impact
on grid stability, few studies address Al-driven control in real-world networks, particularly in
regions with unreliable grids (e.g., Nigeria). This work bridges this gap by proposing a neural

network-based DG controller for peak-demand mitigation.

2.0 MATERIALS AND METHODS

This study employs a hybrid simulation-optimization framework to design and validate a
neural network-controlled solar DG system for the Cross River State Waterboard (CRSWB)
network. The methodology integrates ETAP-based load flow analysis, MATLAB/Simulink
simulations, and machine learning to address peak-demand disruptions. The workflow is

structured as follows:

2.1. Data Acquisition and Load Profiling

Field Data Collection

e Source: Smart meters recorded 30-minute interval data (current, voltage, frequency,
power factor) over 12 months for residential (Staff Quarters), commercial (Administrative
Building), and industrial (Water Treatment Plant) loads (Table 2.2)

www.wjert.orq 1SO 9001: 2015 Certified Journal 5)




Ntem et al. World Journal of Engineering Research and Technology

e Power Calculation

P =43 IVcos0 2.1)
Where
o P =Total three-phase power (in watts)
e | =Line current
e V = Line voltage (0.415kV)
e cos@ = Power factor (0.8-0.95)

2.2 Neural Network Design and Training

Distributed generation plays an essential role in developing a resilient and stable power
systems, but require advanced control technique for effective integration and protection.
Choosing a control technique is very important as it determines the data requirement for
implementing DG integration in existing power network. Artificial Neural network was used
as the optimization method for this research. Matlab Neural Network Toolbox offers a range
of functions and algorithms for designing, training, and implementing neural networks. It
includes support for various network architectures and training algorithms, making it suitable

for DG control applications.

1. Architecture

o 3-layer feedforward ANN: Input (24-hour load profiles), hidden layer (20 neurons, tanh
activation), output (DG dispatch commands).

o Training Algorithm: Bayesian regularization (MATLAB NN Toolbox) to minimize

overfitting.

2. Training Protocol
o Dataset: 70% training, 15% validation, 15% testing (1-year data).

o Performance Metric

—

Root Mean Square Error (RMSE) = M'I-%-E?:i (v — ¥.)° (2.2)

Where

n = number of observations
v; = actual value

¥; = predicted value

RMSE is used for assessing the accuracy of the model, lower values indicate better fit.
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o Inputs: Historical load profiles (Table 2.2); Outputs: Optimal DG setpoints.
The neural network was trained on Table 2.2’s load profiles, achieving RMSE < 5 kW
(~0.8% of peak demand), ensuring accurate DG dispatch decisions (Figures 3.1-3.2).

2.3 Load Flow Analysis and System Modeling

1. ETAP One-Line Diagram: This one-line diagram provides a simplified, single-line
representation of the complex electrical network, allowing for easy visualization and analysis
of the power flow, voltage levels, and load distribution within the system.

Figure 2.1 One-line diagram of 33kv CRSWB power network showing rating of

equipment and their location.

o Network Configuration: 33 kV/0.415 kV transformers (T1-T3), 10 buses, and variable
loads (Figure 2.2).
o Voltage Stability: Baseline fluctuations of +10% during peaks (09:00-18:00).

Table 2.1 Load Flow Study Report for CRSWB distribution network.

LOAD FLOW REPORT

|||||
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Table 2.1 show the load flow report for the network; it provides crucial insights into the
operation of the network.

Each bus has specific voltage levels, generation capacity and loads. For example, Busl is a
generator bus and has a voltage of 33 kV, while Bus2 has no generation. The report shows
the voltage at each bus as maintaining voltage levels within acceptable limits is essential for

system stability.

Table 2.2 Daily Power Consumption in Line with Plant Production Schedule.

STAFFE ADMIN. PUMP FILTER | CHEMICAL
TOTD QUARTERS (KW) BUILDING | STATION | STATION | STATION
(kW) (kW) (kW) (kW)
0 15 20 178 39 32
0.5 17 20 281 38 32
1 20 20 274 37 34
1.5 20 20 271 37 31
2 20 42 280 38 31
2.5 22 40 275 38 31
3 20 40 272 38 31
3.5 21 37 9 39 31
4 20 40 13 31 31
4.5 25 40 8 31 0
5 30 42 11 30 0
5.5 31 43 262 25 0
6 35 41 256 20 0
6.5 36 40 246 21 0
7 45 39 0 26 0
7.5 47 35 0 22 5
8 40 70 0 27 5
8.5 39 74 0 30 5
9 35 60 185 110 30
9.5 30 68 180 152 30
10 27 76 275 35 30
10.5 22 120 279 32 30
11 20 123 277 30 30
11.5 22 127 190 111 30
12 35 123 191 152 30
125 35 154 227 37 30
13 40 161 225 34 30
135 40 187 227 32 30
14 38 190 135 111 30
145 36 194 132 154 30
15 36 200 310 34 30
15.5 36 161 312 34 30
16 39 150 309 31 30
16.5 40 122 313 30 30
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17 50 70 268 30 30
175 50 64 264 31 30
18 60 61 264 31 30
18.5 60 52 5 27 5
19 50 50 5 34 5
19.5 49 47 15 35 5
20 40 35 13 35 5
20.5 40 35 18 34 5
21 31 35 192 115 33
21.5 36 35 190 114 34
22 24 38 197 39 32
22.5 24 38 190 37 33
23 20 38 182 37 32
23.5 20 38 181 120 32
24 15 20 181 161 32
MAX.
POWER 80kW 220kW 534kW 170kW 35kW
TOTD = TIME OF THE DAY |

Plots illustrating the residential, commercial and industrial load patterns of the power

network from table 2.2 (Daily Power Consumption in Line with Plant Production Schedule)

are represented in figure 3.1 and 3.2.

2.

DG Integration

Solar PV System

Capacity: 217.12 kW (944 x Q-Cells 230W panels).

Configuration: 16-series x 59-parallel strings (480 V DC, 452.5 A).
Inverter: 95% efficiency, 0.415 kV AC output

2.4 MATLAB/Simulink Simulation Framework

1.

o

Model Components
Grid  power, solar DG, inverters, transformers, and dynamic loads
(residential/commercial/industrial).

Control System: ANN controller interfaced with DG and grid (Figure 2.3).

Simulation Scenarios
Traditional System: Grid-only supply (Figure 3.1).
DG-Integrated System: ANN-controlled dispatch (Figure 3.2).
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2.5 Validation Metrics

1.

Technical Performance:

Voltage Stability: IEEE 1547 compliance (£5% tolerance).
DG Penetration: 30-40% of total load, per.[”

Economic Validation:

Cost Savings: Savings = AP,z X Tariff

3.0 RESULTS AND DISCUSSION

3.1 Traditional Power System Performance

Grid power (kW)
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o | | ]
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& 400 1 : | | 5

8 200 ' ! | : ;
2 200 , , 1
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Time Time

Figure 3.1 Traditional Power System Simulink Model results.

The baseline simulation (Figure 3.1) reveals significant grid stress during peak hours (09:00—
18:00), with grid power demand reaching 600 kW (Table 2.2: Total Load = 534 kW Pump
Station + 170 kW Filter Station + 35 kW Chemical Station).
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Key observations include

o Voltage Instability: Voltage fluctuations exceeded £10% during peak periods (09:00—
18:00), aligning with the 80kW residential (Staff Quarters) and 200 kW commercial
(Administrative Building) spikes in Table 2.2.

o Service Disruptions: Frequent outages occurred when grid demand surpassed 500 kW,
corroborating literature claims (Koutsoukis et al., 2017) that 50-70% of disruptions occur

during peaks.

3.2 Distributed Power System with Neural Network Control

Grid power (kW) 600 Pump Station
600 .
) 400 | T T T i .
E 400 ‘ ‘ - @
= 8 200 ‘ | .
= 200 | ‘ ‘ - {1 -
o
ol ‘ ,
0 |
Distributed Generation (kW) Filter Station

N
o
[=]

DG Power
E

Staff Quarters 50 Chemical Station
60 1 T T 1 1 a0k
— Ts}
R 1 4
g 40 g 20-
S S
20 . ol
0 | | | ] 20
Administrative Building Total Load (kW)
300 . ; ; v ; .
600} ] ] ! 4
% 200 1 m 400, | | i
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— 100 t 1 = 200 | i
0 [ | | I 0 | | | |
0 5 10 15 20 0 5 10 15 20
Time Time

Figure 3.2 Distributed Power System Simulation Results.

The DG-integrated system (Figure 3.2) demonstrates transformative improvements

1. Peak Demand Mitigation:

o The neural network, trained on Table 2.2’s historical profiles (RMSE < 5 kW, <1%
error relative to 600 kW peaks), accurately forecasts peak windows (09:00-18:00).

o The217.12 kW solar DG supplies 200 kW during peaks (Figure 3.2), reducing grid
dependence to 400 kW (33% reduction).

o Ciritical Load Support: DG prioritizes high-risk sectors like the Pump Station (peak: 534

kW in Table 2.2), ensuring uninterrupted operation.
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Grid Stability Enhancements:

Voltage fluctuations improved from £10% to +5% (Figure 3.2), meeting IEEE 1547
standards for distribution systems.

Service disruptions decreased by 50%, validating the controller’s ability to balance DG
output with real-time demand.

Demand-Agnostic Operation:

Unlike conventional demand response (e.g., Aalami et al., 2010; Gao & Zhu, 2022), the
system maintains stability without rescheduling loads. For example:

The Administrative Building’s peak demand (200 kW in Table 2.2) is fully supported by
DG during 09:00-18:00.

Staff Quarters’ evening spikes (60 kW at 18:00-20:00) remain unaffected, demonstrating

user-centric resilience.

3.3 Statistical Validation

Neural Network Accuracy: The model’s RMSE < 5 kW (tested on 1 year of 30-minute
interval data) ensures reliable predictions, with <2% deviation in DG dispatch timing.

DG Contribution: During peak hours, the DG supplies 33% of total load (200 kW/600
kW), aligning with Abdel-Rahman et al. (2019)’s finding that 30-40% DG penetration
maximizes reliability.

Economic Impact: Grid consumption reduction (600 kW — 400 kW) implies ~33% cost
savings during peaks, based on PHCN’s tariff of about :¥250/kWh.

Table 3.1: Comparative Summary of Result and Discussion.

Traditional DG-Integrated
Parameter Improvement Source
System System
Peak Grid | 600 (09:00- 400 (09:00- 0 : Figure 3.1,
Demand (kW) 18:00) 18:00) SERUIREEl o
5 —

Voltage _ +10% +50% 50% Stability Figure 3.2
Fluctuations Improvement
Service 50-70% (Peak 25-35% (Peak 0 . Section 3.1,
Disruptions Hours) Hours) S0klo RO 3.2
DG

L 200 (33% of Table 2.2,
gll(ci/rc/';rlbutlon 0 Total Load) 200 kW Offset Figure 3.2
Neural Network RMSE <5 kW | <1% Prediction .
Accuracy - (0.8% of Peak) | Error SEGIaN 92

¥50,000 PHCN

?:\fi;'ys Cost N0 (N250/KWh x 200 ?:ﬁfosw Hour 1 Tariff,

g kw) g Section 3.3
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. Unstable
Critical Load i Stable (Pump: 0 - Table 2.2,
Support (PUT\E)\/.)SM 534 kW) 100% Reliability Figure 3.2

4.0 CONCLUSION

This study successfully mitigates peak-demand disruptions in Nigeria’s Cross River State
waterboard distribution network by integrating a 217.12 kW solar DG system with a neural
network controller, achieving a 33% reduction in grid dependency (600 kW to 400 kW) and
cutting service disruptions by 50% during peak hours (09:00-18:00). The Bayesian
regularized ANN, validated by an RMSE < 5 kW (<1% error), stabilized voltage fluctuations
to £5% while prioritizing critical loads like the Pump Station (534 kW peak) without load
rescheduling. At PHCN’s current tariff (8250/kWh), the system delivers 350,000/hour in
cost savings, offering a scalable model for regions with unreliable grids. Future work will
expand to hybrid renewable systems, but this framework already provides utilities a cost-
effective, Al-driven pathway to modernize grids and align with Nigeria’s energy transition

goals.
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