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ABSTRACT 

Permanent Magnet Synchronous Motor (PMSM) is subjected to 

various operating, environmental, and other conditions; due to which 

incipient faults occur. If these faults are undetected, lead to 

catastrophic failure. For reliable and safe operation of PMSM. Online 

condition monitoring, fault detection, and diagnosis were required.  

Many researchers have proposed various techniques for fault detection and diagnosis, which 

requires good domain knowledge and costly pieces of equipment. This paper presents an 

optimal multilayer perceptron (MLP) neural network for fault detection and classification, 

which is simple, reliable, and cost-effective. Two faults are created on a three-phase 

permanent magnet synchronous motor stator inter-turn and eccentricity with varying load 

conditions. The experimental data is generated on 1 hp, 3 phase, 4 poles, 1500 rpm 

permanent magnet synchronous motor during healthy and faulty conditions. Various sensors 

are inbuilt internally and externally into the PMSM motor for the measurement of different 

parameters. 12 different measurable parameters include three-phase motor intake current, 

three-phase motor applied voltage, power factor, winding temperatures, and bearing sound. 

The proposed classifier with 12 input parameters is designed and verified for optimal 

performance for fault identification and classification, Nearly 100% classification accuracy is 

achieved. 
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1. INTRODUCTION 

Electric motors have been widely used in all fields of applications from huge power to low. 

Electric motors play an important role in the modern lifestyle that we are used to. It is well-

known fact that there is a huge demand for electric motors from various fields of applications, 

however, there is a revolutionary change in the manufacturing process of electric motors from 

the conventional motor to permanent magnet motors.
[1,2]

 

 

Permanent magnet brings the following benefits in the construction of electric motors. 

Permanent magnet motor has better efficiency, high torque, better dynamic performance, and 

simplified construction and maintenance as compared to conventional motors. Thus 

permanent magnet synchronous motor covers a wide variety of application fields from 

stepping motor to ship propulsion.
[3,4]

 Permanent magnet synchronous motor is extensively 

used for industrial and commercial purposes. They are exposed to a wide variety of 

environmental and operating conditions; these factors coupled with natural aging and 

manufacturing defect may lead to incipient faults. If these faults are left undetected, lead to 

catastrophic failure.
[5]

 

   

The main types of faults occurring in permanent magnet synchronous motors are commonly 

categorized as Electrical faults, Mechanical faults, and Demagnetization faults. These faults 

may be observed in most abnormal symptoms and have specific patterns about motor faults 

conditions and severity, such as unbalanced air gap, unbalanced voltage and current, 

increased torque, acoustic noise, and excessive heating. According to EPRI and IEEE survey, 

the failures of electric motors are grouped as major contributors to faults as shown in 

Table.1.
[6,7]

 

 

Table 1: Electric Motor faults occurrence. 

Survey 

Report 

Bearing related 

Fault % 

Stator-related 

fault % 

Rotor-related 

fault % 
Others % 

EPRI 41 38 10 12 

IEEE 40 38 8 22 

 

Many researchers have developed various tools and techniques for incipient fault detection 

and diagnosis. The importance of incipient fault detection at an early stage prevents loss of 
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production, and loss of valuable human life, which results in cost savings and prevention of 

permanent damage of costly permanent magnet synchronous motor.
[8]

 The various 

conventional techniques for detection and diagnosis are available with their advantages and 

limitations, such as motor current signature analysis,
[9]

 Finite element analysis,
[10]

 Fast 

Fourier transform,
[11]

 Wavelet Analysis,
[12,13]

 Winding configuration, Modified winding 

configuration, temperature analysis, zero, positive and negative sequence analysis,
[14,15]

 HF 

single Injection.
[16]

 and acoustic noise and torque pulsation.
[17]

 

 

Artificial intelligence technique has gained importance for fault detection and diagnosis, 

control process, and image processing. Artificial intelligence systems can detect and interpret 

the fault data. Various artificial intelligence technology has been developed in recent years, 

such as expert system,
[18]

 artificial neural network,
[19,25]

 fuzzy logic, neuro-fuzzy, and 

adaptive neuro–fuzzy.ANN.
[26,28]

 gain popularity over other techniques, as it is inexpensive, 

reliable, simple, and non-invasive to detect similarities among large data. This technique does 

not require the heuristic knowledge of faults and mathematical models, however, the ANN 

can perform online fault detection and classification through the use of an inexpensive 

monitoring device. These devices obtain the necessary information in a non-invasive manner.  

 

The purpose of this paper is to develop an alternative method for fault detection and 

diagnosis using a neural network as compared to an existing scheme which requires good 

domain knowledge and costly equipment. In this scheme, twelve stastical parameters such as 

three-phase voltages, three-phase currents, stator healthy winding temperature, stator faulty 

winding temperature, bearing temperature, motor body temperature, acquoistic noise and 

power factor are used to develop a multilayer perceptron neural network model for fault 

detection and classification. Nearly 100% classification acccuracy was achieved. This method 

is simple, reliable, and economic as compared to the existing scheme. 

 

1 FAULT CLASSIFICATION USING ARTIFICIAL NEURAL NETWORK 

The following procedure is proposed for fault detection and classification. 

Fault created on PMSM. 

Data generation and collection. 

Data selection. 

Fault classification 
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This paper proposed two faults created on permanent magnet synchronous motor, stator inter-

turn (IT) and eccentricity. Eccentricity is categorized into three parts namely static 

eccentricity (SE), dynamic eccentricity (DE), and mixed eccentricity (ME).  For creating a 

Fault PMSM motor of 1 hp, three-phase, 4 poles, 1500 rpm, 415 V, 50 Hz is used. 

 

1.1 FAULT CREATED ON PERMANENT MAGNET SYNCHRONOUS MOTOR 

1.1.1 Stator Inter-turn fault 

To create the effect of stator inter-turn fault in a three-phase PMSM motor. The one phase 

winding has been modified by taking out six tapping for shorting. Without disturbing the 

remaining two phases. After every two turns one tapping is taken out in a step of 

2,4,6.8.10.12. The additional extra wires of very small distance are attached to the end turn 

and the other end of these external wires is attached to the designed chromium sheet mounted 

near the motor terminal to created the fault. Which is shown in figure.1.1 

 
12

10
8

6
4

2

N

 

Figure 1-1: The Stator of PMSM with stator inter-turn. 

 

1.2 Eccentricity Fault 

Eccentricity faults are the most common mechanical faults in electric machines. The air gap 

between the stator and rotor is uniformly distributed in a healthy machine. In other words, the 

stator symmetrical axis, rotor symmetrical axis, and rotor rotation axis are all aligned, and the 

system is balanced. In an eccentricity faulted system, the symmetrical axes of the stator, 

rotor, and rotation axis of the rotor are displaced from each other, and the air gap is no longer 

uniform, resulting in asymmetric flux distribution and a radial force between the stator and 

rotor. This force grew stronger as the severity increased. The unbalanced magnetic pull 

(UMP) could have several effects on the machine, including noise, vibration, torque 
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oscillations, shaft bending, and bearing wear. This may cause the rotor and stator to rub as the 

eccentricity increases over time. 

 

Eccentricity faults can be caused by a bent shaft, incorrect alignment during motor assembly, 

bearing tolerance, and mechanical stresses applied to the motor. If the rotor shaft assembly is 

sufficiently rigid, the level of eccentricity remains constant. Detecting eccentricity at an early 

stage is critical for protecting the machine from severe damage and for easy maintenance, 

which leads to cost savings and complete motor shutdown. 

 

Eccentricity faults are generally classified into three types Static eccentricity, Dynamic 

eccentricity, and Mixed eccentricity. 

 

1.2.1 Static Eccentricity 

Static eccentricity is a case in which the rotor symmetrical axis is shifted from the stator 

symmetrical axis but is still running on its axis (rotation axis of the rotor). During static 

eccentricity, the position of the minimum air gap remains fixed in space. Static eccentricity 

may be caused by an oval stator or misaligned mounting of bearing incorrect positioning of 

the stator and rotor assembling of machines, or various stresses applied to the machine stator. 

 

The static eccentricity ratio is defined as the air gap variations to the original air gap length. 

 

 

Where  is the radial distance between the rotor symmetrical axis and stator symmetrical axis 

and   is the uniform air gap length in healthy conditions. 

 

1.2.2 Dynamic Eccentricity 

Dynamic eccentricity is a case in which the symmetrical axis of the rotor is shifted from the 

stator symmetrical axis and rotation axis of the rotor, During dynamic eccentricity, the 

position of the minimum air gap rotates in space along with the rotor. The cause of dynamic 

eccentricity can be a bent shaft, bearing wear and movement, misaligned mounting of the 

bearing, and mechanical resonance at a critical speed. Dynamic eccentricity in a new machine 

can be controlled by the “run-out” of the rotor. 

 

The dynamic eccentricity ratio is defined as the radial distance between the rotor axis and 

stator axis to the uniform air gap length. 
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Where  is the radial distance between the rotors axis and stator axis 

 

1.2.3 Mixed Eccentricity 

Mixed eccentricity is a case in which the rotation axis of the rotor is different than the stator 

symmetrical axis and rotor symmetrical axis. In other words, is a combination of static and 

dynamic eccentricity. 

 

 

To create the effect of static, dynamic, and mixed eccentricity fault in a three-phase PMSM 

motor. A round pulley of 6 inches in diameter,2 inches in width, and a four bores of 10 mm in 

diameter is used to create the fault. The pulley is connected to the shaft to create the 

eccentricity fault externally without disturbing the motor eccentricity. Static eccentricity was 

induced by connecting a balanced load on both sides of the created bore. Dynamic 

eccentricity was induced by connecting a load on one side of the bore and in mixed 

eccentricity, an unbalanced load is connected on both sides of the bore. Figure 1-2 shows the 

schematic of healthy condition and eccentricity conditions of permanent magnet synchronous 

motor. 
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Figure 1-2: Shows the Schematic of Eccentricity Faults. 
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1.3 DATA GENERATION AND DATA ACQUISITION SYSTEM 

For experimentation and data generation the specially designed 1 Hp, three phases, 4 poles, 

1500 rpm, and 50 Hz permanent magnet synchronous motor is used which is shown in figure 

1-3. 

 

PMSM Motor

Pulley
DAQ CAD 1

For Voltage and 

current 

measurment

laptop

Power 

Oscilloscope

 

Figure 1-3: Shows the experimental Setup. 

 

Data Acquisition card 1 is used to measure the three-phase motor intake current by using hall 

effect sensors, three-phase voltage, and power factor.  Data Acquisition card 2 is used to 

measure the temperatures of the motor .healthy winding temperature, faulty winding 

temperature, bearing temperature, and motor body temperature. Data Acquisition card 3 is 

used to measure the speed and sound of the motor. All these parameters were recorded with 

the motor running on no-load, rated load, and greater than the rated load for healthy and 

faulty conditions .with specially designed software in VB 6.0 on a personal computer using 

RS232 to USB port. 

 

1.4 Data Selection 

The first step to designing a neural network is the selection of generated data set. Most 

relevant data providing fault information should be selected from the generated data set. To 

avoid the complexity and to improve the classifier performance. In this paper Multilayer 

perceptron neural network was used. 
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2 Fault classifier 

2.1 Multilayer Perceptrons (MLP) based NN classifier 

Multilayer Perceptron (MLP) neural network is proposed as a fault classifier for the detection 

and diagnosis of stator inter-turn and eccentricity (static, dynamic, and mixed) faults in a 

three-phase permanent magnet synchronous motor. The number of input processing elements 

(PEs) must be equal to that of the number of input statistical parameters so 12 input 

processing elements are used in the input layer. Five processing elements are used in the 

output layer for five conditions of the PMSM motor namely Healthy condition (H), stator 

inter-turn (IT), static eccentricity (SE), dynamic eccentricity (DE) and mixed eccentricity 

(ME). For data processing MATLAB 18.0, Neuro Solution 5.0, and XLSTAT-2010 are used. 

The Multilayer Perceptron is used with supervised learning and has led to the successful 

implementation of the backpropagation algorithm means the learning algorithm used in the 

multilayer perceptron is the backpropagation algorithm. The backpropagation algorithm was 

performed using two basic steps. The first one called propagation applies value to the input 

neuron. The input neuron performs the function product of the sum of input features with the 

respective weight associated with it. After passing through the activation function produce 

the desired response from the neuron. The value is then compared with the target output for 

that signal. The second step occurs in the reverse way i.e., from output to the hidden layer, 

from hidden to the input layer, The error produced by the network is used in the adjustment 

process of its internal parameters such as weight, bias, and other parameters associated with 

those layers. 

 

The generalized training algorithm used in backpropagation is as follows. 

2.1.1 Feature Scaling 

Feature scaling is used to convert a large dynamic range to a standard scale to make it easier 

for machine learning. The features or attributes have been scaled in the range of 0 to 1 by an 

easy equation. 

 

 

Where is the original data set,  is the mean value (average of the data), is the standard 

deviation and X is the normalized data. Where (i= 1,2……n) All data used herein was 

collected at 10 milliseconds using a sample rate is 5 Khz producing 6000 data points for 

various faults. 
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2.1.2 Initialization of weight 

Step 1: Initialize the weights to a small random value. 

Step 2: While the stopping condition is false, do steps 3-10. 

Step 3: For each training pair do steps 4-9. 

 

2.1.3 Feed Forward 

Step 4: Each input unit receives the input signal i=1,2…...p) transmit this signal to all 

units in the hidden layer, here the input layer transfer function is a linear transfer function. 

Step 5: Each hidden unit (  1,2….m) sums its weighted signals. 

 

 

Applying the activation function here is the activation function for the hidden 

layer.is , after applying the activation function, the signals are sent 

to all units in the output layers. 

 

Step 6: Each output unit ( 1,2……. n) sum its weighted input signals from the output of 

hidden layers 

 

 

Applying the activation function to calculate the output of the network. 

 

 

Where is the activation function of the output layer, which is given as is 

 

 

2.1.4 Backpropagation Error Calculation 

Step 7:  Each output unit ( , K=1,2……...n) receives a target pattern corresponding to an 

input pattern, the error term is calculated as, 

 

Step 8: Each hidden unit (  1,2….m) aum its delta input from units in the hidden layer 
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The error information term is calculated as 

 

 

2.1.5 Updating of Weight and Biases 

Step 9: Each output unit ( , K=1,2……...n) update its bias and weights (j= 0, 1,2……p) the 

weight term is given as   and bias correction term is given as  

Therefore 

 

 

 

Step 10: Each hidden unit (  1,2….m) update its bias and weights (i= 0, 1,2……n) the 

weight term is given as   and bias correction term is given as  Therefore 

 

 

 

When some training data differs from the majority of data, the approach described above is 

advantageous. When an unusual pair of training patterns are presented, a low learning rate is 

used to avoid major disruptions in the learning direction. The weight shift is in a direction 

that is a combination of the current gradient and the previous gradient. 

 

When momentum is added to the weight update formula, the convergence rate increases. To 

use momentum, the weights from one or more previous training patterns must be saved. 

Thus, using momentum, the network travels in the direction of the combination of the current 

gradient and the previous direction for which the weight correction is made, rather than the 

gradient itself. The primary goal of momentum is to accelerate the convergence of the error 

propagation algorithm. This method makes the current weight adjustment with a fraction of 

the most recent weight adjustment. 

 

The new weight update is given as 

 

 

Where is the learning rate and  is the momentum factor. 

 

 

Step 10: Test the stopping condition 
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The stopping condition could be error minimization, the number of epochs, the target value 

equaling the desired value, and so on. 

 

The randomized data is fed to the neural network and is retained 32 times with different 

randomized weights to remove the biasing effect and to ensure true learning and 

generalization for the different hidden layers. It is observed that MLP with a single hidden 

layer gives better performance. The network is trained with varying PEs in the hidden layer 

minimum MSE on training and CV is obtained when 18 PEs are used in the hidden layer 

which is shown in fig.2. 

 

 

Figure 2: 1Average minimum MSE variation on training and cross validation with 

number of Pes in hidden layer. 

 

Various transfer functions and learning are used for training the network. average minimum 

MSE on training and CV are compared in fig 2-2 and average classification accuracy is 

compared in fig 2-3. It is found that tanhaxon is the most suitable transfer function and LM is 

the most suitable learning rule among the various learning rule namely step, Momentum 

(MOM), conjugate gradient (CG), Leverberg Marqual (LM), quick propagation (QP) and 

delta bar delta (DBD) which is shown in fig 2-4 by comparing average minimum MSE on 

training and CV and in fig 2-5 average classification accuracy is compared. 
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Figure 2-2: Average minimum MSE variation on training and cross validation and 

Average classification accuracy on TR,CV and TE data set on Hidden Layer Transfer 

function. 

 

 

Figure 2-3 Average minimum MSE variation on training and cross validation and 

Average classification accuracy on TR,CV and TE data set on Hidden Layer Learning 

Rule. 

 

 

Figure 2-4 Average minimum MSE variation on training and cross validation and 

Average classification accuracy on TR,CV and TE data set on Output Layer Transfer 

function. 
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Figure 2-5: Average minimum MSE variation on training and cross validation and 

Average classification accuracy on TR,CV and TE data set on Output Layer Learning 

Rule. 

 

To check the percentage of data tag for training cv and testing the network. Various 

combination of percentage data is used from 10-90 to 90-10.Average minimum MSE on 

testing and training is shown in fig.2-6(a) and average classification accuracy on training and 

testing is shown in 2-6(b). 

 

 

(a) 

 

(b) 

Figure 2-6: a) Average minimum MSE variation with test on testing and training 

dataset tagged for training b) Average classification accuracy with test on testing and 

training dataset tagged for training. 
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Various number of epochs is used for training of network by varying the number of epoch to 

small value of epoch 500 to maximum number of epoch 7000.It is found that at 3500 epochs 

the best result is obtained which is shown in fig 2-7(a) by comparing the average minimum 

MSE on training and CV as shown in fig.2-7(b) the average classification accuracy is 

compared on tr, cv and test. 

 

 

(a) 

 

(b) 

Figure 2-7: a) Average minimum MSE variation on training and cross validation 

dataset with number of epochs b) Average classification accuracy on TR,CV and TE 

Data Set with number of epochs. 
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(a) 

 

(b) 

Figure 2-8: a) Average minimum MSE variation on training and cross validation 

dataset with error criterion b) Average classification accuracy on TR,CV and TE Data 

Set with error criterion. 

 

With above experimentation, The MLP based NN classifier is designed with following 

classifications. 

 

Number of inputs 12, Number of hidden layer 01, Number of PEs in hidden layer 18,  

Number of Pes in output layer 05, Number of epochs 3500, exemplars for training 70 %, 

exemplars for cross validation 15 %, exemplars for testing 15 %. Number of connection 

weight 323, Error criterion L2. 

 

Layers of MLP Transfer Function Learning Rule 

Hidden Tanhaxon LM 

Output Tanhaxon LM 
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To check the versatility of the network on the basic of learning ability and classification 

accuracy. The data is divided into four parts naming 1,2,3,4.for no load ,rated load and 

greater than rated load. Preparing 24 different combination of group data. Forming 1234 

,1243 group likewise. First two part of the group are tagged as training data, similarly third 

and fourth part of the group is tagged as cv and testing data. The network is trained and test 

on this different combination of data. The average minimum MSE on training and cv is 

shown in fig 2-9(a). The average classification accuracy on tr, cv and test is shown in fig 2-

9(b).  

 

 

(a) 

 

(b) 

Figure 2-9: a) Average minimum MSE variation with test on testing and training 

dataset with MLP Groups b) Average classification accuracy with test on testing and 

training dataset with MLP Groups. 
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3 RESULT AND DISCUSSION 

This paper presents an artificial neural network based approach for fault detection and 

classification of three phase permanent magnet synchronous motor for two types of incipient 

faults namely stator inter turn and eccentricity. An optimal MLP Neural Network are 

designed and trained to classify different types of faults, stator inter turn, static eccentricity, 

dynamic eccentricity and mixed eccentricity. For MLP NN various transfer function and 

learning rule are used for different number of hidden layer and processing elements in hidden 

layer. It is observed that tanhaxon transfer function and LM learning rule in hidden and 

output layer gives optimum result with 3500 epochs. To check the versatility and learning 

capability of network the networked is trained on different group of dataset. 

 

Average minimum MSE on testing and cross validation is going to observe reasonable low as 

9.910608E-06 and 0.002076308 respectively and average classification accuracy on testing 

and cross validation is 99.99% and 99.98% respectively. This method is used for fault 

detection and classification, without any prior knowledge of fault. And is used in real world 

application.    

 

4 CONCLUSION 

This paper proposes a novel approach to intelligent incipient fault detection and classification 

of three phase permanent magnet synchronous motors based on a multilayer perceptron 

neural network. To detect stator inter-turn and eccentricity faults in three phase permanent 

magnet synchronous motors, simple static parameters such as three phase voltages, three 

phase currents, healthy winding temperature, faulty winding temperature, bearing 

temperature, motor body temperature, acquoistic noise, and power factor are used. The first 

layer hidden layer tanh-LM was discovered to be suitable as a transfer function and learning 

rule in the design. Tanh-LM is identified as an effective transfer function and learning rule in 

the output layer. For generalisation, the network is rigorously trained and tested with different 

data sets and operating conditions such as no load, rated load, and greater than rated load.It 

has been found that the network is able to detect the fauts in three phase permanent magnet 

synchronous motor with average classification accuracy of nearly equal to 100%. Since the 

proposed classifier is to be used in real time with minor modification. 
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