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ABSTRACT 

This study presents a novel approach to mitigating peak-demand-

induced disruptions in power distribution networks through the 

integration of solar distributed generation (DG) with an artificial neural 

network (ANN) predictive controller. Addressing a critical gap in 

existing grid response strategies which remain centralized and reactive, 

the study develops a data-driven control architecture combining ETAP-

based load flow analysis with MATLAB/Simulink simulations of a 

217.12 kW solar DG system.  A Bayesian regularized ANN trained on 

historical load profiles (residential, commercial, industrial) achieves 

92% accuracy in predicting peak windows (09:00–18:00), enabling 

proactive DG dispatch. During peak demand, the DG supplies 200 kW 

(33% of total load), reducing grid dependence from 600 kW to 400 kW 

and cutting service disruptions by 50%. Voltage fluctuations improve 

from ±10% to ±5%. Unlike conventional demand response, this 

solution maintains grid stability without load rescheduling, which is 

critical for industrial users. Validated on Nigeria’s Cross River State Waterboard (CRSWB) 

distribution network, this work demonstrates how machine learning-enhanced DG integration 
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can transform passive distribution systems into resilient smart grids. The methodology is 

scalable to other regions with unreliable centralized generation, offering a blueprint for 

energy transition in developing economies. 

 

KEYWORDS: Solar PV, Grid-tied DG system, AI-controlled, Smart grid, Renewable 

integration, Machine learning optimization, Developing economies. 

 

1. INTRODUCTION 

Distributed generation (DG) refers to electricity generation from sources located near end-

users, contrasting with centralized power plants. It offers benefits such as increased energy 

efficiency, reliability, and reduced transmission losses, while promoting renewable energy 

sources. 

 

Historically, the energy sector emphasized centralized generation until co-generation systems 

(combined heat and power) emerged, improving overall efficiency by providing both 

electricity and heat locally (Zulu & Jayaweera, 2014). The late 20th century saw a rise in 

renewable energy technologies like solar and wind, which facilitated decentralized power 

generation. Net metering policies were introduced to allow consumers with DG systems to 

contribute excess energy back to the grid (Kerby & Tarekegne, 2024). 

 

This research focuses on maintaining power network stability amidst fluctuating load 

demands through systematic implementation of grid-tied distributed generation which 

reshapes the grid profile without rescheduling or disconnection of consumer load. Typically, 

Demand response involves consumers adjusting their electricity usage based on grid 

conditions or prices, helping to balance supply and demand and optimize system efficiency 

(Aalami et al., 2010; Zulu & Jayaweera, 2014). Conversely, grid response, or grid flexibility, 

refers to the power system's ability to adapt generation and electricity flow in response to 

changing demands, which is essential for integrating variable renewable energy sources like 

solar and wind. However, both demand and grid responses are centralized, often slow, and do 

not account for distributed generation (DG) units located near load points. DG can provide 

additional power sources, helping to balance generation and load while maintaining 

acceptable voltage and frequency levels, especially during peak periods. Advancements in 

power electronics and energy storage have been crucial for integrating DG with the grid, 

enhancing reliability and managing fluctuations in renewable energy output. Microgrids and 

smart grid technologies, which incorporate advanced communication and control systems, 
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further support DG integration. Despite its advantages, DG faces challenges such as 

regulatory barriers, power quality issues, and the need for standardized technologies. 

 

Policymakers have implemented various incentives to encourage DG adoption. The future of 

power systems is expected to involve increased integration of communication technologies, 

intelligent control, and active customer participation in energy management (Akpama et al., 

2020; Kavya et al., 2021). Neural networks are emerging as valuable tools for optimizing DG 

placement and control, enhancing system reliability and efficiency across different load 

types—industrial, commercial, and residential (Ahmad et al., 2017; Kavya et al., 2021). 

Economically, DG can lower electricity costs by generating power close to consumers, 

reducing transmission losses, and enhancing system resilience (Ahmad et al., 2017; Kerby & 

Tarekegne, 2024). To mitigate peak demand grid service disruptions in a distribution power 

network, this research adopts the machine learning optimization approach which uses 

Artificial Neural Network (ANN) control technique to model distributed power system from 

load profile data of an existing network. This work models the Cross River State waterboard 

distribution network. The historic daily load profile data for residency, commercial and 

industrial loads in the network was collected via smart meters at 30-minute intervals. The 

Cross-river state water board has a responsibility to treat and supply portable water for 

Calabar and its environs. To achieve this goal, power supply has to be adequately available to 

meet the load demand for daily production schedule, both at peak and off-peak demand 

periods. The Power Holding Company of Nigeria (PHCN) is currently the only functional 

source of power. The water treatment plant section of the network is one of the most 

important sections as it is responsible for over 60% of the total energy demand. A staff 

quarters and an administrative office are other sections that are part of the power network. 

 

1.1 Literature Review 

The power system network is designed to transmit and distribute electricity efficiently and 

reliably, while ensuring the balance between generation and demand, and maintaining the 

required levels of voltage and frequency. The design and operation of the power system 

network are critical to providing a stable and reliable supply of electricity to consumers. 

Distributed generation (DG) presents a promising technique that ensures provision of stable 

and reliable supply of electricity to consumers (Abdel-Rahman et al., 2019; Ahmad et al., 

2017). Electricity demand is dynamic, with the power grid experiencing varying stress across 

the day. The peak demand period occurs when the total electricity demand across a power 
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grid reaches its maximum level within a 24-hour period. During peak demand periods, the 

power grid suffers significant stress while struggling to meet the high level of electricity 

consumption (Koutsoukis et al., 2017). When the grid fails to keep up with peak demand, 

grid service disruption occurs within the affected network leading to huge losses to both the 

utility and the customer. This research models distributed generation with neural network 

control as a grid resilience strategy to mitigate peak demand grid service disruptions in power 

system (Hrisheekesha & Sharma, 2010; Kahrobaeian & Mohamed, 2015).  

 

Some of the main distribution generation types include 

i. Solar Photovoltaic (PV) Systems: These systems convert sunlight directly into electricity 

using photovoltaic cells, usually installed on rooftops or in designated solar farms (Akpama 

et al., 2011; Idoniboyeobu & Udoha, 2018; National Renewable Energy Laboratory, 2019). 

ii. Microturbines: These are small-scale gas turbines that can generate electricity, often used 

for combined heat and power (CHP) applications (Kilin et al., 2020). 

iii. Wind Turbines: Small-scale wind turbines can be installed close to the point of use to 

generate electricity from the wind (Ferris & Liu, 2016). 

iv. Fuel Cells: Electrochemical components that transform chemical energy from fuels like 

hydrogen directly into electricity, with high efficiency and low emissions (Jiang et al., 2023). 

 

Aalami et al. (2010) modeled and prioritized demand response programs in power markets, 

presenting an extended responsive load economic model, TOPSIS method, and AHP for 

prioritizing demand response programs in power markets; the model is based on price 

elasticity and customer benefit function. Numerical studies were conducted on the load curve 

of the Iranian power grid in 2007. The modular nature of DG systems allows for easier 

installation compared to large centralized plants, further promoting their feasibility and 

attractiveness in the energy market. Abdel-Rahman et al. (2019) used the IEEE 33-bus radial 

distribution system to evaluate the impact of distributed generation on distribution system 

reliability; the optimal DG penetration level that maximizes reliability benefits was found to 

be around 30–40% of the total system load. The paper concludes that proper planning, control 

and coordination of DG is crucial to ensure improved reliability and stability in the operation 

of distribution systems with high DG penetration. Abdolrasol et al. (2021) presented an 

energy management scheduling scheme for microgrids in the virtual power plant system 

using artificial neural networks. Artificial neural networks (ANN) effectively manage 

microgrids in virtual power plants, reducing fuel consumption, CO₂  emissions, and 
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increasing system efficiency compared to other solutions. Aderibigbe et al. (2022) reviewed 

the impact of distributed generations on power systems stability, showing that distributed 

generation can optimize power system stability, but current research lacks focus on artificial 

intelligence, supervisory control, and data acquisition systems, highlighting a need for further 

research. Gao and Zhu (2022) suggested a new objective function to increase the maximum 

utilization ratio of demand response in voltage and reactive power optimization process; it 

uses capacitors banks (CB), reactor banks (RB), and static var generator (SVG) and DR as 

control variables to optimize the voltage and reactive power of power grid with optimal 

regulation effect achieved in IEEE 33 bus distribution system. The paper further introduces 

the demand response (DR) load, such as civil load and industrial load, to participate in the 

optimization. Korukonda et al. (2022) presented a model-free adaptive neural controller for 

standalone photovoltaic distributed generation systems with disturbances where the model-

free adaptive neural controller (ANC) improved the stability and robustness of standalone 

photovoltaic distributed generation systems in the presence of disturbances and parameter 

intermittencies. 

 

While prior work (Abdel-Rahman et al., 2019; Aderibigbe et al., 2022) explores DG's impact 

on grid stability, few studies address AI-driven control in real-world networks, particularly in 

regions with unreliable grids (e.g., Nigeria). This work bridges this gap by proposing a neural 

network-based DG controller for peak-demand mitigation. 

 

2.0 MATERIALS AND METHODS 

This study employs a hybrid simulation-optimization framework to design and validate a 

neural network-controlled solar DG system for the Cross River State Waterboard (CRSWB) 

network. The methodology integrates ETAP-based load flow analysis, MATLAB/Simulink 

simulations, and machine learning to address peak-demand disruptions. The workflow is 

structured as follows: 

 

2.1. Data Acquisition and Load Profiling 

Field Data Collection 

 Source: Smart meters recorded 30-minute interval data (current, voltage, frequency, 

power factor) over 12 months for residential (Staff Quarters), commercial (Administrative 

Building), and industrial (Water Treatment Plant) loads (Table 2.2) 
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 Power Calculation 

                                                                                                                           (2.1)   

Where 

 P = Total three-phase power (in watts) 

 I = Line current 

 V = Line voltage (0.415kV) 

 cos∅ = Power factor (0.8-0.95) 

 

2.2 Neural Network Design and Training 

Distributed generation plays an essential role in developing a resilient and stable power 

systems, but require advanced control technique for effective integration and protection. 

Choosing a control technique is very important as it determines the data requirement for 

implementing DG integration in existing power network. Artificial Neural network was used 

as the optimization method for this research. Matlab Neural Network Toolbox offers a range 

of functions and algorithms for designing, training, and implementing neural networks. It 

includes support for various network architectures and training algorithms, making it suitable 

for DG control applications. 

 

1. Architecture 

o 3-layer feedforward ANN: Input (24-hour load profiles), hidden layer (20 neurons, tanh 

activation), output (DG dispatch commands). 

o Training Algorithm: Bayesian regularization (MATLAB NN Toolbox) to minimize 

overfitting. 

 

2. Training Protocol 

o Dataset: 70% training, 15% validation, 15% testing (1-year data). 

o Performance Metric 

Root Mean Square Error (RMSE) =    (2.2) 

Where 

n = number of observations 

 = actual value 

predicted value 

RMSE is used for assessing the accuracy of the model, lower values indicate better fit. 



Ntem et al.                                      World Journal of Engineering Research and Technology 

  

 

 
 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

7 

o Inputs: Historical load profiles (Table 2.2); Outputs: Optimal DG setpoints. 

The neural network was trained on Table 2.2’s load profiles, achieving RMSE < 5 kW 

(∼0.8% of peak demand), ensuring accurate DG dispatch decisions (Figures 3.1–3.2). 

 

2.3 Load Flow Analysis and System Modeling 

1. ETAP One-Line Diagram:  This one-line diagram provides a simplified, single-line 

representation of the complex electrical network, allowing for easy visualization and analysis 

of the power flow, voltage levels, and load distribution within the system. 

 

 

Figure 2.1 One-line diagram of 33kv CRSWB power network showing rating of 

equipment and their location. 

 

o Network Configuration: 33 kV/0.415 kV transformers (T1–T3), 10 buses, and variable 

loads (Figure 2.2). 

o Voltage Stability: Baseline fluctuations of ±10% during peaks (09:00–18:00). 

 

Table 2.1 Load Flow Study Report for CRSWB distribution network. 
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Table 2.1 show the load flow report for the network; it provides crucial insights into the 

operation of the network. 

Each bus has specific voltage levels, generation capacity and loads. For example, Bus1 is a 

generator bus and has a voltage of 33 kV, while Bus2 has no generation. The report shows 

the voltage at each bus as maintaining voltage levels within acceptable limits is essential for 

system stability. 

 

Table 2.2 Daily Power Consumption in Line with Plant Production Schedule. 

TOTD 
STAFF 

QUARTERS (kW) 

ADMIN. 

BUILDING 

(kW) 

PUMP 

STATION 

(kW) 

FILTER 

STATION 

(kW) 

CHEMICAL 

STATION 

(kW) 

0 15 20 178 39 32 

0.5 17 20 281 38 32 

1 20 20 274 37 34 

1.5 20 20 271 37 31 

2 20 42 280 38 31 

2.5 22 40 275 38 31 

3 20 40 272 38 31 

3.5 21 37 9 39 31 

4 20 40 13 31 31 

4.5 25 40 8 31 0 

5 30 42 11 30 0 

5.5 31 43 262 25 0 

6 35 41 256 20 0 

6.5 36 40 246 21 0 

7 45 39 0 26 0 

7.5 47 35 0 22 5 

8 40 70 0 27 5 

8.5 39 74 0 30 5 

9 35 60 185 110 30 

9.5 30 68 180 152 30 

10 27 76 275 35 30 

10.5 22 120 279 32 30 

11 20 123 277 30 30 

11.5 22 127 190 111 30 

12 35 123 191 152 30 

12.5 35 154 227 37 30 

13 40 161 225 34 30 

13.5 40 187 227 32 30 

14 38 190 135 111 30 

14.5 36 194 132 154 30 

15 36 200 310 34 30 

15.5 36 161 312 34 30 

16 39 150 309 31 30 

16.5 40 122 313 30 30 
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17 50 70 268 30 30 

17.5 50 64 264 31 30 

18 60 61 264 31 30 

18.5 60 52 5 27 5 

19 50 50 5 34 5 

19.5 49 47 15 35 5 

20 40 35 13 35 5 

20.5 40 35 18 34 5 

21 31 35 192 115 33 

21.5 36 35 190 114 34 

22 24 38 197 39 32 

22.5 24 38 190 37 33 

23 20 38 182 37 32 

23.5 20 38 181 120 32 

24 15 20 181 161 32 

      

MAX. 

POWER 
80kW 220kW 534kW 170kW 35kW 

TOTD = TIME OF THE DAY      

 

Plots illustrating the residential, commercial and industrial load patterns of the power 

network from table 2.2 (Daily Power Consumption in Line with Plant Production Schedule) 

are represented in figure 3.1 and 3.2. 
 

2. DG Integration 

o Solar PV System 

 Capacity: 217.12 kW (944 × Q-Cells 230W panels). 

 Configuration: 16-series × 59-parallel strings (480 V DC, 452.5 A). 

 Inverter: 95% efficiency, 0.415 kV AC output 

 

2.4 MATLAB/Simulink Simulation Framework 

1. Model Components 

o Grid power, solar DG, inverters, transformers, and dynamic loads 

(residential/commercial/industrial). 

o Control System: ANN controller interfaced with DG and grid (Figure 2.3). 

 

2. Simulation Scenarios 

o Traditional System: Grid-only supply (Figure 3.1). 

o DG-Integrated System: ANN-controlled dispatch (Figure 3.2). 
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2.5 Validation Metrics 

1. Technical Performance: 

o Voltage Stability: IEEE 1547 compliance (±5% tolerance). 

o DG Penetration: 30–40% of total load, per.
[7]

 

2. Economic Validation: 

o Cost Savings: Savings = Δ  x Tariff 

 

3.0 RESULTS AND DISCUSSION 

3.1 Traditional Power System Performance 

 

Figure 3.1 Traditional Power System Simulink Model results. 

 

The baseline simulation (Figure 3.1) reveals significant grid stress during peak hours (09:00–

18:00), with grid power demand reaching 600 kW (Table 2.2: Total Load = 534 kW Pump 

Station + 170 kW Filter Station + 35 kW Chemical Station).  
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Key observations include 

 Voltage Instability: Voltage fluctuations exceeded ±10% during peak periods (09:00–

18:00), aligning with the 80kW residential (Staff Quarters) and 200 kW commercial 

(Administrative Building) spikes in Table 2.2. 

 Service Disruptions: Frequent outages occurred when grid demand surpassed 500 kW, 

corroborating literature claims (Koutsoukis et al., 2017) that 50–70% of disruptions occur 

during peaks. 

 

3.2 Distributed Power System with Neural Network Control 

 

Figure 3.2 Distributed Power System Simulation Results. 

 

The DG-integrated system (Figure 3.2) demonstrates transformative improvements 

1. Peak Demand Mitigation: 

o The neural network, trained on Table 2.2’s historical profiles (RMSE < 5 kW, <1% 

error relative to 600 kW peaks), accurately forecasts peak windows (09:00–18:00). 

o The 217.12 kW solar DG supplies 200 kW during peaks (Figure 3.2), reducing grid 

dependence to 400 kW (33% reduction). 

o Critical Load Support: DG prioritizes high-risk sectors like the Pump Station (peak: 534 

kW in Table 2.2), ensuring uninterrupted operation. 
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2. Grid Stability Enhancements: 

o Voltage fluctuations improved from ±10% to ±5% (Figure 3.2), meeting IEEE 1547 

standards for distribution systems. 

o Service disruptions decreased by 50%, validating the controller’s ability to balance DG 

output with real-time demand. 

3. Demand-Agnostic Operation: 

Unlike conventional demand response (e.g., Aalami et al., 2010; Gao & Zhu, 2022), the 

system maintains stability without rescheduling loads. For example: 

o The Administrative Building’s peak demand (200 kW in Table 2.2) is fully supported by 

DG during 09:00–18:00. 

o Staff Quarters’ evening spikes (60 kW at 18:00–20:00) remain unaffected, demonstrating 

user-centric resilience. 

 

3.3 Statistical Validation 

 Neural Network Accuracy: The model’s RMSE < 5 kW (tested on 1 year of 30-minute 

interval data) ensures reliable predictions, with <2% deviation in DG dispatch timing. 

 DG Contribution: During peak hours, the DG supplies 33% of total load (200 kW/600 

kW), aligning with Abdel-Rahman et al. (2019)’s finding that 30–40% DG penetration 

maximizes reliability. 

 Economic Impact: Grid consumption reduction (600 kW → 400 kW) implies ~33% cost 

savings during peaks, based on PHCN’s tariff of about ₦250/kWh. 

 

Table 3.1: Comparative Summary of Result and Discussion. 

Parameter 
Traditional 

System 

DG-Integrated 

System 
Improvement Source 

Peak Grid 

Demand (kW) 

600 (09:00–

18:00) 

400 (09:00–

18:00) 
33% Reduction 

Figure 3.1, 

3.2 

Voltage 

Fluctuations 
±10% ±5% 

50% Stability 

Improvement 
Figure 3.2 

Service 

Disruptions 

50–70% (Peak 

Hours) 

25–35% (Peak 

Hours) 
50% Reduction 

Section 3.1, 

3.2 

DG 

Contribution 

(kW) 

0 
200 (33% of 

Total Load) 
200 kW Offset 

Table 2.2, 

Figure 3.2 

Neural Network 

Accuracy 
– 

RMSE < 5 kW 

(0.8% of Peak) 

<1% Prediction 

Error 
Section 3.3 

Hourly Cost 

Savings 
₦0 

₦50,000 

(₦250/kWh × 200 

kW) 

₦50,000/Hour 

Savings 

PHCN 

Tariff, 

Section 3.3 
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Critical Load 

Support 

Unstable 

(Pump: 534 

kW) 

Stable (Pump: 

534 kW) 
100% Reliability 

Table 2.2, 

Figure 3.2 

 

4.0 CONCLUSION  

This study successfully mitigates peak-demand disruptions in Nigeria’s Cross River State 

waterboard distribution network by integrating a 217.12 kW solar DG system with a neural 

network controller, achieving a 33% reduction in grid dependency (600 kW to 400 kW) and 

cutting service disruptions by 50% during peak hours (09:00–18:00). The Bayesian 

regularized ANN, validated by an RMSE < 5 kW (<1% error), stabilized voltage fluctuations 

to ±5% while prioritizing critical loads like the Pump Station (534 kW peak) without load 

rescheduling. At PHCN’s current tariff (₦250/kWh), the system delivers ₦50,000/hour in 

cost savings, offering a scalable model for regions with unreliable grids. Future work will 

expand to hybrid renewable systems, but this framework already provides utilities a cost-

effective, AI-driven pathway to modernize grids and align with Nigeria’s energy transition 

goals. 
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