NEW CRITICAL DENSITY IN METAL-INSULATOR TRANSITION, OBTAINED IN VARIOUS N(P)- TYPE DEGENERATE CRYSTALLINE ALLOYS, BEING JUST THAT OF CARIERS LOCALIZED IN EXPONENTIAL BAND TAILS. (II)

Prof. Dr. Huynh Van Cong*

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

*Corresponding Author
Prof. Dr. Huynh Van Cong
Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F66860 Perpignan, France.

ABTRACT

By basing on the same physical model and treatment method, as used in our recent work (Van Cong, 2024), for $\left[\operatorname{InP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}\right), \mathrm{GaAs}_{1-\mathrm{x}} \mathrm{Te}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right), \mathrm{CdS}_{1-\mathrm{x}} \mathrm{Te}_{\mathrm{x}}\left(\mathrm{Se}_{\mathrm{x}}\right)\right]$ - crystalline alloys, $0 \leq \mathrm{x} \leq 1$, referred to as (I), we will investigate the critical impurity densities in the metal-insulator transition (MIT), obtained now in $n(p)$-type degenerate $X(x) \quad \equiv$ [$\left.\operatorname{InAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}\right), \mathrm{GaTe}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right), \mathrm{CdTe}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}\left(\mathrm{Se}_{\mathrm{x}}\right)\right]$ - crystalline alloys, being due to the effects of the size of donor (acceptor) $d(a)$ radius, $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$ and the x -concentration, assuming that all the impurities are ionized even at $T=0 \mathrm{~K}$. In such $n(p)$-type degenerate $X(x) \equiv-$ crystalline alloys, we will determine: (i)-the critical impurity density $N_{C D n(C D p)}\left(r_{d(a)}, x\right)$ in the MIT, as that given in Eq. (8), by using an empirical Mott parameter $M_{n(p)}=0.2$, and (ii)-the density of electrons (holes) localized in the exponential conduction (valence)-band tails (EBT), $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, as that given in Eq. (26), by using our empirical Heisenberg parameter, $\mathcal{H}_{n(p)}=0.47137$, as given in Eq. (15), suggesting that: for given $r_{d(a)}$ and $\mathrm{x}, N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right) \cong N_{C D n(C D p)}\left(r_{d(a)}, x\right)$, obtained with a precision of the order of 2.91×10^{-7}, as observed in Tables 2-8. In other words, such the critical $\mathrm{d}(\mathrm{a})$-density $\left.\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right), \mathrm{x}\right)$, is just the density of electrons
(holes) localized in the EBT, $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$. So, if denoting the total impurity density by N , the effective density of free electrons (holes), N^{*}, given in the parabolic conduction (valence) band of the $n(p)$-type degenerate $\mathrm{X}(\mathrm{x})$ - crystalline alloy, can thus be defined, as the compensated ones, by: $\mathrm{N}^{*}\left(\mathrm{~N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})} \cong \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}$, needing to determine various optical, electrical, and thermoelectric properties in such $n(p)$-type degenerate $\mathrm{X}(\mathrm{x})$-crystalline alloys, as those studied in $\mathrm{n}(\mathrm{p})$-type degenerate crystals (Van Cong, 2023).

KEYWORS: $\left[\operatorname{InAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}\right), \mathrm{GaTe}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right), \mathrm{CdTe}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}\left(\mathrm{Se}_{\mathrm{x}}\right)\right]$ - crystalline alloys; critical impurity density in the Mott MIT.

INTRODUCTION

By basing on the same energy-band-structure parameters, physical model and treatment method, as used in our recent works (Van Cong, 2024), for $\left[\operatorname{InP}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}\right), \mathrm{GaAs}_{1-\mathrm{x}} \mathrm{Te}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right), \mathrm{CdS}_{1-\mathrm{x}} \mathrm{Te}_{\mathrm{x}}\left(\mathrm{Se}_{\mathrm{x}}\right)\right]$ - crystalline alloys, $0 \leq \mathrm{x} \leq 1$, and also other works (Green, 2022; Kittel, 1976; Moon et al., 2016; Van Cong et al., 2014; Van Cong \& Debiais, 1993; Van Cong et al., 1984), we will investigate the critical impurity density in the metal-insulator transition (MIT), obtained in $n(p)$-type degenerate $X(x) \equiv$ $\left[\operatorname{InAs}_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}\right), \mathrm{GaTe}_{1-\mathrm{x}} \mathrm{As}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right), \mathrm{CdTe}_{1-\mathrm{x}} \mathrm{S}_{\mathrm{x}}\left(\mathrm{Se}_{\mathrm{x}}\right)\right]-$ crystalline alloys, being also due to the effects of the size of donor (acceptor) $d(a)$-radius, $r_{d(a)}$, and the x-concentration, assuming that all the impurities are ionized even at $T=0 K$. In such $n(p)$-type degenerate crystalline alloys, we will determine
(i)-The critical impurity densities $N_{C D n(C D p)}\left(r_{d(a)}, x\right)$ in the MIT, as that given in Eq. (10), by using an empirical Mott parameter $M_{n(p)}=0.25$, and (ii)-The density of electrons (holes) localized in the exponential conduction(valence)-band tails (EBT), $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, as that given in Eq. (26), by using the empirical Heisenberg parameter, $\mathcal{H}_{n(p)}=0.47137$, as that given in Eq. (17), according to: for given $r_{d(a)}$ and $\mathrm{x}, N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right) \cong$ $N_{C D n(C D p)}\left(r_{d(a)}, x\right)$, with a precision of the order of 2.91×10^{-7}, as observed in Tables 2-8. In other words, such the critical $\mathrm{d}(\mathrm{a})$-density $N_{C D n(N D p)}\left(r_{d(a))}, x\right)$, is just the density of electrons (holes), being localized in the EBT, $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$.

In the following, we will determine those functions: $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ and $N_{\operatorname{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$.

CRITICAL DENSITY IN THE MOTT MIT

Such the critical impurity density $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, expressed as a function of $\mathrm{r}_{\mathrm{d}(\mathrm{a})}$ and x , is determined as follows.

Effect of x-concentration

Here, the values of the intrinsic energy-band-structure parameters, such as (Van Cong, 2024): the effective average number of equivalent conduction (valence)-band edges, $g_{c(v)}(x)$, the unperturbed relative effective electron (hole) mass in conduction (valence) bands, $\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x})$ / $\mathrm{m}_{\mathrm{o}}, \mathrm{m}_{\mathrm{o}}$ being the electron rest mass, the unperturbed relative dielectric static constant, $\varepsilon_{\mathrm{o}}(\mathrm{x})$, and the intrinsic energy gap, $E_{g o}(x)$, at $r_{d(a)}=r_{d o(a o)}$, are given respectively in Table 1 in Appendix 1.

Table 1 in Appendix 1

Therefore, one gets the effective donor (acceptor)-ionization energy, $\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})$, as:
$\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})=\frac{13600 \times\left[\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}\right]}{\left[\varepsilon_{\mathrm{o}}(\mathrm{x})\right]^{2}} \mathrm{meV}$,
and the isothermal bulk modulus, $\mathrm{B}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})$, by:
$\mathrm{B}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \equiv \frac{\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})}{(4 \pi / 3) \times\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}\right)^{3}}$.

Effects of impurity size, with a given x

Here, one shows that the effects of the size of donor (acceptor) $d(a)$-radius, $r_{d(a)}$, and the x concentration, strongly affects the changes in all the energy-band-structure parameters, which can be represented by the effective relative static dielectric constant $\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ (Van Cong, 2024; Van Cong et al., 1984), in the following.

At $r_{d(a)}=r_{d o(a o)}$, the needed boundary conditions are found to be, for the impurity-atom volume $\mathrm{V}=(4 \pi / 3) \times\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)^{3}, \mathrm{~V}_{\mathrm{do}(\mathrm{ao})}=(4 \pi / 3) \times\left(\mathrm{r}_{\mathrm{do}(\mathrm{ao})}\right)^{3}$, for the pressure p , as: $\mathrm{p}_{\mathrm{o}}=$ 0 , and for the deformation potential energy (or the strain energy) σ, as: $\sigma_{o}=0$. Further, the two important equations, used to determine the σ-variation: $\Delta \sigma \equiv \sigma-\sigma_{0}=\sigma$, are defined by: $\frac{d p}{d V}=-\frac{B}{V}$ and $p=-\frac{d \sigma}{d V}$. giving: $\frac{d}{d V}\left(\frac{d \sigma}{d V}\right)=\frac{B}{V}$. Then, by an integration, one gets
$\left[\Delta \sigma\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)\right]_{\mathrm{n}(\mathrm{p})}=\mathrm{B}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left(\mathrm{V}-\mathrm{V}_{\mathrm{do}(\mathrm{ao})}\right) \times \ln \left(\frac{\mathrm{V}}{\mathrm{V}_{\mathrm{do}(\mathrm{ao})}}\right)=\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left[\left(\frac{\mathrm{r}_{\mathrm{d}(\mathrm{a})}}{\mathrm{r}_{\mathrm{do}(\mathrm{ao})}}\right)^{3}-1\right] \times$ $\ln \left(\frac{r_{\mathrm{d}(\mathrm{a})}}{\mathrm{r}_{\mathrm{do}(\mathrm{ao})}}\right)^{3} \geq 0$.

Furthermore, we also shown that, as $r_{d(a)}>r_{d o(a o)}\left(r_{d(a)}<r_{d o(a o)}\right)$, the compression (dilatation) gives rise to: the increase (the decrease) in the energy gap $\mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, and in the effective donor (acceptor)-ionization energy $\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ in the absolute values, being obtained from the effective Bohr model, and then such the compression (dilatation) is represented respectively by: $\pm\left[\Delta \sigma\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)\right]_{\mathrm{n}(\mathrm{p})}$,
$E_{g n o(g p o)}\left(r_{d(a)}, x\right)-E_{g o}(x)=E_{d(a)}\left(r_{d(a)}, x\right)-E_{d o(a o)}(x)=E_{d o(a o)}(x) \times\left[\left(\frac{\varepsilon_{0}(x)}{\varepsilon\left(r_{d(a)}\right)}\right)^{2}-\right.$
$1]=+\left[\Delta \sigma\left(r_{d(a)}, x\right)\right]_{n(p)}$,
for $r_{d(a)} \geq r_{d o(a o)}$, and for $r_{d(a)} \leq r_{d o(a o)}$,
$\mathrm{E}_{\text {gno(gpo) }}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)-\mathrm{E}_{\mathrm{go}}(\mathrm{x})=\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)-\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x})=\mathrm{E}_{\mathrm{do}(\mathrm{ao})}(\mathrm{x}) \times\left[\left(\frac{\varepsilon_{0}(\mathrm{x})}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)}\right)^{2}-\right.$
$1]=-\left[\Delta \sigma\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)\right]_{\mathrm{n}(\mathrm{p})}$.
Therefore, from above Equations (3) and (4), one obtains the expressions for relative dielectric constant $\varepsilon\left(r_{d(a)}, x\right)$ and energy band gap $E_{g n(g)}\left(r_{d(a)}, x\right)$, as:
(i)-for $r_{d(a)} \geq r_{d o(a o)}$, since $\varepsilon\left(r_{d(a)}, x\right)=\frac{\varepsilon_{0}(x)}{\sqrt{1+\left[\left(\frac{r_{d(a)}}{r_{\text {do (ao) }}}\right)^{3}-1\right] \times \ln \left(\frac{r_{d(a)}}{\mathrm{r}_{\text {do(ao) }}}\right)^{3}}} \leq \varepsilon_{0}(x)$,
$E_{g n o(g p o)}\left(r_{d(a)}, x\right)-E_{g o}(x)=E_{d(a)}\left(r_{d(a)}, x\right)-E_{d o(a o)}(x)=E_{d o(a o)}(x) \times\left[\left(\frac{r_{d(a)}}{r_{d o(a o)}}\right)^{3}-1\right] \times$
$\ln \left(\frac{r_{d(a)}}{r_{\mathrm{do}(\mathrm{ao})}}\right)^{3} \geq 0$,
according to the increase in both $E_{g n(g p)}\left(r_{d(a)}, x\right)$ and $E_{d(a)}\left(r_{d(a)}, x\right)$, for a given x, and (ii)-for $r_{d(a)} \leq r_{d o(a o)}$, since $\varepsilon\left(r_{d(a)}, x\right)=\frac{\varepsilon_{0}(x)}{\sqrt{1-\left[\left(\frac{r_{d(a)}}{r_{d o(a o)}}\right)^{3}-1\right] \times \ln \left(\frac{r_{d(a)}}{r_{d o(a o)}}\right)^{3}}} \geq \varepsilon_{0}(\mathrm{x})$, with a condition, given by: $\left[\left(\frac{r_{d(a)}}{r_{\mathrm{do}(\mathrm{ao})}}\right)^{3}-1\right] \times \ln \left(\frac{r_{\mathrm{d}(\mathrm{a})}}{\mathrm{r}_{\mathrm{do}(\mathrm{ao})}}\right)^{3}<1$,
$E_{g n o(g p o)}\left(r_{d(a)}, x\right)-E_{g o}(x)=E_{d(a)}\left(r_{d(a)}, x\right)-E_{d o(a o)}(x)=-E_{d o(a o)}(x) \times\left[\left(\frac{r_{d(a)}}{r_{d o(a o)}}\right)^{3}-\right.$ $1] \times \ln \left(\frac{r_{d(a)}}{r_{\mathrm{do}(\mathrm{ao})}}\right)^{3} \leq 0$,
corresponding to the decrease in both $\mathrm{E}_{\mathrm{gn}(\mathrm{gp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ and $\mathrm{E}_{\mathrm{d}(\mathrm{a})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, for a given x .
Furthermore, the effective Bohr radius $\mathrm{a}_{\mathrm{Bn}(\mathrm{Bp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)$ is defined by:
$\mathrm{a}_{\mathrm{Bn}(\mathrm{Bp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \frac{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \times \hbar^{2}}{\mathrm{~m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x}) \times \mathrm{q}^{2}}=0.53 \times 10^{-8} \mathrm{~cm} \times \frac{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)}{\mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}}$,
where -q is the electron charge.
Then, the critical donor (acceptor)-density in the Mott MIT, $\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, is determined, using an empirical Mott parameter, $\mathrm{M}_{\mathrm{n}(\mathrm{p})}$, as:
$\left[N_{C D n(N D p)}\left(r_{d(a)}, x\right)\right]^{1 / 3} \times a_{B n(B p)}\left(r_{d(a)}, x\right)=M_{n(p)}=0.25$,
noting that, in general case, such values of $\mathrm{M}_{\mathrm{n}(\mathrm{p})}$ could be chosen, such that the obtained numerical $\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right.$, x$)$-results, being found to be in good agreement with the corresponding experimental ones.
In the following, such numerical $\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$-results can also be justified by the numerical results of the density of electrons (holes), being localized in exponential conduction (valence)-band (EBT) tails, $N_{C D n(C D p)}^{\mathrm{EBR}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, with a precision of the order of 2.91×10^{-7}, as those observed in Tables 2-8 in Appendix 1.

$\mathbf{N}_{\text {CDn }(C D p)}^{\mathrm{EBT}}\left(\mathbf{r}_{\mathrm{d}(\mathrm{a})}, \mathbf{x}\right)$ - EXPRESSION

In order to determine $N_{\operatorname{CDn}(\operatorname{CDp})}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, we first present our physical model and also our mathematical methods.

Physical model

In $n(p)$-type degenerate $X(x)$-crystalline alloys, if denoting the Fermi wave number by: $\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}(\mathrm{N}, \mathrm{x}) \equiv\left(3 \pi^{2} \mathrm{~N} / \mathrm{g}_{\mathrm{c}(\mathrm{v})}(\mathrm{x})\right)^{1 / 3}$, N being the total impurity density, the effective reduced Wigner-Seitz radius $\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}$, characteristic of interactions, is defined by:
$r_{s n(s p)}\left(N, r_{d(a)}, x\right) \equiv\left(\frac{3 g_{c(v)}(x)}{4 \pi N}\right)^{1 / 3} \times \frac{1}{a_{B n(B p)}\left(r_{d(a)}, x\right)}=1.1723 \times 10^{8} \times\left(\frac{g_{c(v)}(x)}{N}\right)^{1 / 3} \times$
$\frac{\mathrm{m}_{\mathrm{c}(\mathrm{v}}(\mathrm{x}) / \mathrm{m}_{\mathrm{o}}}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)}$.
So, the ratio of the inverse effective screening length $\mathrm{k}_{\mathrm{sn}(\mathrm{sp})}$ to Fermi wave number $\mathrm{k}_{\mathrm{Fn}(\mathrm{kp})}$ can be defined by:
$\mathrm{R}_{\mathrm{sn}(\mathrm{sp})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \frac{\mathrm{k}_{\mathrm{sn}(\mathrm{sp})}}{\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}}=\frac{\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}^{-1}}{\mathrm{k}_{\mathrm{sn}(\mathrm{sp})}^{-1}}=$
$R_{\text {snWS(spWS) }}+\left[R_{\text {snTF(spTF) }}-R_{\text {snWS(spWS) }}\right] \mathrm{e}^{-\mathrm{r}_{\text {sn(sp) }}}<1$.
These ratios, $\mathrm{R}_{\mathrm{snTF}(\mathrm{spTF})}$ and $\mathrm{R}_{\mathrm{snWS}(\mathrm{spWS})}$, are determined in the following.

First, for $\mathrm{N} \gg \mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, according to the Thomas-Fermi (TF)-approximation, the ratio $\mathrm{R}_{\mathrm{snTF}(\mathrm{snTF})}$ is reduced to
$R_{\text {snTF }}\left(N, r_{d(a)}, x\right) \equiv \frac{\mathrm{k}_{\operatorname{snTF}(\mathrm{spTF})}}{\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}}=\frac{\mathrm{k}_{\mathrm{F}(\mathrm{Fp})}^{-1}}{\mathrm{k}_{\operatorname{snTF}(\mathrm{spTF})}^{-1}}=\sqrt{\frac{4 \gamma \mathrm{r}_{\mathrm{sn}(\mathrm{sp})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)}{\pi}} \ll 1$,
being proportional to $\mathrm{N}^{-1 / 6}$.
Secondly, for $\mathrm{N}<\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)$, according to the Wigner-Seitz (WS)-approximation, the ratio $\mathrm{R}_{\mathrm{snWS}(\mathrm{spWS})}$ is reduced to:
$R_{s n W S(s p W S)}\left(N, r_{d(a)}, x\right) \equiv \frac{\mathrm{k}_{\mathrm{snWS}(\mathrm{spWs})}}{\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}}=\left(\frac{3}{2 \pi}-\gamma \frac{\left.\frac{\mathrm{d}\left[\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}^{2} \times \mathrm{E}_{\mathrm{CE}}\right]}{d r_{\mathrm{sn}(\mathrm{sp})}}\right) \times 0.5, ~}{\text {, }}\right.$
(12) where $E_{C E}\left(N, r_{d(a)}, x\right)$ is the majority-carrier correlation energy (CE), being determined by:
$\mathrm{E}_{\mathrm{CE}}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \frac{-0.87553}{0.0908+\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}}+\frac{\frac{0.87553}{0.0908+\mathrm{r}_{\mathrm{sn}(\mathrm{sp})}}+\left(\frac{2[1-\ln (2)]}{\pi^{2}}\right) \times \ln \left(\mathrm{r}_{\mathrm{sn}}(\mathrm{spp})-0.093288\right.}{1+0.03847728 \times \mathrm{r}_{\mathrm{sm}}^{1.637(\mathrm{sp})} \mathbf{7 8 8 7}}$.
So, $n(p)$-type degenerate $\mathrm{X}(\mathrm{x})$ - crystalline alloys, the physical conditions are found to be given by :
$\frac{\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}^{-1}}{\mathrm{a}_{\mathrm{Bn}(\mathrm{Bp})}}<\frac{\eta_{\mathrm{n}(\mathrm{p})}}{\mathbb{E}_{\mathrm{Fno}(\mathrm{Fpo})}} \equiv \frac{1}{\mathrm{~A}_{\mathrm{n}(\mathrm{p})}}<\frac{\mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}^{-1}}{\mathrm{k}_{\mathrm{sn}(\mathrm{sp})}^{-1}} \equiv \mathrm{R}_{\mathrm{sn}(\mathrm{sp})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)<1, \mathrm{~A}_{\mathrm{n}(\mathrm{p})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \frac{ \pm \mathrm{E}_{\mathrm{Fno}(\mathrm{Fpo})}}{\eta_{\mathrm{n}(\mathrm{p})}}$.

Here, $\pm \mathrm{E}_{\mathrm{Fno(Fpo)}}$ is the Fermi energy at 0 K , and $\eta_{\mathrm{n}(\mathrm{p})}$ is defined as $: \pm \mathrm{E}_{\mathrm{Fno(Fpo})}(\mathrm{N}, \mathrm{x})=$ $\frac{\hbar^{2} \times \mathrm{k}_{\mathrm{Fn}(\mathrm{Fp})}(\mathrm{N}, \mathrm{x})^{2}}{2 \times \mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x})} \geq 0, \eta_{\mathrm{n}(\mathrm{p})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=\frac{\sqrt{2 \pi \mathrm{~N}}}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a}), \mathrm{x})}\right.} \times \mathrm{q}^{2} \mathrm{k}_{\mathrm{sn}(\mathrm{sp})}^{-1 / 2}$.
Then, the total screened Coulomb impurity potential energy due to the attractive interaction between an electron (hole) charge, $-\mathrm{q}(+\mathrm{q}$), at position $\overrightarrow{\mathrm{r}}$, and an ionized donor (ionized acceptor) charge: $+q(-q)$ at position $\overrightarrow{R_{j}}$, randomly distributed throughout $X(x)$ - crystalline alloys, is defined by:
$\mathrm{V}(\mathrm{r}) \equiv \sum_{\mathrm{j}=1}^{\mathbb{N}} \mathrm{V}_{\mathrm{j}}(\mathrm{r})+\mathrm{V}_{\mathrm{o}}$,
where \mathbb{N} is the total number of ionized donors (acceptors), V_{o} is a constant potential energy, and the screened Coulomb potential energy $\mathrm{v}_{\mathrm{j}}(\mathrm{r})$ is defined as:
$\mathrm{v}_{\mathrm{j}}(\mathrm{r}) \equiv-\frac{\mathrm{q}^{2} \times \exp \left(-\mathrm{k}_{\operatorname{sn}(\mathrm{sp}} \times\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}_{\mathrm{j}}}\right|\right)}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right) \times\left|\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{R}_{\mathrm{j}}}\right|}$,
where $\mathrm{k}_{\mathrm{sn}(\mathrm{sp})}$ is the inverse screening length determined in Eq. (11).
Further, using a Fourier transform, the v_{j}-representation in wave vector $\overrightarrow{\mathrm{k}}$-espace is given by $\mathrm{v}_{\mathrm{j}}(\overrightarrow{\mathrm{k}})=-\frac{\mathrm{q}^{2}}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)} \times \frac{4 \pi}{\Omega} \times \frac{1}{\mathrm{k}^{2}+\mathrm{k}_{\mathrm{sn}(\mathrm{sp})}^{2}}$,
where Ω is the total $\mathrm{X}(\mathrm{x})$ - crystalline alloy volume.
Then, the effective auto-correlation function for potential fluctuations, $\mathrm{W}_{\mathrm{n}(\mathrm{p})}\left(\mathrm{v}_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}\right) \equiv\left\langle\mathrm{V}(\mathrm{r}) \mathrm{V}\left(\mathrm{r}^{\prime}\right)\right\rangle$, was determined, $[4,5]$ as :
$W_{n(p)}\left(v_{n(p)}, N, r_{d(a)}, x\right) \equiv \eta_{n(p)}^{2} \times \exp \left(\frac{-\mathcal{H}_{\mathrm{n}(\mathrm{p})} \times \mathrm{R}_{\mathrm{sn}(\mathrm{sp})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a}), \mathrm{x}}\right)}{\sqrt[2]{\left|v_{\mathrm{n}(\mathrm{p})}\right|}}\right) \quad, \quad \eta_{\mathrm{n}(\mathrm{p})}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv$
$\frac{\sqrt{2 \pi \mathrm{~N}}}{\varepsilon\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right)} \times \mathrm{q}^{2} \mathrm{k}_{\mathrm{sn}(\mathrm{sp})}^{-1 / 2}$,
$v_{\mathrm{n}(\mathrm{p})}(\mathrm{E}, \mathrm{N}, \mathrm{x}) \equiv \frac{\mp \mathrm{E}}{ \pm \mathrm{E}_{\mathrm{Fno}(\mathrm{Fpo})(\mathrm{N}, \mathrm{x})}}, \mathcal{H}_{\mathrm{n}(\mathrm{p})}=0.47137$.
Here, E is the total electron energy, and the empirical Heisenberg parameter $\mathcal{H}_{\mathrm{n}(\mathrm{p})}=$ 0.47137 was chosen above such that the determination of the density of electrons localized in the conduction(valence)-band tails will be accurate, noting that as $\mathrm{E} \rightarrow \pm \infty,\left|\nu_{\mathrm{n}(\mathrm{p})}\right| \rightarrow \infty$, and therefore, $\mathrm{W}_{\mathrm{n}(\mathrm{p})} \rightarrow \eta_{\mathrm{n}(\mathrm{p})}^{2}$.
In the following, we will calculate the ensemble average of the function: $(E-V)^{a-\frac{1}{2}} \equiv E_{k}^{a-\frac{1}{2}}$, for $\mathrm{a} \geq 1, \mathrm{E}_{\mathrm{k}} \equiv \frac{\hbar^{2} \times \mathrm{k}^{2}}{2 \times \mathrm{m}_{\mathrm{c}(\mathrm{v})}(\mathrm{x})}$ being the kinetic energy of the electron (hole), and $\mathrm{V}(\mathrm{r})$ determined in Eq. (16), by using the two following integration methods, which strongly depend on $W_{n(p)}\left(v_{n(p)}, N, r_{d(a)}, x\right)$.

Mathematical Methods

Kane integration method (KIM)

Here, the effective Gaussian distribution probability is defined by:
$\mathrm{P}(\mathrm{V}) \equiv \frac{1}{\sqrt{2 \pi W_{\mathrm{n}(\mathrm{P})}}} \times \exp \left[\frac{-\mathrm{V}^{2}}{2 \mathrm{~W}_{\mathrm{n}(\mathrm{p})}}\right]$.

So, in the Kane integration method, the Gaussian average of $(E-V)^{a-\frac{1}{2}} \equiv E_{k}^{a-\frac{1}{2}}$ is defined by $\left\langle(E-V)^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}} \equiv\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\text {KIM }}=\int_{-\infty}^{\mathrm{E}}(\mathrm{E}-\mathrm{V})^{\mathrm{a}-\frac{1}{2}} \times \mathrm{P}(\mathrm{V}) \mathrm{dV}$, for $\mathrm{a} \geq 1$.

Then, by variable changes: $s=(E-V) / \sqrt{W_{n(p)}}$ and $y=\mp E / \sqrt{W_{n(p)}} \equiv \frac{ \pm E_{\mathrm{Fno}(\mathrm{Fpo})}}{\eta_{\mathrm{n}(\mathrm{p})}} \times v_{\mathrm{n}(\mathrm{p})} \times$ $\exp \left(\frac{\mathcal{H}_{\mathrm{n}(\mathrm{p})} \times \mathrm{R}_{\mathrm{sn}(\mathrm{sp})}}{4 \times \sqrt{\left|\mathrm{v}_{\mathrm{n}(\mathrm{p})}\right|}}\right)$, and using an identity:
$\int_{0}^{\infty} s^{a-\frac{1}{2}} \times \exp \left(-y s-\frac{s^{2}}{2}\right) d s \equiv \Gamma\left(a+\frac{1}{2}\right) \times \exp \left(y^{2} / 4\right) \times D_{-a-\frac{1}{2}}(y)$,
where $D_{-a-\frac{1}{2}}(y)$ is the parabolic cylinder function and $\Gamma\left(a+\frac{1}{2}\right)$ is the Gamma function, one thus has:
$\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}}=\frac{\exp \left(-\mathrm{y}^{2} / 4\right) \times \mathrm{W}_{\mathrm{n}(\mathrm{p})}^{\frac{2 \mathrm{a}-1}{4}}}{\sqrt{2 \pi}} \times \Gamma\left(\mathrm{a}+\frac{1}{2}\right) \times \mathrm{D}_{-\mathrm{a}-\frac{1}{2}}(\mathrm{y})=$
$\frac{\exp \left(-y^{2} / 4\right) \times \eta_{n(p)}^{a-\frac{1}{2}}}{\sqrt{2 \pi}} \times \exp \left(-\frac{\mathcal{H}_{\mathrm{n}(\mathrm{p})} \times \mathrm{R}_{\mathrm{sn}(\mathrm{sp})} \times(2 \mathrm{a}-1)}{8 \times \sqrt{\left|\mathrm{v}_{\mathrm{n}(\mathrm{p})}\right|}}\right) \times \Gamma\left(\mathrm{a}+\frac{1}{2}\right) \times \mathrm{D}_{-\mathrm{a}-\frac{1}{2}}(\mathrm{y})$

Feynman path-integral method (FPIM)

Here, the ensemble average of $(E-V)^{a-\frac{1}{2}} \equiv E_{k}^{a-\frac{1}{2}}$ is defined by
$\left\langle(E-V)^{a-\frac{1}{2}}\right\rangle_{\text {FPIM }} \equiv\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\text {FPIM }} \equiv \frac{\hbar^{\mathrm{a}-\frac{1}{2}}}{2^{3 / 2} \times \sqrt{2 \pi}} \times \frac{\Gamma\left(\mathrm{a}+\frac{1}{2}\right)}{\Gamma\left(\frac{3}{2}\right)} \times \int_{-\infty}^{\infty}(\mathrm{it})^{-\mathrm{a}-\frac{1}{2}} \times \exp \left\{\frac{\mathrm{iEt}^{\hbar}-}{}\right.$
$\left.\frac{\left(\mathrm{t} \sqrt{W_{\mathrm{n}(\mathrm{p})}}\right)^{2}}{2 \hbar^{2}}\right\} \mathrm{dt}, \mathrm{i}^{2}=-1$,
noting that as $a=1$, (it $)^{-\frac{3}{2}} \times \exp \left\{-\frac{\left(\mathrm{t} \sqrt{W_{\mathrm{p}}}\right)^{2}}{2 \hbar^{2}}\right\}$ is found to be proportional to the averaged Feynman propagator given the dense donors (acceptors). Then, by variable changes: $\mathrm{t}=$ $\frac{\hbar}{\sqrt{W_{n(p)}}}$ and $y=\mp E / \sqrt{W_{n(p)}} \equiv \frac{ \pm E_{\mathrm{Fno}(\mathrm{Fpo})}}{\eta_{\mathrm{n}(\mathrm{p})}} \times v_{\mathrm{n}(\mathrm{p})} \times \exp \left(\frac{\mathcal{H}_{\mathrm{n}(\mathrm{p})} \times \mathrm{R}_{\mathrm{snn}(\mathrm{sp})}}{4 \times \sqrt{\left|\mathrm{v}_{\mathrm{n}(\mathrm{p})}\right|}}\right)$, for $\mathrm{n}(\mathrm{p})$-type respectively, and then using an identity:

$$
\int_{-\infty}^{\infty}(\text { is })^{-\mathrm{a}-\frac{1}{2}} \times \exp \left\{\text { iys }-\frac{\mathrm{s}^{2}}{2}\right\} \mathrm{ds} \equiv 2^{3 / 2} \times \Gamma(3 / 2) \times \exp \left(-\mathrm{y}^{2} / 4\right) \times \mathrm{D}_{-\mathrm{a}-\frac{1}{2}}(\mathrm{y})
$$

one finally obtains: $\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\text {FPIM }} \equiv\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\text {KIM }},\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\text {KIM }}$ being determined in Eq. (16).
In the following, with the use of asymptotic forms for $D_{-a-\frac{1}{2}}(y)$, those given for $\langle(E-$ $\left.\mathrm{V})^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}}$ can be obtained in the two following cases.

First case: n-type $(\mathrm{E} \geq 0)$ and p-type $(\mathrm{E} \leq 0)$

As $\mathrm{E} \rightarrow \pm \infty$, one has: $v_{\mathrm{n}(\mathrm{p})} \rightarrow \mp \infty$ and $\mathrm{y} \rightarrow \mp \infty$. In this case, one gets: $\mathrm{D}_{-\mathrm{a}-\frac{1}{2}}(\mathrm{y} \rightarrow \mp \infty) \approx$ $\frac{\sqrt{2 \pi}}{\Gamma\left(a+\frac{1}{2}\right)} \times \mathrm{e}^{\frac{\mathrm{y}^{2}}{4}} \times(\mp y)^{\mathrm{a}-\frac{1}{2}}$, and therefore from Eq. (16), one gets:
$\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}} \approx \mathrm{E}^{\mathrm{a}-\frac{1}{2}}$.

Further, as $\mathrm{E} \rightarrow \pm 0$, one has: $v_{\mathrm{n}(\mathrm{p})} \rightarrow \mp 0$ and $\mathrm{y} \rightarrow \mp 0$. So, one obtains:

$$
D_{-a-\frac{1}{2}}(y \rightarrow \mp 0) \simeq \beta(a) \times \exp \left(\left(\sqrt{a}+\frac{1}{16 a^{\frac{3}{2}}}\right) y-\frac{y^{2}}{16 \mathrm{a}}+\frac{y^{3}}{24 \sqrt{\mathrm{a}}}\right) \rightarrow \beta(a), \quad \beta(a)=\frac{\sqrt{\pi}}{2^{\left.\frac{2 a+1}{4} \Gamma\left(\frac{a}{2}+\frac{3}{4}\right)\right]} .}
$$

Therefore, as $\mathrm{E} \rightarrow \pm 0$, from Eq. (16), one gets: $\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}} \rightarrow 0$.

Thus, in this case, one gets
$\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}} \cong \mathrm{E}^{\mathrm{a}-\frac{1}{2}}$.

Second case: n-type-case ($\mathbf{E} \leq 0$) and p-type-case ($\mathbf{E} \geq 0$)
As $E \rightarrow \mp 0$, one has: $\left(y, v_{n(p)}\right) \rightarrow \pm 0$, and by putting $f(a) \equiv \frac{\eta_{n-(p)}^{a-\frac{1}{2}}}{\sqrt{2 \pi}} \times \Gamma\left(a+\frac{1}{2}\right) \times \beta$ (a), Eq. (18) yields:
$H_{n(p)}\left(V_{n(p)} \rightarrow \pm 0, N, r_{d(a)}, x, a\right)=\frac{\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}}}{\mathrm{f}(\mathrm{a})}=\exp \left[-\frac{\mathcal{H}_{\mathrm{n}(\mathrm{p})} \times \mathrm{R}_{\mathrm{sn}(\mathrm{sp})} \times(2 \mathrm{a}-1)}{8 \times \sqrt{\mid \mathrm{v}_{\mathrm{n}(\mathrm{p}) \mid}}}-(\sqrt{\mathrm{a}}+\right.$
$\left.\left.\frac{1}{16 a^{\frac{3}{2}}}\right) y-\left(\frac{1}{4}+\frac{1}{16 \mathrm{a}}\right) y^{2}-\frac{\mathrm{y}^{3}}{24 \sqrt{\mathrm{a}}}\right] \rightarrow 0$.
Further, as $\mathrm{E} \rightarrow \mp \infty$, one has: $\left(\mathrm{y}, v_{\mathrm{n}(\mathrm{p})}\right) \rightarrow \pm \infty$. Thus, one gets: $\mathrm{D}_{-\mathrm{a}-\frac{1}{2}}(\mathrm{y} \rightarrow \pm \infty) \approx$ $\mathrm{y}^{-\mathrm{a}-\frac{1}{2}} \times \mathrm{e}^{-\frac{\mathrm{y}^{2}}{4}} \rightarrow 0$.
Therefore, from Eq. (16), one gets:
$K_{n(p)}\left(v_{n(p)} \rightarrow \pm \infty, N, r_{d(a)}, \mathrm{X}, \mathrm{a}\right) \equiv \frac{\left\langle\mathrm{EE}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}}}{\mathrm{f}(\mathrm{a})} \simeq \frac{1}{\beta(\mathrm{a})} \times \exp \left(-\frac{\left(\mathrm{A}_{\mathrm{n}(\mathrm{p})} \times v_{\mathrm{n}(\mathrm{p}))^{2}}^{2}\right.}{2}\right) \times\left(\mathrm{A}_{\mathrm{n}(\mathrm{p})} \times\right.$
$\left.v_{\mathrm{n}(\mathrm{p})}\right)^{-\mathrm{a}-\frac{1}{2}} \rightarrow 0$,

It should be noted that those ratios: $\frac{\left\langle\mathrm{E}_{\mathrm{k}}^{\mathrm{a}-\frac{1}{2}}\right\rangle_{\mathrm{KIM}}}{\mathrm{f}(\mathrm{a})}$, obtained in Equations (20) and (21), can be taken in an approximate form as:
$F_{n(p)}\left(v_{n(p)}, N, r_{d(a)}, x, a\right)=K_{n(p)}\left(v_{n(p)}, N, r_{d(a)}, x, a\right)+\left[H_{n(p)}\left(v_{n(p)}, N, r_{d(a)}, x, a\right)-\right.$ $\left.K_{n(p)}\left(v_{\mathrm{n}(\mathrm{p})}, N, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{X}, \mathrm{a}\right)\right] \times \exp \left[-\mathrm{c}_{1} \times\left(\mathrm{A}_{\mathrm{n}(\mathrm{p})} \mathrm{v}_{\mathrm{n}(\mathrm{p})}\right)^{\mathrm{c}_{2}}\right]$,
so that: $\mathrm{F}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}\right) \rightarrow \mathrm{H}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}\right)$ for $0 \leq v_{\mathrm{n}} \leq 16$, and $\mathrm{F}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}\right) \rightarrow \mathrm{K}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}\right)$ for $v_{\mathrm{n}(\mathrm{p})} \geq 16$. Here, the constants c_{1} and c_{2} may be respectively chosen as: $c_{1}=10^{-40}$ and $c_{2}=80$, as $a=1$, being used to determine the critical density of electrons (holes) localized in the exponential conduction(valence) band-tails (EBT), $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, given in the following.
Here, by using Eq. (18) for $\mathrm{a}=1$, the density of states $\mathcal{D}(\mathrm{E})$ is defined by:
$\left\langle\mathcal{D}\left(\mathrm{E}_{\mathrm{k}}\right)\right\rangle_{\mathrm{KIM}} \equiv \frac{\mathrm{g}_{\mathrm{c}(\mathrm{v}}}{2 \pi^{2}}\left(\frac{2 \mathrm{~m}_{\mathrm{c}(\mathrm{v})}}{\hbar^{2}}\right)^{\frac{3}{2}} \times\left\langle\mathrm{E}_{\mathrm{k}}^{\frac{1}{2}}\right\rangle_{\mathrm{KIM}}=\frac{\mathrm{g}_{\mathrm{c}(\mathrm{v}}}{2 \pi^{2}}\left(\frac{2 \mathrm{~m}_{\mathrm{c}(\mathrm{v})}}{\hbar^{2}}\right)^{\frac{3}{2}} \times \frac{\exp \left(-\frac{\mathrm{y}^{2}}{4}\right) \times \mathrm{W}_{\mathrm{n}}^{\frac{1}{4}}}{\sqrt{2 \pi}} \times \Gamma\left(\frac{3}{2}\right) \times \mathrm{D}_{-\frac{3}{2}}(\mathrm{y})=$ $\mathcal{D}(\mathrm{E})$.

Going back to the functions: $\mathrm{H}_{\mathrm{n}}, \mathrm{K}_{\mathrm{n}}$ and F_{n}, given respectively in Equations (20-22), in which the factor $\frac{\left\langle\mathrm{E}_{\mathrm{k}}^{\frac{1}{2}}\right\rangle_{\text {KIM }}}{\mathrm{f}(\mathrm{a}=1)}$ is now replaced by:
$\frac{\left\langle\mathrm{E}_{\mathrm{k}}^{\frac{1}{2}}\right\rangle_{\mathrm{KIM}}}{\mathrm{f}(\mathrm{a}=1)}=\frac{\mathcal{D}(\mathrm{E} \leq 0)}{\mathcal{D}_{\mathrm{o}}}=\mathrm{F}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{X}, \mathrm{a}=1\right)$
$\mathcal{D}_{\mathrm{o}}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}=1\right)=\frac{\mathrm{g}_{\mathrm{c}(\mathrm{v})} \times\left(\mathrm{m}_{\mathrm{c}(\mathrm{v})} \times \mathrm{m}_{\mathrm{o}}\right)^{3 / 2} \times \sqrt{\eta_{\mathrm{n}(\mathrm{p})}}}{2 \pi^{2} \hbar^{3}} \times \beta(\mathrm{a}) \quad, \quad \beta(\mathrm{a}=1)=\frac{\sqrt{\pi}}{2^{\frac{3}{4}} \times \Gamma(5 / 4)}$

Therefore, $N_{C D n(C D p)}^{E B T}\left(N, r_{d(a)}, x\right)$ can be defined by: $N_{C D n(C D p)}^{E B T}\left(N, r_{d(a)}, x\right)=\int_{-\infty}^{0} \mathcal{D}(E \leq$ 0) dE,
$N_{\operatorname{CDn}(\operatorname{CDp})}^{\mathrm{EBT}}\left(\mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)=$
$\frac{\mathrm{g}_{\mathrm{c}(\mathrm{v})} \times\left(\mathrm{m}_{\mathrm{c}(\mathrm{v})}\right)^{3 / 2} \sqrt{\eta_{\mathrm{n}(\mathrm{p})} \times\left(\pm \mathrm{E}_{\mathrm{Fno}(\mathrm{Fpo})}\right)}}{2 \pi^{2} \hbar^{3}} \times\left\{\int_{0}^{16} \beta(\mathrm{a}=1) \times \mathrm{F}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}=1\right) \mathrm{d} v_{\mathrm{n}(\mathrm{p})}+\right.$ $\left.\mathrm{I}_{\mathrm{n}(\mathrm{p})}\right\}$,
(25) where
$\mathrm{I}_{\mathrm{n}(\mathrm{p})} \equiv \int_{16}^{\infty} \beta(\mathrm{a}=1) \times \mathrm{K}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}=1\right) \mathrm{d} v_{\mathrm{n}(\mathrm{p})}=\int_{16}^{\infty} \mathrm{e}^{\frac{-\left(\mathrm{A}_{\left.\mathrm{n}(\mathrm{p}) \times v_{n(p)}\right)^{2}}^{2}\right.}{2} \times}$ $\left(A_{n(p)} v_{n(p)}\right)^{-3 / 2} \mathrm{~d} v_{\mathrm{n}(\mathrm{p})}$.

Then, by another variable change: $\mathrm{t}=\left[\mathrm{A}_{\mathrm{n}(\mathrm{p})} v_{\mathrm{n}(\mathrm{p})} / \sqrt{2}\right]^{2}$, the integral $\mathrm{I}_{\mathrm{n}(\mathrm{p})}$ yields:
$I_{n(p)}=\frac{1}{2^{5 / 4} A_{n(p)}} \times \int_{z_{n(p)}}^{\infty} t^{b-1} e^{-t} d t \equiv \frac{\Gamma\left(b, z_{n(p)}\right)}{2^{5 / 4} \times A_{n(p)}}$, where $b=-1 / 4, \quad z_{n(p)}=\left[16 A_{n(p)} / \sqrt{2}\right]^{2}$, and $\Gamma\left(\mathrm{b}, \mathrm{z}_{\mathrm{n}(\mathrm{p})}\right)$ is the incomplete Gamma function, defined by: $\Gamma\left(\mathrm{b}, \mathrm{z}_{\mathrm{n}(\mathrm{p})}\right) \simeq \mathrm{z}_{\mathrm{n}(\mathrm{p})}^{\mathrm{b}-1} \times$ $\mathrm{e}^{-\mathrm{z}_{\mathrm{n}(\mathrm{p})}}\left[1+\sum_{\mathrm{j}=1}^{16} \frac{(\mathrm{~b}-1)(\mathrm{b}-2) \ldots(\mathrm{b}-\mathrm{j})}{\mathrm{z}_{\mathrm{n}(\mathrm{p})}^{\mathrm{j}}}\right]$.
Finally, Eq. (25) now yields:
$N_{C D n(C D p)}^{E B T}\left[N=N_{C D n(N D p)}\left(r_{d(a)}, x\right), r_{d(a)}, x\right]=\frac{\mathrm{g}_{\mathrm{c}(\mathrm{v})} \times\left(\mathrm{m}_{\mathrm{c}(\mathrm{v})}\right)^{3 / 2} \sqrt{\eta_{\mathrm{n}(\mathrm{p})}} \times\left(\pm \mathrm{E}_{\mathrm{Fno}(\mathrm{Fpo})}\right)}{2 \pi^{2} \hbar^{3}} \times$ $\left\{\int_{0}^{16} \beta(\mathrm{a}=1) \times \mathrm{F}_{\mathrm{n}(\mathrm{p})}\left(v_{\mathrm{n}(\mathrm{p})}, \mathrm{N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}, \mathrm{a}=1\right) \mathrm{d} v_{\mathrm{n}(\mathrm{p})}+\frac{\Gamma\left(\mathrm{b}, \mathrm{z}_{\mathrm{n}(\mathrm{p})}\right)}{\left.2^{5 / 4} \times A_{\mathrm{n}(\mathrm{p})}\right)}\right\}$,
being the density of electrons (holes) localized in the EBT, respectively.
In $n(p)$-type degenerate $X(x)$ - crystalline alloys, the numerical results of $N_{C D n(C D p)}^{\mathrm{EBT}}[\mathrm{N}=$ $\left.N_{C D n(N D p)}\left(r_{d(a)}, x\right), r_{d(a)}, x\right] \equiv N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, for a simplicity of presentation, evaluated using Eq. (26), are given in Tables 2-8 in Appendix 1, in which those of other functions such as: $\mathrm{B}_{\mathrm{do}(\mathrm{ao})}, \varepsilon, \mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}$, and $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}$ are computed, using Equations (2), (5), (6), and (8), respectively, noting that the relative deviations in absolute values are defined by: $|\mathrm{RD}| \equiv$ $\left|1-\frac{\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}}{\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}}\right|$

Tables 2-8 in Appendix 1

CONCLUSION

In those Tables 2-8, some concluding remarks are given and discussed in the following.
(1)-For a given x, while $\varepsilon\left(r_{d(a)}, x\right)$ decreases (\searrow), the functions: $\mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, $N_{\operatorname{CDn}(\operatorname{CDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ and $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ increase (\nearrow), with increasing $(\nearrow) \mathrm{r}_{\mathrm{d}(\mathrm{a})}$, due to the impurity size effect.
(2)-Further, for a given $r_{d(a)}$, while $\varepsilon\left(r_{d(a)}, x\right)$ also decreases (\searrow), the functions: $\mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right), \mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ and $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$ also increase (\nearrow), with increasing (π) x .
(3)- In those Tables 2-8, one notes that the maximal value of $|\mathrm{RD}|$ is found to be given by: 2.91×10^{-7}, meaning that $\mathrm{N}_{\mathrm{CDn}}^{\mathrm{EBT}} \cong \mathrm{N}_{\mathrm{CDn}}$. In other words, such the critical $\mathrm{d}($ a) -density
$\left.\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}\right), \mathrm{x}\right)$, is just the density of electrons (holes), being localized in the EBT, $N_{\text {CDn }(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right)$, respectively.
(4) Finally, once $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}$ is determined, the effective density of free electrons (holes), N^{*}, given in the parabolic conduction (valence) band of the $n(p)$-type degenerate $X(x)$ - crystalline alloy, can thus be defined, as the compensated ones, by:
$\mathrm{N}^{*}\left(\mathrm{~N}, \mathrm{r}_{\mathrm{d}(\mathrm{a})}, \mathrm{x}\right) \equiv \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{NDp})} \cong \mathrm{N}-\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}$,
needing to determine the optical, electrical, and thermoelectric properties in such $n(p)$-type degenerate $\mathrm{X}(\mathrm{x})$-crystalline alloys, as those studied in $\mathrm{n}(\mathrm{p})$-type degenerate crystals (Van Cong, 2023; Van Cong et al., 2014; Van Cong \& Debiais, 1993; Van Cong et al., 1984).

REFERENCES

1. Green, M.A. et al. Solar cell efficiency tables (version 60). Prog. Photovolt. Res. \& Appl., 2022; 30: 687-701.
2. Kittel, C. Introduction to Solid State Physics, Wiley, New York, 1976; 84-100.
3. Moon S. et al. Highly efficient single GaAs thin-film solar cell on flexible substrate. Sci. Rep., 2016; 6: 30107.
4. Van Cong, H. New Critical Impurity Density in the Metal-Insulator Transition, obtained in various $\mathrm{n}(\mathrm{p})$-Type Degenerate Crystalline Alloys, being just That of Carriers Localized in Exponential Band Tails, being accepted for publication in World Journal of Engineering Research and Technology, 2024; 10(4).
5. Van Cong, H. Critical Impurity Densities in the Mott Metal-Insulator Transition, Obtained in Three $n(p)$ - Type Degenerate $\mathrm{Ga}_{\mathrm{As}}^{1-\mathrm{x}} \mathrm{Te}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right)$-Crystalline Alloys. European Journal of Applied Sciences, Engineering and Technology, 2024; 2(1): 34-49.
6. Van Cong, H. Accurate expressions of the optical coefficients, given in $n(p)$-type degenerate GaAs-crystals, due to the impurity-size effect, and obtained by an improved Forouhi-Bloomer parameterization model (FB-PM). SCIREA J. Phys., 2023; 8: 172-197. Same maximum figure of merit $\mathrm{ZT}(=1)$, due to effects of impurity size and heavy doping, obtained in $\mathrm{n}(\mathrm{p})$-type degenerate InP-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott ZT (=1). SCIREA J. Phys., 2023; 8: 91-114; Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in $n(p)$-type degenerate GaAs-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott

ZT (=1). SCIREA J. Phys., 2023; 8: 133-157; Same maximum figure of merit ZT(=1), due to effects of impurity size and heavy doping, obtained in $\mathrm{n}(\mathrm{p})$-type degenerate InSb crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott ZT (=1). SCIREA J. Phys., 2023; 8: 383-406; Same maximum figure of merit $\mathrm{ZT}(=1)$, due to effects of impurity size and heavy doping, obtained in $\mathrm{n}(\mathrm{p})$-type degenerate InAs-crystal, at same reduced Fermi energy and same minimum (maximum) Seebeck coefficient, at which same Mott ZT (=1). SCIREA J. Phys., 2023; 8: 431-455.
7. Van Cong, H. et al. Optical bandgap in various impurity-Si systems from the metalinsulator transition study. Physica B, 2014; 436: 130-139.
8. Van Cong, H. \& Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. J. Appl. Phys., 1993; 73: 1545-1546.
9. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State Communications, 1984; 49: 697-699.
10. Critical Impurity Densities in the Mott Metal-Insulator Transition, Obtained in Three $\mathrm{n}(\mathrm{p})$ - Type Degenerate $\mathrm{GaAs}_{1-\mathrm{x}} \mathrm{Te}_{\mathrm{x}}\left(\mathrm{Sb}_{\mathrm{x}}, \mathrm{P}_{\mathrm{x}}\right)$-Crystalline Alloys

APPENDIX 1

Table 1: The values of various energy-band-structure parameters are given in various crystalline alloys as follows.

> In $\operatorname{In} A \boldsymbol{s}_{1-x} \boldsymbol{P}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{A s(I n)}=0.118 \mathrm{~nm}(0.144 \mathrm{~nm})$, we have: $\quad g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.077(0.5) \times x+0.09(0.3) \times(1-x), \varepsilon_{o}(x)=12.5 \times x+14.55 \times(1-x), E_{g o}(x)=1.424 \times x+0.43 \times(1-x)$, and
> In $\boldsymbol{I n} A \boldsymbol{s}_{1-x} \boldsymbol{S b}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{A s(I n)}=0.118 \mathrm{~nm}(0.144 \mathrm{~nm})$, we have: $g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.1(0.4) \times x+0.09(0.3) \times(1-x), \varepsilon_{o}(x)=16.8 \times x+14.55 \times(1-x), E_{g o}(x)=0.23 \times x+0.43 \times(1-x)$.

In GaTe $\boldsymbol{G}_{1-\boldsymbol{x}} \boldsymbol{A} \boldsymbol{s}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{T e(G a)}=0.132 \mathrm{~nm}(0.126 \mathrm{~nm})$, we have: $g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.066(0.291) \times x+0.209(0.4) \times(1-x), \varepsilon_{o}(x)=13.13 \times x+12.3 \times(1-x), E_{g o}(x)=1.52 \times x+1.796 \times(1-x)$,
In GaTe $\boldsymbol{G}_{1-x} \boldsymbol{S} \boldsymbol{b}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{T e(G a)}=0.132 \mathrm{~nm}(0.126 \mathrm{~nm})$, we have: $g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.047(0.3) \times x+0.209(0.4) \times(1-x), \varepsilon_{o}(x)=15.69 \times x+12.3 \times(1-x), E_{g o}(x)=0.81 \times x+1.796 \times(1-x)$, and
In GaTe $\boldsymbol{G}_{1-x} \boldsymbol{P}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{T e(G a)}=0.132 \mathrm{~nm}(0.126 \mathrm{~nm})$, we have: $g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.13(0.5) \times x+0.209(0.4) \times(1-x), \varepsilon_{o}(x)=11.1 \times x+12.3 \times(1-x), E_{g o}(x)=1.796 \times x+1.796 \times(1-x)$.

In $\boldsymbol{C d T e}_{1-x} \boldsymbol{S}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{S(C d)}=0.104 \mathrm{~nm}(0.148 \mathrm{~nm})$, we have: $g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.197(0.801) \times x+0.095(0.82) \times(1-x), \varepsilon_{o}(x)=9 \times x+10.31 \times(1-x), E_{g o}(x)=2.58 \times x+1.62 \times(1-x)$, and
In CdTe $\boldsymbol{1}_{1-\boldsymbol{x}} \boldsymbol{S e}_{\boldsymbol{x}}$-alloys, in which $r_{d o(a o)}=r_{S(C d)}=0.104 \mathrm{~nm}(0.148 \mathrm{~nm})$, we have: $g_{c(v)}(x)=1 \times x+1 \times(1-x), m_{c(v)}(x) / m_{o}=$ $0.11(0.45) \times x+0.095(0.82) \times(1-x), \varepsilon_{o}(x)=10.2 \times x+10.31 \times(1-x), E_{g o}(x)=1.84 \times x+1.62 \times(1-x)$.

Table 2: In the $\operatorname{InAs} s_{1-\mathrm{x}} \mathrm{P}_{\mathrm{x}}$-alloy the numerical results of $\mathrm{B}_{\mathrm{do}(\mathrm{ao})}, \varepsilon, \mathrm{E}_{\mathrm{gno}(\mathrm{gpo})}, \mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}$, and $\mathrm{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|R D| \equiv\left|1-\frac{\mathbf{N}_{\mathrm{CDn}}^{\mathrm{EBR}}(\mathrm{CDD})}{\mathrm{N}_{\mathrm{CDn}(\mathrm{Cdp})}}\right|$, giving rise to their maximal value equal to 2.76×10^{-7}, meaning that such the critical d(a)-density
$\mathbf{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathbf{r}_{\mathrm{d}(\mathrm{a}))}, \mathbf{x}\right)$ ，determined in Eq．（8），is just the density of electrons（holes）localized in the EBT， $\mathbf{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBT}}\left(\mathbf{r}_{\mathrm{d}(\mathrm{a})}, \mathbf{x}\right)$ ， determined in Eq．（26），respectively．Here，on notes that in the limiting conditions： $\mathbf{x}=\mathbf{0}, \mathbf{1}$ ，these results are reduced to those given in GaAs－and－GaTe crystals，respectively，as observed in Table 1.

Donor	P	As
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \nearrow$	0.110	$\mathrm{r}_{\text {do }}=0.118$
x 入	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{do}}(\mathrm{x})$ in $10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \nearrow$		1．3458086，1．4450362，1．5600463
$\varepsilon\left(r_{d}, x\right) \downarrow$	14．85002， $13.8039,12.75774$	14．55， $13.525,12.5$
$E_{\text {gno }}\left(r_{d}, x\right) e V \nearrow$	0．4297687，0．926752， 1.42373	$\mathbf{0 . 4 3}$ ， $0.927,1.424$
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	2．3363729，2．3230107， 2.3075214	2．4838989，2．469693， 2.4532257
$N_{\text {CDn }}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \quad \nearrow$	2．3363723，2．3230101， 2.3075208	2．4838983，2．4696924， 2.4532251
$\|\mathrm{RD}\|$ in 10^{-7}	2．75， $2.57,2.56$	2．57， $2.57,2.62$
Donor	Sb	Sn
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \quad \quad$ r	0.136	0.140
x 行	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \downarrow$	13．139864，12．214203， 11.28854	12．552119，11．667863， 10.78361
$E_{\text {gno }}\left(r_{d}, x\right) e V \nearrow$	0．431307， $0.9284039,1.4255157$	$0.431987,0.9291335,1.4263033$
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	3．3724874，3．3531995，3．3308411	3．868760，3．8466338， 3.8209854
$N_{\text {CDn }}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \quad \nearrow$	3．3724865，3．3531986， 3.3308402	3．868759，3．8466328， 3.8209844
$\|\mathrm{RD}\|$ in 10^{-7}	$2.74, \quad 2.74,2.60$	2．67， $2.62,2.64$
Acceptor	Ga	Mg
$\mathrm{r}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	0.126	0.140
x 入	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \downarrow$	15．6192444，14．5189196， 13.4185948	14．6000832，13．571555， 12.5430268
$E_{\text {gpo }}\left(r_{\text {a }}, x\right) \mathrm{eV}$ ¢	0．4274517，0．9230677，1．4182455	$0.429868,0.9267963,1.4237019$
$N_{\text {CDp }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0．74366797，2．1946863， 5.4298054	0．91052768，2．6871166，6．6481122
$\mathrm{N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathbf{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0．74366777，2．1946857， 5.4298040	$0.91052743,2.6871159,6.6481104$
$\|\mathrm{RD}\|$ in 10^{-7}	2．68，2．76， 2.68	2．77， $2.62,2.74$
Acceptor	In	Cd
$\mathrm{r}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	$\mathrm{rao}_{\text {a }}=\mathbf{0} .144$	0.148
\bar{x} 才	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{ao}}(\mathrm{x})$ in $10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \nearrow$	2．4684288，3．808998， 5.5741072	
$\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \downarrow$	$\mathbf{1 4 . 5 5}, 13.525,12.5$	14．4990401，13．47763， 12.45622
$E_{\text {gpo }}\left(r_{a}, x\right) \mathrm{eV}$ ，	0．43， $0.927,1.424$	0．4301357，0．9272094，1．4243065
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0．91996257，2．7149606， 6.717	0．92969691，2．7436882， 6.7880742
$\mathrm{N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathbf{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0．91996232，2．7149599， 6.7169982	0．92969666，2．7436875， 6.7880723
$\|\mathrm{RD}\|$ in 10^{-7}	2．68， $2.75,2.69$	2．71， $2.63,2.74$

Table 3．In the $\operatorname{In} A s_{1-x} S b_{x}$－alloy the numerical results of $B_{d o(a o)}, \varepsilon, E_{g n o(g p o)}, N_{\operatorname{CDn}(\mathrm{CDp})}$ ，and $N_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBR}}$ are computed，using Equations（2），（5），（6），and（8），and（26），respectively，noting that the relative deviations in absolute values are defined by： \mid RD $\mid \equiv$ $\left|1-\frac{N_{C D D}^{\mathrm{EBT}}(\mathrm{CDp})}{\mathrm{N}_{\mathrm{CDn}(\mathrm{Cdp})}}\right|$ ，giving rise to their maximal value equal to 2.91×10^{-7} ，meaning that such the critical d（a）－density
$\mathbf{N}_{\mathrm{CDn}(\mathrm{NDp})}\left(\mathrm{r}_{\mathrm{d}(\mathrm{a}))}, \mathbf{x}\right)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $\mathbf{N}_{\mathrm{CDn}(\mathrm{CDp})}^{\mathrm{EBR}}\left(\mathbf{r}_{\mathrm{d}(\mathrm{a})}, \mathbf{x}\right)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: $\mathbf{x}=\mathbf{0}$, 1 , these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor	P	As
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \nearrow$	0.110	$\mathrm{r}_{\mathrm{do}}=0.118$
x ,	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{do}}(\mathrm{x})$ in $10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \downarrow$		1.3458086, 1.2239827, 1.1216264
$\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \downarrow$	14.85001, 15.998213, 17.14641	$\mathbf{1 4 . 5 5}, \quad 15.675,16.8$
$\mathrm{E}_{\text {gno }}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \mathrm{eV}$ ¢	0.4297687, 0.32979, 0.2298073	0.43, $0.33,0.23$
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	2.3363729, 2.1976158, 2.0819762	2.4838989, 2.3363803, 2.2134389
$\mathrm{N}_{\mathrm{CDn}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \quad \nearrow$	2.3363723, 2.1976152, 2.0819756	2.4838983, 2.3363797, 2.2134383
$\|\mathrm{RD}\|$ in 10^{-7}	2.75, $2.61,2.67$	$2.58, \quad 2.61,2.81$
Donor	Sb	Sn
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \lambda$	0.136	0.140
x ,	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(r_{d}, x\right) \downarrow$	13.139864, 14.15583, 15.171801	12.552119, 13.52264, 14.49317
$\mathrm{Egno}_{\text {go }}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \mathrm{eV} \backslash$	$0.4313075,0.33119,0.2310897$	0.431987, 0.3318071, 0.231656
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	$3.3724874,3.1721955,3.0052730$	3.868760, 3.6389946, 3.4475089
$\mathrm{N}_{\mathrm{CDn}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \quad \nearrow$	3.3724865, 3.1721946, 3.0052722	3.868759, 3.6389936, 3.4475080
$\|\mathrm{RD}\|$ in 10^{-7}	2.74, $2.69,2.61$	2.67, $2.79,2.70$
Acceptor	Ga	Mg
$\mathrm{r}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	0.126	0.140
x , \quad,	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \downarrow$	15.6192444, 16.8269179, 18.0345915	14.600083, 15.72896, 16.857828
$\mathrm{E}_{\text {gpo }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV}$ ¢	$0.4274517,0.3274384,0.2274514$	0.429868, $0.3298673,0.229868$
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	$0.74366797,0.9444648,1.1451343$	$0.91052768,1.1563781,1.4020726$
$\mathrm{N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathbf{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0.74366777, $0.9444646,1.1451340$	$0.91052743,1.1563778,1.4020722$
$\|\mathrm{RD}\|$ in 10^{-7}	2.68, $2.64,2.74$	2.77, $2.83,2.81$
Acceptor	In	Cd
$\mathrm{r}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	$\mathrm{rao}_{\mathrm{a}}=\mathbf{0 . 1 4 4}$	0.148
$x \quad \nearrow$	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{ao}}(\mathrm{x})$ in $10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \downarrow$	5.5741072, 3.6522677, 2.4686912	
$\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \downarrow$	14.55, $15.675,16.8$	14.499040, 15.6201, 16.7411597
$\mathrm{E}_{\text {gpo }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV} \backslash$	0.43, $0.33,0.23$	0.4301357, 0.3301364, 0.2301357
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0.91996257, 1.1683605, 1.4166009	$0.92969691,1.1807232,1.4315903$
$N_{\text {CDp }}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathbf{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	0.91996232, $1.1683602,1.4166005$	0.92969666, 1.1807229, 1.4315899
$\|\mathrm{RD}\|$ in 10^{-7}	2.68, $\quad 2.78,2.82$	2.71, $\quad 2.83,2.91$

Table 4: In the $G a T e_{1-x} A s_{x}$-alloy the numerical results of $B_{d o(a o)}, \varepsilon, E_{g n o(g p o)}, N_{C D n(C D p)}$, and $N_{C D n(C D p)}^{E B T}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|R D| \equiv$ $\left|1-\frac{N_{C D n(C D p)}^{E E T}}{N_{C D n}(C d p)}\right|$, giving rise to their maximal value equal to 2.91×10^{-7}, meaning that such the critical d(a)-density
$N_{C D n(N D p)}\left(r_{d(a))}, x\right)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: $x=0$, 1 , these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

$\mathrm{E}_{\mathrm{gpo}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV} \nearrow$	$1.803097,1.66374,1.5245311$	1.806773,	$1.666708,1.5268781$
$\mathrm{~N}_{\mathrm{CDp}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	$4.7294055,2.7589064,1.4970169$	$5.3478913,3.1197012,1.6927886$	
$\mathrm{~N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{18} \mathrm{~cm}^{-3} \nearrow$	$4.7294042,2.7589057,1.4970165$	$5.3478899,3.1197004,1.6927881$	
$\|\mathrm{RD}\|$ in 10^{-7}	$2.81, \quad 2.69,2.81$	2.67,	$2.68,2.74$

Table 5: In the $G a T e_{1-x} S b_{x}$-alloy the numerical results of $B_{d o(a o)}, \varepsilon, E_{g n o(g p o)}, N_{C D n(C D p)}$, and $N_{C D n(C D p)}^{E B T}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|R D| \equiv$ $\left|1-\frac{N_{C D n(C D p)}^{E B T}}{N_{C D n(C d p)}}\right|$, giving rise to their maximal value equal to 2.87×10^{-7}, meaning that such the critical d(a)-density $N_{C D n(N D p)}\left(r_{d(a))}, x\right)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: $\mathbf{x}=\mathbf{0}$, $\mathbf{1}$, these results are reduced to those given in GaAs-and-GaP crystals, respectively, as observed in Table 1.

Table 6: In the $G a T e_{1-x} P_{x}$-alloy the numerical results of $B_{d o(a o)}, \varepsilon, E_{g n o(g p o)}, N_{C D n(C D p)}$, and $N_{C D n(C D p)}^{E B T}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|R D| \equiv$ $\left|1-\frac{N_{C D D(C D p)}^{E B T}}{\left.N_{C D n(C d p)}\right)}\right|$, giving rise to their maximal value equal to 2.91×10^{-7}, meaning that such the critical d(a)-density $N_{C D n(N D p)}\left(r_{d(a))}, x\right)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: $\mathbf{x}=\mathbf{0}$, 1, these results are reduced to those given in GaAs-and-GaSb crystals, respectively, as observed in Table 1.

Table 7: In the $C d T e_{1-x} S_{x}$-alloy the numerical results of $B_{d o(a o)}, \varepsilon, E_{g n o(g p o)}, N_{C D n(C D p)}$, and $N_{C D n(C D p)}^{E B T}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|R D| \equiv$ $\left|1-\frac{N_{C D n}^{E B T}(C D p)}{N_{C D n(C d p)}}\right|$, giving rise to their maximal value equal to 2.82×10^{-7}, meaning that such the critical d(a)-density $N_{C D n(N D p)}\left(r_{d(a))}, x\right)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: $\mathbf{x}=\mathbf{0}$, 1 , these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor	S	Se
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \quad \quad$ r	0.104	0.114
x ス	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \downarrow$	12.942503, 12.1202, 11.298015	11.2257881, 10.51261, 9.799427
$E_{\text {gno }}\left(r_{d}, x\right) e V \nearrow$	1.6155583, 2.09222, 2.567913	1.6180978, 2.096666, 2.5748234
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	4.1506041,18.345022, 55.640067	6.3608576, 28.113996, 85.269163
$N_{\mathrm{CDn}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \quad \nearrow$	4.1506030, 18.345017, 55.640052	$6.3608559,28.113988,85.269141$
$\|\mathrm{RD}\|$ in 10^{-7}	2.6, 2.79, 2.66	$2.73, \quad 2.67,2.59$
Donor	Te	Sn
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \nearrow$	$\mathrm{r}_{\mathrm{do}}=\mathbf{0 . 1 3 2}$	0.140
x 行	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{do}}(\mathrm{x})$ in $10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \nearrow$	2.0211442, 3.541925, 5.5001208	
$\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \downarrow$	10.31, $9.655,9$	10.138688, 9.494571, 8.850455
$E_{\text {gno }}\left(r_{d}, x\right) e V \gamma$	1.62, 2.1, 2.58	1.6204142, 2.100726, 2.5811272
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	8.2108893, 36.290847, 110.06938	$8.6341767,38.161712,115.74367$

$\mathrm{N}_{\mathrm{CDn}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3}$	\nearrow	$8.2108871,36.290837,110.06935$	$8.6341743,38.161702,115.74364$
$\|\mathrm{RD}\|$ in 10^{-7}	2.72,	$2.65,2.63$	2.76,

Acceptor	Ga	Mg
$\mathrm{ra}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	0.126	0.140
x ,	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(r_{a}, x\right) \downarrow$	11.41926, 10.69404, 9.9685481	10.444552, 9.781004, 9.1174555
$E_{\text {gpo }}\left(r_{a}, x\right) \mathrm{eV}$,	1.6006033, 2.078139, 2.5551356	1.6173143, 2.09697, 2.5765572
$N_{\text {CDp }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	3.8859101, 4.5690868, 5.4449915	5.0788748, 5.9717851, 7.1165903
$N_{\text {CDp }}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	3.8859090, 4.5690856, 5.4449900	5.0788734, 5.9717835, 7.1165884
$\|\mathrm{RD}\|$ in 10^{-7}	2.75, 2.68, 2.82	2.679, $\quad 2.62,2.67$
Acceptor	In	Cd
$\mathrm{ra}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	0.144	$\mathrm{rao}_{\mathrm{a}}=\mathbf{0 . 1 4 8}$
x ¢	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{ao}}(\mathrm{x})$ in $10^{9}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \nearrow$		$1.2377251,1.3950062,1.5866282$
$\varepsilon\left(r_{a}, x\right) \downarrow$	10.343599, 9.686465, 9.0293303	10.31, $9.655,9$
$E_{\text {gpo }}\left(r_{a}, x\right) \mathrm{eV}$,	1.6193195, 2.099233, 2.5791277	1.62, 2.1, 2.58
$N_{\text {CDp }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	5.2290386, 6.148349, 7.3270019	5.2803284, 6.208656, 7.398870
$\mathrm{N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	5.2290372, 6.1483473, 7.3270000	5.2803270, 6.2086543, 7.398868
$\|\mathrm{RD}\|$ in 10^{-7}	2.76, 2.78, 2.71	2.66, $2.68,2.72$

Table 8: In the $C d T e_{1-x} S e_{x}$-alloy the numerical results of $B_{d o(a o)}, \varepsilon, E_{g n o(g p o)}, N_{C D n(C D p)}$, and $N_{C D n(C D p)}^{E B T}$ are computed, using Equations (2), (5), (6), and (8), and (26), respectively, noting that the relative deviations in absolute values are defined by: $|R D| \equiv$ $\left|1-\frac{N_{C D D(C D p)}^{E B T}}{N_{C D n(C d p)}}\right|$, giving rise to their maximal value equal to $2.88 \times \mathbf{1 0}^{\mathbf{- 7}}$, meaning that such the critical d(a)-density $N_{C D n(N D p)}\left(r_{d(a))}, x\right)$, determined in Eq. (8), is just the density of electrons (holes) localized in the EBT, $N_{C D n(C D p)}^{E B T}\left(r_{d(a)}, x\right)$, determined in Eq. (26), respectively. Here, on notes that in the limiting conditions: $\mathbf{x}=\mathbf{0}, \mathbf{1}$, these results are reduced to those given in GaAs-and-GaTe crystals, respectively, as observed in Table 1.

Donor	S	Se
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \nearrow$	0.104	0.114
x 行	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \downarrow$	12.9425036, 12.87346, 12.804417	11.225788, 11.165903, 11.1060173
$E_{\text {gno }}\left(r_{\text {d }}, x\right) \mathrm{eV} \nearrow$	1.6155583, 1.7251561, 1.834745	1.6180978, $1.7279255,1.8377496$
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	4.1506041, 5.2976236, 6.6541722	6.3608576, 8.1186805, 10.197610
$N_{\text {CDn }}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \quad \nearrow$	4.1506030, 5.2976222, 6.6541704	6.3608559, 8.1186783, 10.197607
$\|\mathrm{RD}\|$ in 10^{-7}	2.60, 2.71, 2.73	$2.73, \quad 2.65,2.77$
Donor	Te	
$\mathrm{r}_{\mathrm{d}}(\mathrm{nm}) \quad \nearrow$	$\mathrm{r}_{\mathrm{do}}=\mathbf{0 . 1 3 2}$	0.140
$x \quad \nearrow$	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{B}_{\mathrm{do}}(\mathrm{x})$ in $10^{8}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \nearrow$	2.0211442, 2.204162, 2.3910208	
$\varepsilon\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \downarrow$	10.31, 10.255, 10.2	10.1386879, 10.084602, 10.030516
$\mathrm{E}_{\mathrm{gno}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right) \mathrm{eV} \quad$ J	1.62, 1.73, 1.84	1.6204142, 1.730452, 1.84049
$\mathrm{N}_{\mathrm{CDn}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3} \nearrow$	8.2108893, 10.479968, 13.163547	8.6341767, 11.020231, 13.842153

$\mathrm{N}_{\mathrm{CDn}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{d}}, \mathrm{x}\right)$ in $10^{16} \mathrm{~cm}^{-3}$	\nearrow	$8.2108871,10.479965,13.163543$	$8.6341743,11.020228,13.842149$
$\|\mathrm{RD}\|$ in 10^{-7}	2.72,	$2.42,2.88$	2.76,

Acceptor	Ga	Mg	
$\mathrm{r}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	0.126	0.140	
x x	$0, \quad 0.5,1$	0 ,	0.5, 1
$\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \downarrow$	11.419526, 11.358607, 11.2976878	10.44455,	10.3888, 10.3331162
$\mathrm{E}_{\text {gpo }}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV} \boldsymbol{\gamma}$	1.6006033, 1.7148179, 1.8291247	1.617314,	1.72790, 1.8384942
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	3.8859101, 1.8337552, 0.66323007	5.0788748, 2	.3967135, 0.86684006
$\mathrm{N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathbf{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	3.8859090, 1.8337547, 0.66322989	5.0788734	2.3967129, 0.86683983

$\|\mathrm{RD}\|$ in 10^{-7}	2.75, $2.61,2.69$	2.69, $2.58,2.65$
Acceptor	In	Cd
$\mathrm{r}_{\mathrm{a}}(\mathrm{nm}) \quad \nearrow$	0.144	$\mathrm{rao}_{\text {a }}=0.148$
	$0, \quad 0.5,1$	$0, \quad 0.5,1$
$\mathrm{Bao}_{\mathrm{ao}}(\mathrm{x})$ in $10^{9}\left(\mathrm{~N} / \mathrm{m}^{2}\right) \quad \downarrow$		$1.2377251,0.9687909,0.69396862$
$\varepsilon\left(\mathrm{r}_{\mathrm{a}}, \mathrm{x}\right) \downarrow$	10.343599, 10.288420, 10.233241	10.31, $10.225,10.2$
$\mathrm{E}_{\text {gpo }}\left(\mathrm{ra}_{\mathrm{a}}, \mathrm{x}\right) \mathrm{eV} \boldsymbol{\gamma}$	1.6193195, 1.7294674, 1.8396185	1.62, 1.73, 1.84
$\mathrm{N}_{\mathrm{CDp}}\left(\mathrm{ra}_{\mathrm{a}}, \mathrm{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	5.2290386, 2.4675756, 0.89246936	5.2803284, 2.4917792, 0.90122328
$\mathrm{N}_{\mathrm{CDp}}^{\mathrm{EBT}}\left(\mathrm{r}_{\mathrm{a}}, \mathbf{x}\right)$ in $10^{19} \mathrm{~cm}^{-3} \nearrow$	5.2290372, 2.4675749, 0.89246911	5.2803327, 2.4917785, 0.90122304
$\|R D\|$ in 10^{-7}	2.76, $2.65,2.77$	2.66, 2.69, 2.70

