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ABSTRACT 

Power generation in Nigeria has been on the increase over the last 

decades, since most of the hydraulic resources that are used to drive 

the hydropower plants have already been deployed. In order to keep 

electrical energy at affordable prices, several modalities have been 

considered, such as reduction in operating and maintenance costs of 

thermoelectric facilities. On this ground, engine component fault  

diagnostic technique are intended to enhance maintenance quality, reduce engine 

downtime, and thereby increasing plant availability, while maximising operational profit 

by keeping engine efficiency at standard level. In this technical research, an artificial 

neural network ANN based fault diagnostics technique have been developed to assess the 

health condition of a single shaft heavy duty engine ALSTOM GT11N2. The engine 

employed was modelled using software known as PYTHIA 2.8, where actual engine data 

was used in the matching process, afterwards, component parameters degradations were 

applied to the model to generate neural network training and validation samples. Finally, 

a three level nested structure was established comprising fault detection, isolation, and 

quantification functions, each represented by specific neural network architecture. Which 

are trained to tackle both measurement data without and with noise. In the earlier case, 

the individual networks presented excellent performance, while in the latter case, good 

performance have been achieved, despite a few problems with the fault isolation 

network. Nonetheless, the whole nest neural networks have presented good and 

acceptable performance respectively when analysing these two cases. 

wjert, 2023, Vol. 9, Issue 8, 224-242. 

World Journal of Engineering Research and Technology 
 

WJERT 
 

www.wjert.org 

ISSN 2454-695X 
Review Article 

 

SJIF Impact Factor: 5.924 

*Corresponding Author 

Dr. Diwa James Enyia 

Department of Mechanical 

Engineering, Cross River 

University of Technology, 

P.M.B 1123, Calabar, 

Nigeria. 

 

http://www.wjert.org/


Enyia.                                              World Journal of Engineering Research and Technology 

  

 
 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

 

225 

KEYWORDS: Artificial Neural Network, Engine Health Monitoring, Engine Simulation, 

Gas Path Analysis, Heavy Duty Engine, Nest Neural Network. 

 

1. INTRODUCTION 

The year 2016 saw an improvement in Nigeria electricity supply from 3500 to 

4232.6MW which is about 17% increase.
[1]

 The electricity supply is made up with 86% 

from thermal power and 16% from hydro supply.
[2]

 Predictably, hydro based electricity 

generation is at the mercy of the seasons. During dry season, the water level in hydro 

power plant reservoirs drops, getting close to their lower operational safety limit. In 

order to avoid operational problems at facilities and an energy shortage in the grid, the 

integrated electricity system (IES) intensifies the use of thermal generation at these 

period. 

 

The impact of seasonal weather phenomena on energy supply is nothing new and has 

been affecting hydro power plants operational patterns since their activation. But this has 

been taken over by electric energy consumption, with the construction of several thermal 

power plants, which were initially used to complement electricity supply during dry 

season. AFAM phase II in river state, Nigeria is one of the largest thermal power 

stations, with electricity generation installed capacity of about 1000MW.
[2]

 The desire to 

reduce overall costs has led to a thorough optimization project of this thermoelectric 

park, composed of several areas, where condition based maintenance presents an ideal 

opportunity for sizeable cost reduction. 

 

The aim of this technical research is to provide a fault diagnostics tool, based on artificial 

neural network (ANN) techniques, which is able to perform the component fault analysis 

of a single shaft heavy duty gas turbine, herein represented by an ALTOM GT11N2 

engine. The methodology consist the use of PYTHIA software to match the engine 

model with actual parameters, and to utilise this model to generate ANN training and 

validation samples. In addition, MATLAB was also used to create each individual ANN 

and the algorithm of the nest neural network, which is used to perform gas turbine 

component fault diagnostics analyses. 

 

2. Heavy Duty Gas Turbine Fault Diagnostics Systems 

The need for industrial gas turbine (IGT) such as prime movers of rotating machines or 

for power generation has been on the increase in the last decade. The engines are either 
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aero-derivative or heavy duty. The engine health monitoring systems (EHMS), which 

was initially developed for use with aero engines, has been successfully applied in IGT’s. 

This intrinsic approach to improving the availability of the system and reducing 

maintenance costs has been studied since the early days of the gas turbine industry, 

though its practical implementation has only become possible due to relatively recent 

developments in data acquisition and processing technologies.
[3]

 

 

The reliability of gas path component such as compressor, combustor, and turbine is 

considerably higher than other systems. Their long downtime leads to a reduction in 

availability.
[4]

 

 

 

Figure 1: Reliability and availability of gas turbine system.
[4]

 

 

Figure 1 presents a comparison between the reliability and availability of four different 

gas turbine components, where the least reliable element is the control system, while the 

element with the lowest availability is the turbine, though it has a lower outage rate, and 

therefore higher reliability. In addition, the EHMS is also used for certain performance 

recovery procedures, such as compressor cleaning, where it is possible to carry out an 

economic evaluation of the intervention in order to maximise revenue and minimise 

maintenance cost. The main benefits of applying gas path diagnostic techniques are: 

equipment life enhancement, reduction of spare parts, improvement in maintenance 

management quality, optimisation of engine overhaul, identification of the economic 

breakeven point to conduct engine intervention, improvement and optimisation of 

instrument, and maximisation of power plant availability.
[5]

 Summarily, the utilisation of 

fault diagnostics systems in gas turbine industrial facilities has become indispensable. 

The techniques that have been developed for aero as turbine engines are suitable for 

industrial applications, and can be practically implanted due to constant hardware 

development, which also allows the development of new techniques that require higher 

data process capacity. The benefits of gas path diagnostic applications are related to a 

variety of aspects, such as economic evaluation, hazard identifications, production and 

maintenance optimisation. 
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3. Gas Turbine Components Fault Diagnostics systems 

The gas path components of the engine comprise of the compressor, turbine, and the 

combustor. The latter will be omitted in this study since its efficiency does not change 

considerably over time, and a characteristic that is needed for gas path fault detection 

system (GPFDS). The most frequent faults leading to a reduction in the performance 

parameters of gas path components are: fouling, tip clearance, erosion, corrosion, and 

object damage.
[6]

 These features indicate that there is a relationship between changes in 

independent parameters, that is, component health conditions, and dependent parameters, 

such as those relating to performance. In addition, different component faults affect 

performance parameters in different ways, and can be considered as fault signatures. 

However, it should be noted that different faults can have similar signatures, thereby, 

necessitating a combined diagnostics approach to properly identify the cause of a 

problem. 

 

Fault diagnostics methods are categorised into two ways viz: conventional and involving. 

The former comprises visual inspection, fault tree, fault matrix, vibration analysis, and 

GPA. The latter includes artificial intelligence based methods, such as fuzzy logic, GA, 

and ANN. Currently, GPA is the most common set of techniques applied to assess the 

health of gas path components. GPA techniques include linear-GPA, non- linear GPA, 

weighted least square algorithms, Kalman filters, and adaptations of these methods using 

artificial intelligence techniques. Although these methods have been demonstrated as 

suitable for the application, they rely heavily on the quality of measurements.
[5]

 Artificial 

Neural Network is applied in this research and it is a numeric approximation of a 

function, where the logic of the relationship between input and output is unknown. Its 

framework is based on the basic human learning models, which is essential for GPA. 

 

4. Measurement Analysis 

The techniques mentioned above rely on the quality of measurements. Since the 

parameter measurement deviation set is the source of information of any fault diagnostic 

technique, measurement error must be no more than a fraction of its deviation due to 

engine degradation. However, each measurement contains error, which can be related to 

instrument uncertainty or variation of the measurement value over the actual value in 

order to use it.
[7]
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5. Fault Diagnostics Application 

A new method for performing GT component fault diagnostics through the estimation of 

degraded engine performance parameters, and engine health parameters from 

measurement data was first devised by Li.
[7]

 Lipowsky et al
[8]

 developed an alternative 

performance degradation detection technique to cope with single fault events. Bouguet & 

Leonard
[9]

 presents an engine performance monitoring system based on Kalman Filter 

KF that uses a residual treatment technique to enhance the capability of isolated fault 

detection. Kurz & Brun
[10]

 have studied the influence of multiple component degradation 

on engine performance parameters. Vodopianov
[11]

 presents a probabilistic approach of 

GPA. The technique comprises a fault coefficient matrix, where each element is given by 

a probability density function (PDF). It is claimed to overcome the lack of accuracy of 

linear methods, and the complexity of non- linear methods. 

 

6. Artificial Neural Network 

This concept was first introduced by McCulloch & Pitts
[12]

 in an attempt to reproduce the 

human brain’s signal processing system. Although models developed to date are yet to 

fully represent any actual biological structure, they are able to perform complex 

calculations based on neuroscience principles, such as numerous highly connected 

simple processing units, adaptable connections, and parallel processing.
[13]

 ANN has 

been applied in pattern recognition, image processing, empirical modelling, optimization, 

control systems and data processing.
[14]

 ANN application for solving complex problems 

is extremely attractive in principles, though in practice there are numerous issues to be 

addressed prior to its successful implementation. First, the architecture of an ANN 

comprises several figures, which account for the distinct number of layers, connections, 

neurons, and transfer functions. Secondly, an ANN can be updated or trained by 

synchronous or asynchronous, deterministic or stochastic process. Finally, an infinite 

combination of ANNs can be used to solve a specific problem. These questions are inter- 

connected and must be answered together during the process of ANN creation.
[15]

 

 

7. Types of Architecture of ANN 

The architecture of ANN is defined by the combination of neurons, number of layers and 

transfer functions. The optimum configuration of an ANN for a specific application can 

only be found by trial-and-error, where convergence is achieved by an incremental 

increase in the number of neurons.
[16,17]
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Figure 2: Schematic Model of Multi-layers ANN.
[18]

 

 

A multilayer ANN is as represented in figure 2. Each layer is composed of biases, 

transfer functions, summation and multiplication operators, and weight matrix. The 

weight and biases is determined during the training process. It has been shown that a one 

hidden layer ANN with sufficient number of neurons can be used as a good 

representation of any continuous function.
[16,17]

 There is also double and single layers 

ANN. 

 

8. ANN Fault Diagnostics Application 

ANN has been applied to GT component diagnostics through various approaches. ANN 

has been used based on measurement data sets to estimate the deviation between clean 

and degraded engine measurements
[17,19]

; it has also been applied to sensor fault 

classification and missed measurement recovery.
[16,20]

 Ogaji and Singh
[21]

 applied nest 

neural network techniques. Donat et al
[22]

 presents an investigation of the advantages of 

using data reduction and classifiers fusion technique to increase the performance of the 

fault diagnostics data- driven methods. Shivakumar et al
[23]

 assess the influence of 

operational parameters and fuel composition on the performance and emissions of a 

single cylinder diesel engine. A brief revision of the importance of GT fault diagnostics 

and the method hitherto developed were introduced based on ANN.
[21]

 

 

9. Nest Neural Network Methodology 

It is composed of engine model simulation, nest ANN architecture, individual neural 

network creation and validation method, and fault diagnostics analysis workflow. 

PYTHIA 2.8 was first used to simulate the clean and degraded engine design point 

model. Latter, a suitable nesting architecture was drawn to perform the detection, 

isolation, and quantification of engine component faults. Afterwards, individual neural 

networks, with different architectures were created to represents each function of the nest 

ANN. In addition, four validation methods were developed to assess the quality of the 

neural networks. Finally, a generalised workflow of a computational programme code 
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was developed to allow its implementation in MATLAB language. 

 

10. Engine Model Simulation 

PYTHIA 2.8 was used to simulate the engine. The software is based on 

TURBOMATCH, a successful GT engine simulation tool develop by Cranfield 

University, in United Kingdom, which uses component maps matching technique to 

perform engine simulation. The engine operating parameters extracted from an actual 

installation through PI (Plant Information) software were used to determine the engine 

reference point that would be used as an engine model design point. No strict criteria was 

used to select this point, though a careful observation of available data was needed in 

order to select a condition likely to occur several times throughout the operation time 

range. 

 

Since this model is built for fault diagnostics purpose, the error between the target 

parameters and the simulation results may not exceed a fraction of the deviation 

parameter, which is given by the difference between a specific degraded engine 

measurement and one for a clean engine. Eventually, using PYTIA Simulation mode, 

engine components degradations, covering the model domain, are applied to the model, 

yielding a set of measurement parameters for each condition. These results are further 

used as neural network training samples. This operation can also be carried out using 

PYTHIA 2.8 to develop neural network training samples generation. 

 

11. Industrial Gas Turbine Application 

The engine applied for the simulation is an industrial gas turbine ALSTOM GT11N2, 

which comprises one compressor, one turbine mounted on the same shaft, and one top 

mounted silo combustor. The compressor consists of 16 stages and 3 IGVs and produces 

a pressure ratio of about 16:1. The turbine consists of 4 stages that are able to produce 

115MW of net power. A brief description of the engine is as shown in table 1 below; 

 

Table 1: ALSTOM GT11N2 Main Features.
[24]
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12. PYTHIA Engine Model Application 

The engine model was used to simulate an actual GT engine ALSTOM GT11N2 located 

at AFAM phase II, a portharcourt thermal power station in Nigeria. Operational data 

collected from the engine through PI were used to set up the design point model. The 

design point model refers to as operational condition likely to occur during the engine’s 

operating campaign. The set of measurements used to set up the engine model comprises 

ambient temperature, compressor exit temperature, shaft power, gas flow, fuel flow and 

turbine inlet temperature. 

 

 

Figure 3: GT1N2 Engine.
[14]

 

 

A schematic representation of the engine is as could be seen in figure 3, while the 

PYTHIA interface structure is as shown in figure 4 with 8 bricks, which are intake, 

compressor, burner, mixer, turbine, duct, convergent nozzle and performance. 

 

 

Figure 4: PYTHIA Engine Model Interface. 

 

The comparison between the actual engine operating data and engine model simulated 

data is as shown in table 2 below. It can be observed that the error between actual and 

simulated values of the ambient temperature, compressor exit temperature, turbine inlet 

temperature, compressor exit pressure, shaft power, and gas flow do not exceed the 

absolute values of 0.02%, while error between actual and simulated values of the turbine 

exit temperature and fuel flow do not exceed the absolute value of 0.08%. Therefore, the 

engine design point model can be considered a good representation of actual engine 

measurement at the specific reference point. 
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Table 2: Design Point Model Matching Results. 

 

 

13. Degraded Engine Model Behaviour 

A drop in flow capacity and efficiency was applied to the ANN training during the 

engine simulation for the compressor, turbine, and the combination of both components 

respectively in other to simulate the component degradation. The drops for flow capacity 

ranges from 0.0% to -0.5%, while that of compressor efficiency ranges from 0.0% to 

5.0%. The behaviour of the compressor exit temperature under degradation is as shown 

in figure 5. It indicates an increase in compressor exit temperature as the absolute value 

of compressor efficiency drop increases. On the other hand, it shows a decrease in 

compressor exit temperature as the absolute value of flow capacity drop increases. It is 

suitable for use as a measurement parameter in the compressor fault diagnostic system 

since it is sensitive to both compressor efficiency and flow capacity drop. 

 

There is a slight decrease in turbine exit temperature as the absolute value of compressor 

efficiency drop increases. On the other hand, it shows an increase in turbine exit 

temperature as the absolute value of flow capacity drop increases as could be seen in 

figure 6. 

 

 

Figure 5: Compressor exit temperature under compressor degradation. 

 

 
Figure 6: Turbine exit temperature under compressor degradation. 
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Figure 7: Compressor exit pressure under compressor degradation SHP@ 

Compressor degradation. 

 

 

Figure 8: Shaft power under compressor degradation. 

 

Figure 7 shows that compressor exit pressure does not change as the compressor 

efficiency drop changes. On the other hand, it shows an abrupt decrease in compressor 

exit pressure as the absolute value of flow capacity drop increases. It can also be seen 

that shaft power decreases as the absolute value of compressor efficiency drop increases 

as can be seen in figure 8. The tendency can be noted as the absolute value of flow 

capacity drop increases. 

 

The percentage fault implanted for compressor is the same as that on the turbine. It shows 

a slight increase in compressor exit temperature as the absolute value of turbine 

efficiency drop increases as shown in figure 9. On the other hand, it shows a decrease in 

compressor exit temperature as turbine flow capacity drop increases. 

 

 

Figure 9: Compressor exit temperature under turbine degradation. 
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Figure 10: Turbine exit temperature under turbine degradation. 

 

It can be seen in figure 10 that there is an increase in turbine exit temperature as the 

absolute value of turbine efficiency drop increases. The same behaviour was observed as 

turbine flow capacity drop increases. 

 

 

Figure 11: Compressor exit pressure under turbine degradation. 

 

It shows a slight increase in compressor exit pressure as the absolute value of turbine 

efficiency drop increases. On the other hand, it shows a decrease in compressor exit 

pressure as turbine flow capacity drop increases as shown in figure 11. 

 

It is also noted in figure 12 that there is a decrease in shaft power as the absolute value of 

turbine efficiency drop increases. On the other hand, it shows an increase in shaft power 

as turbine flow capacity drop increases. Since this parameter is sensitive to both turbine 

efficiency drop and turbine flow capacity drop, it is suitable for use as a measurement 

parameter in the turbine fault diagnostics system. 

 

 

Figure 12: Shaft power under turbine degradation. 
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14. Nest Neural Network Validation 

This is presented in two cases; measurement parameter with noise, and without noise. 

The nest neural network comprises of 5 individual ANNs, which are one single layer 

perceptron ANN used to detect whether or not the engine is degraded, one probabilistic 

ANN used to isolate the fault, that is, it is used to find out whether the compressor or 

turbine are degraded. Lastly, three multiple layer feed forward ANNs are used to 

estimate the seriousness of the fault. 

 

The nest neural network validation process consists of the validation of each individual 

ANN, and the nest neural network itself. Degradation detection ANN accuracy is 

assessed by its percentage of error. Fault isolation ANN accuracy is assessed by the RMS 

of each case error percentage. Compressor fault quantification ANN accuracy is assessed 

by the RMS of compressor flow capacity drop estimation error and compressor 

efficiency drop estimation error, for each point of the domain. Turbine fault 

quantification ANN accuracy is assessed by the RMS of turbine flow capacity drop 

estimation error and turbine efficiency drop estimation error, for each point of the 

domain. 

 

The measurement parameter set for the case without noise or bias comprises compressor 

exit temperature, turbine exit temperature, compressor exit pressure, and shaft power. 

The measurement parameter deviation vector considered the clean engine measurement 

vector as the base line. 

 

The map of RMS error of the training process of compressor fault quantification ANN is 

as presented in figure 13. The majority of the domain presents RMS error up to 0.02%, 

exceeding the requirements of the diagnostic results. The right low corner of the domain 

presents a slight high RMS error, nearly 0.2%, which is also suitable for this kind of 

analysis. Therefore, the training process of the compressor fault quantification ANN has 

succeeded. 

 

 

Figure 13: Compressor fault quantification ANN training RMS error. 
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Figure 14 presents the map of the RMS error of the validation process of compressor 

fault quantification ANN. The left side of the map presents RMS error around 0.08%, 

with points of 0.12%. The centre and right side of the domain presents RMS error around 

0.03%. The right low corner presents RMS error around 0.1%. Though there are 

differences in the accuracy level throughout the domain, the compressor fault 

quantification ANN can be considered suitable for performing the compressor fault 

diagnostic. 

 

 

Figure 14: Compressor fault quantification ANN validation RMS error. 

 

Since training input and target vectors has been created, the compressor fault 

quantification neural network can be established using the MATLAB neural network 

tools. Both training and validation samples are used to assess accuracy of the ANN. The 

former assess the quality of the training process, and the later assess the ANN’s 

performance. A similar training as that of the compressor was applied for the turbine 

fault quantification validation with the use of MATLAB neural network. 

 

Figure 15 presents a map of the RMS error of the training process of turbine fault 

quantification ANN. The majority of the domain presents RMS error up to 0.01%, which 

by far meets the requirements of the diagnostic results. The right side of the domain 

presents a slightly high RMS error, around 0.05%, which is also suitable for this kind of 

analysis. Therefore, the training process of the turbine fault quantification ANN has 

succeeded. 

 

The map of the RMS error of the validation process for turbine fault quantification ANN 

is shown in figure 16. 

 

The centre and left side of the map presents RMS error of about 0.01%, with points of 

0.005%. The right side of the domain presents RMS error of about 0.02%, with points of 

0.03%. The right low corner presents RMS error of about 0.035%. Though there are 

differences in the accuracy level throughout the domain, the turbine fault quantification 
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ANN can be considered suitable for performing the turbine component fault diagnostics. 

 

 

Figure 15: Turbine fault quantification ANN training RMS error. 

 

 

Figure 16: Turbine fault quantification ANN validation RMS error. 

 

A test case using measurement with noise was applied to the nest neural network. Both 

training samples and validation samples with and without noise. These samples were 

initially free of measurement error, but given noise through a statistic method using MS 

Excel spread sheet. The nest neural network accuracy is firstly verified by the accuracy 

of the individual ANN that forms it, and then the complete nest structured is also 

assessed. The ANN output vector was then compared to the desirable output. The 

degraded detection ANN accuracy was assessed using the respective ANN to simulate 

the components that comprise the validation samples, yielding 0.7% of error, while the 

training samples yielded 0.1% error. Therefore, this ANN can be considered suitable for 

performance diagnostics analysis. 

 

For the training process assessment of the fault isolation ANN when using measurement 

samples with noise, the fault detection error for the compressor, turbine, and combined 

are 13.6%, 6.9%, and 1.2% respectively, with RMS error of 8.8%. Both component fault 

detection fail rate are excessively high concerning training results. 

 

Possibly, this performance could be enhanced by increasing the number of training 

samples. For the validation process assessment of the fault isolation ANN when using 
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measurement sample with noise, the compressor and turbine fault detected error are 

18.3% and 8.8% respectively, while the RMS error is 15.3%. The validation process fail 

rate is high due to the low performance of the training process. 

 

 

Figure 17: Compressor fault quantification ANN training RMS error (noise). 

 

 

Figure 18: Compressor fault quantification ANN validation RMS error (noise). 

 

From the map of the RMS error as shown in figure 17, the majority of the domain 

presents RMS error up to 0.6%, meeting the requirements of the diagnostic results. RMS 

of about 1.4% is presented around the centre domain, which is also acceptable for this 

kind of analysis. This means the training process of the compressor fault quantification 

ANN has succeeded. Figure 18 presents the map of RMS error of the validation process 

of compressor fault quantification ANN when using measurement data with noise. The 

overall RMS is 0.5%. The centre of the domain presents the highest RMS error around 

1.4%, which can be considered acceptable for diagnostic purpose. In addition, the overall 

behaviour of the training assessment map and the ANN validation map are similar, which 

means a smooth transition between training points and the validation points, ensuring the 

same level of accuracy throughout the domain. 

 

Figure 19 is a map of the RMS error of the training process of turbine fault quantification 

ANN when using measurement data with noise. The majority of the domain presents 

RMS error up to 0.6%, which is acceptable for engine component fault diagnostic 
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purpose. The right low corner of the domain presents a high RMS error, about 1.6%, the 

right high corner presents RMS error about 0.8%. They are all acceptable for this kind of 

analysis. This means the training process of the turbine fault quantification ANN when 

using measurement data with noise has succeeded. 

 

 

Figure 19: Turbine fault quantification ANN training RMS error (noise). 

 

The RMS map error of the validation process of the turbine fault quantification ANN 

when using measurement data with noise is shown in figure 20. The right low corner of 

the domain has an error about 1.5%, which is very close to the one presented by the 

training process for this region of the map. The centre left side of the domain presents 

RMS error about 1.0%, with points of 1.3%. The turbine fault quantification ANN can be 

considered acceptable to perform the turbine component fault diagnostics despite the 

differences in the accuracy level. 

 

 

Figure 20: Turbine fault quantification ANN validation RMS error (noise). 

 

In addition, the validation RMS map follows the same behaviour of the training RMS 

error map, has they both presents their worst performance in the right low corner of the 

domain, and they both have similar levels of accuracy. The feature indicates that there is 

a smooth transition between the training points and the validation points, which good 

ANN behaviour throughout the entire domain. The RMS error level of the ANN when 

using measurement data with noise is higher than that found for the ANN when using 

measurement data without noise. 
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For the combined fault quantification ANN assessment when using measurement data 

with noise, both training process performance and ANN accuracy have been assessed 

using the measurement parameter vector as input vector. 

 

15. CONCLUSIONS 

The gas turbine diagnostic technique have been applied to an ALSTOM GT11N2 heavy 

duty engine, which comprises one top-mounted silo combustor, one compressor, and one 

turbine. The analyses include measurement data without and with noise. Actual data 

from AFAM phase II, Port Harcourt thermoelectric facility have been used to set up 

engine model, which was enabled by the application of PYTHIA 2.8 software. The 

model was adjusted to match the targeted parameters of the reference operational 

condition that have been used to set up the design point model. The matching procedure 

yielded error of about 0.08%. Drop in component parameter was applied to the engine 

model to generate the neural network training and validation samples. The training 

sample database was also used to study the influence of the independent parameter drop 

on the behaviour of the engine measurement parameters such as compressor exit 

temperature and pressure, turbine exit temperature, and shaft power. 

 

However, the nest neural network validation procedure has led to important conclusions. 

Firstly, the degradation detection ANN has demonstrated excellent performance for both 

measurements with and without noise. Secondly, the fault isolation ANN has presented 

good results when analysing measurements with noise, where the results were barely 

acceptable. In the third case, the compressor and the turbine fault quantification ANNs 

have presented excellent results concerning measurement without noise, which turned 

into good results when analysing samples with noise. Lastly, the complete nest neural 

network structure has presented good accuracy when analysing measurement without 

noise, but only accepted results could be achieved when using measurement parameter 

data with noise. 
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