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ABSTRACT 

Elliptic curve cryptography (ECC) over the finite fields, whose Elliptic 

curve cryp- tosystems are based on ECDLP (Elliptic Curve Discrete 

Logarithm Problem which is the problem of finding the positive 

number n given a point nP, where P is a point on the curve) for their 

security, is a powerful branch of cryptography (public key and secret 

key). The discrete logarithm (DL), in a finite field, is one of the NP 

−complete problems in number theory and it applies in several fields 

such as elliptic curves and cryptography. This problem has been raised 

by several authors such as Martin Hell- man, Tonelli Shanks, John M. 

Pollard, Adleman. Moreover, numerous methods have been proposed to solve it like Pohlig-

Hellman algorithm, Baby-Step, Giant-Step algo- rithm, Rho-Pollard algorithm and Index 

computation algorithms. The ECC widely used in various security applications due to its 

efficiency, strong security properties and shorter keys (less-memory requirements and faster 

field arith- metic operations) such as authentification protocol design, key generation 

protocol, key exchange protoco, digital signatures, hash functions, security proofs in topical 

areas like cloud computing, blockchains, Internet of Things and Artificial Intelligence. Our 

aim in this paper is to present an extensive and careful study of elliptic curve cryptography 

(ECC) over finite fields and its security applications and also to discuss the arithmetic 

involved in elliptic curve and how these curve operations are crucial in determining the 

performance of cryptographic systems. 
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1 Introduction, Notations and Background on finit fields and Elliptic Curves 

1.1 INTRODUCTION 

In cryptography, the computer security of IoT and cloud computing based on public key 

cryptosystems characterized by the possibility of sharing encryption keys, while keeping the 

keys secret of decryption, is based on calculations of discrete logarithms in finite fields, more 

precisely, on the difficulty of Computation Diffe−Hellman problem (CDH) and Decision 

Diffe-Hellman problem (DDH). 

 

1.2 Notations 

In this section we introduce the notation and terminology that will be used throughout this 

paper. 

N : The set of natural numbers. 

= = : Boolean equality 

:= : Affectation equality 

= : Equation equality 

! = : Boolean negation 

Fp : Finite field of order a prime number p. 

F*p:                          Cyclic multiplicative group of all non zero elements in Fp of order p − 1. 

θ(G) : The order of group G. 

[n, m] with n < m : range of integers between n and m 

ϕ()                 : Euler Indicator. 

θ(a) : The order of a. 

mod : Modulo. 

r = n%m : r is the remainder of the Euclidean division of n by m. 

E(x) : Integer part. 

DLAP : Discret Logarithm Arithmetic Peoblem. 

DLP : Discret Logarithm Problem. 

DHP : Diffie-Hellman Problem. 

NFS : Number Field Sieve. 

CDH : Computation Diffe −Hellman 

DDH : Decision Diffe −Hellman 
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ECDLP : Elliptic Curve Discrete Logarithm Problem 

 

1.3 Background on Discrete Logarithm Problem and Elliptic Curves over finite fields 

We refer to
[19], [2], [4], [20], [17],[18], [9]

 and we deduce the following results. Theorem 1.1. Every 

finite field is commutative and admits a primitive element. Theorem 1.2. Let (K, +,.) be a 

finite field, the multiplicative group K∗ is cyclic. 

 

Definition 1.1. Let (K, +,.) be a finite field. A generator of the multiplicative group K∗ is 

called a primitive element of K. 

Definition 1.2. For a nonnegative integer k, the kth Fermat number Fk is defined by Fk = 22k 

+ 1. 

Definition 1.3.: A primitive element of Fp is a generator of a cyclic units group F∗p. 

 

1.4 Elliptic curves over finite fields 

In 1985, Miller
[12]

, Koblitz
[7]

 independently proposed a cryptosystem based on elliptic curves 

in a finite field. 

 

Definition 1.4. An elliptic curve in a finite field Fp is the set of points (x, y) ∈ Fp ×Fp such 

that y2 = x3 + ax + b mod p with a, b ∈ Fp and 4a3 + 27b2 /= 0 to which we add a point at 

infinity O, denoted by E(Fp) = {(x, y) ∈ Fp × Fp; y2 = x3 + ax + b mod p and 4a3 + 27b2 /= 

0} ∪ {O}. 

 

Propriety 1.1. Let Fp be a finite field with p > 3. The set E(Fp) endowed with the law + 

defined by: 

1. For all P ∈ E(Fp) : P + O = O + P = P. 

2. LEt P (x, y) ∈ E(Fp) : −P = (x, −y). 

3. Let P1(x1, y1), P2(x2, y2), P3(x3, y3) ∈ E(Fp) with P1 /= −P2. If P1 + P2 = P3(x3, y3) 

then we get. 

 

 

Lemma 1.1. We can define the multiplication by a scalar of a point on elliptic curves. 
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The main operation performed in a protocol based on elliptic curves is the multiplication of a 

point by a scalar. The most common algorithm for performing this operation is the Doubling 

and Addition algorithm.
[3] 

 

Definition 1.5.: A primitive element of Fp is a generator of a cyclic units group F∗p. 

 

Definition 1.6. Let g ∈ Fp. g is a primitive element of Fp if the order de g in the units group 

F∗p is p − 1. 

Lemma 1.2. The number of primitive elements of Fp is ϕ(p − 1). 

The references used in the following are:
[10][6][1][8][14]

 

 

1.5 Elliptic Curve Discrete Logarithm Problem 

The Elliptic Curve Discrete Logarithm Problem (ECDLP) stands as a cornerstone in modern 

cryptography, particularly in elliptic curve-based systems. 

 

In essence, ECDLP involves determining the exponent d in the equation Q=d.P, where P is a 

point on a specific elliptic curve and Q is another point on the same curve. This task proves 

exceptionally challenging, even with knowledge of the points’ coordinates. 

 

Security in elliptic curve cryptography hinges on the formidable complexity of solving the 

ECDLP. Traditional algorithms like Baby-step Giant-step and Pollard’s rho struggle to 

efficiently crack this problem when elliptic curve parameters are carefully chosen to ensure 

ample size. 

 

Put simply, while the ECDLP theoretically permits resolution, real-world elliptic curves are 

engineered to render solving this problem exceedingly difficult, even with state-of-the-art 

algorithms and resources. 

 

Cryptographic systems leveraging ECDLP are prevalent across various modern security 

protocols, including Elliptic Curve Cryptography (ECC) for encryption and digital signa- 

tures. Yet, it’s vital to emphasize that the efficacy of these systems heavily relies on metic- 

ulously selecting elliptic curve parameters and accurately implementing associated crypto- 

graphic algorithms. 

 

2 Cloud computing security based on elliptic curves 

In addition, utilizing ECC in cloud computing enables. 
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1. Lower Resource Usage: ECC requires smaller key sizes compared to other asymmetric 

encryption algorithms like RSA. This means less computational power and memory are 

needed for key generation, encryption, and decryption operations, making it ideal for 

resource-constrained cloud environments. 

2. Faster Performance: The smaller key sizes and efficient algorithms of ECC result in faster 

cryptographic operations. This can improve overall system performance and 

responsiveness in cloud applications, especially when handling a large number of si- 

multaneous cryptographic operations. 

3. Improved Scalability: ECC’s efficiency extends to its scalability. As cloud comput- ing 

environments often need to scale dynamically to accommodate varying workloads, ECC’s 

ability to handle cryptographic operations efficiently can contribute to smoother 

scalability without sacrificing security. 

4. Reduced Bandwidth Usage: Smaller key sizes in ECC result in shorter ciphertexts, which 

can reduce the amount of data transmitted over the network. This is advan- tageous in 

cloud computing scenarios where bandwidth usage is a concern, such as in mobile cloud 

computing or data-intensive applications. 

5. Resistance to Quantum Attacks: ECC is believed to be more resistant to quantum 

computing attacks compared to traditional cryptographic algorithms like RSA. This 

future-proofs data encrypted with ECC against potential advances in quantum com- 

puting technology. 

 

Overall, ECC offers a compelling combination of security, efficiency, and scalability that 

makes it well-suited for securing data and communications in cloud computing environments. 

The integration of Elliptic Curve Cryptography (ECC) into cloud computing provides several 

significant advantages. Firstly, it ensures compliance with modern security standards such as 

Transport Layer Security(TLS), thereby ensuring the security of communications over the 

Internet. Moreover, its flexibility and compatibility with a variety of hardware and software 

platforms allow for deployment in different cloud environments, providing developers and 

administrators with freedom of choice. By simplifying key management through the use of 

smaller key sizes, it addresses major security concerns in the cloud. Additionally, encrypting 

data with ECC enhances the confidentiality of stored and transmitted data, meeting 

requirements for privacy protection and regulatory compliance. Lastly, with its ability to 

adapt to future advances in cryptography, ECC ensures scalable security in an ever- evolving 

cloud environment. In summary, ECC in cloud computing offers a comprehensive solution 



www.wjert.org                         ISO 9001: 2015 Certified Journal       

Bamarouf et al.                              World Journal of Engineering Research and Technology 

  

 

 

 

20 
 

for securing data and communications in a distributed and shared environment. 

 

3 Blockchain security based on elliptic curves 

Blockchain is a revolutionary technology in decentralized systems that enables secure de- 

centralized transaction processing while ensuring data privacy and authenticity. It is now 

playing a significant role in several areas such the Internet of Things, supply-chain manage- 

ment, manufacturing, cyber-physical systems, healthcare systems, and much more. Unlike 

centralized transaction processing solutions, blockchain uses a distributed ledger mechanism 

to record data transactions on multiple devices, this will prevent data breach, identity theft, 

and a plethora of cyber-related attacks, in essence, leading to a sustainability in data privacy 

and security. 

 

The blockchain is a database in the form of a chain of signed blocks. Each block contains 

transactions. Blockchain technology (or network) is the database replicated on all nodes and 

under a set of protocols establishing algorithms. In order to recap, we give the blockchain 

properties below, for all the details see.
[16][13][15]

 

1. Each block is made up of two parts: a header which records metadata and a body which 

groups transactions; 

2. The blocks are connected by a Merkle tree; where the fingerprints are written in the 

header; 

3. Each participant can have a copy of the database; 

4. A consensus algorithm ensures that a decision is obtained by all the nodes instead of a 

central entity. 

 

4 Security in Internet of Things based on elliptic curves 

ECC (Elliptic Curve Cryptography) serves as a cryptographic technique employed to safe- 

guard communications across networks, notably within the realm of the Internet of Things 

(IoT). The following encapsulates key insights into ECC’s role within IoT. 

1. ECC Overview: Unlike conventional methods like RSA, ECC leverages elliptic curves 

for key generation, renowned for its comparable security to RSA but with a notable 

advantage in smaller key sizes. This aspect makes ECC a pragmatic choice for envi- 

ronments with constrained resources, such as IoT devices. 

2. Security Features: ECC’s robust security stems from its inherent difficulty in solving the 

discrete logarithm problem on elliptic curves, a foundation of its operations. Con- 

sequently, ECC ensures formidable resistance against attacks, with the extraction of 
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private keys from public keys posing a significant challenge for potential adversaries. 

3. IoT Integration: Given the prevalent limitations in processing power, storage capacity, 

and communication capabilities within IoT ecosystems, ECC emerges as a favored 

cryptographic solution. Its ability to reduce key sizes translates into substantial savings in 

device resources, thereby aligning seamlessly with the exigencies of IoT deployments. 

4. Energy Efficiency: Particularly noteworthy within the IoT landscape is ECC’s contri- 

bution to energy conservation. By necessitating less computational power for crypto- 

graphic operations owing to smaller key sizes, ECC facilitates extended battery life for 

IoT devices, a critical consideration in IoT applications. 

5. Implementation Considerations: Effective integration of ECC within IoT environments 

mandates adequate hardware and software support. Developers must prioritize the 

incorporation of ECC cryptography libraries and meticulously select elliptic curves 

tailored to the specific requirements of their IoT applications. 

 

So ECC emerges as a proficient and secure cryptographic paradigm ideally suited for forti- 

fying communications amidst IoT devices. Its adeptness in delivering robust security while 

accommodating resource constraints underscores ECC’s pivotal role in advancing the 

security landscape of IoT deployments. 

 

5 Security in Artificial Intelligence based on elliptic curves 

Elliptic curves are utilized in artificial intelligence (AI) for various applications, notably in 

cryptography and security. They offer intriguing mathematical properties for creating secure 

encryption systems, as seen in public key encryption algorithms such as the Elliptic Curve 

Digital Signature Algorithm (ECDSA) or Elliptic Curve Diffie-Hellman (ECDH). Beyond 

security, elliptic curves are also employed in certain machine learning algorithms, particu- 

larly for classification and prediction. Their utilization primarily resides in the realm of deep 

learning and reinforcement learning, where they can model complex relationships among 

data. In these domains, elliptic curves can be utilized in several ways: Modeling Complex 

Relationships: Elliptic curves can model nonlinear relationships among data. Unlike linear 

models, elliptic curves can capture more complex and nonlinear relationships between vari- 

ables, which can be crucial for complex machine learning tasks. Feature Extraction: Elliptic 

curves can also extract relevant features from data. By representing data as points on an 

elliptic curve, machine learning techniques can extract discriminative features that can be 

used for classification, prediction, or other tasks. Learning Representations: In the context of 



www.wjert.org                         ISO 9001: 2015 Certified Journal       

Bamarouf et al.                              World Journal of Engineering Research and Technology 

  

 

 

 

22 
 

deep learning, elliptic curves can be integrated into the architecture of neural networks to 

learn data representations. For example, they could be used as nonlinear transformation layers 

in a neural network to learn more abstract and discriminative representations of input data. In 

summary, the use of elliptic curves in machine learning offers intriguing possibilities for 

modeling complex relationships, extracting relevant features, and learning data represen- 

tations in advanced machine learning tasks. A concrete example of using elliptic curves in 

machine learning could be in the field of image recognition. Suppose we have a dataset of 

human face images and we want to develop a facial recognition system. We could use elliptic 

curves to extract features from faces in the images. For instance, we could represent each face 

as a set of points on an elliptic curve, where the coordinates of the points are deter- mined by 

features such as the shape of the face, contours of the eyes, nose, and mouth. By employing 

machine learning techniques such as convolutional neural networks (CNNs), we could train a 

model to recognize faces based on features extracted from elliptic curves. The model could 

learn to distinguish between different individuals by analyzing the spatial and structural 

relationships among points on elliptic curves. Thus, elliptic curves would serve as the basis 

for representing faces in feature space, and machine learning would be used to learn to 

recognize faces based on these representations. This example illustrates how elliptic curves 

can be integrated into a machine learning system to solve complex pattern recognition tasks. 

 

Elliptic curve-based encryption enhances security in machine learning by encrypting both 

data and models. For example, in medical applications, patient data, including diagnoses and 

medical histories, is encrypted before sharing. A third-party researcher receives en- crypted 

data for model training without accessing decrypted data. The trained model can diagnose 

new patients without revealing personal data. This approach ensures data security, preserving 

patient privacy while enabling AI model utilization in medical settings. 

 

Elliptic curves offer a robust means to bolster the security of machine learning endeav- ors, 

allowing for the encryption of both data and models. By employing elliptic curve-based 

techniques, sensitive data can be encrypted prior to its utilization in training AI models. This 

strategy guarantees that in the event of data compromise, it remains indecipherable without 

the requisite decryption key. Furthermore, elliptic curve-based encryption meth- ods can 

safeguard communications among different components of an AI system, effectively 

mitigating threats related to data interception or tampering. 
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6 Comparison study 

In the four aforementioned domains, a comparison of the performance of the two asymmetric 

cryptography systems (ECC vs RSA) will yield the following two tables.
[5] and [11]

, through the 

following tables, demonstrate that key sizes and allocated re- source capacities are superior in 

ECC compared to RSA. 

 

Key Size. 

Table 1: Security levels recommended by NIST. 

Security Level (in bits) RSA ECC 

80 1024 160 

112 2048 224 

128 3072 256 

192 7680 384 

256 15360 512 

 

Encryption/Decryption Delays 

Table 2: Time in seconds for 256 bits. 

Security 

Level (bits) 

Encryption 

ECC 

Encryption 

RSA 

Decryption 

ECC 

Decryption 

RSA 

Total Time 

ECC 

Total 

RS 

80 7.9240 0.5596 22.8851 19.3177 30.8091 19.87 

112 39.7008 0.5815 26.3331 102.0337 66.0339 102.6 

128 58.4386 0.5611 27.4060 209.6086 85.8446 210.1 

144 77.5034 0.5718 32.1522 311.0649 109.6556 311.6 

 

What makes ECC also suitable for smartphones, tablets, and ’small’ connected devices is its 

lower computational requirements, reduced memory usage, and lower energy consumption 

compared to RSA. Additionally, the total encryption/decryption time is better in ECC than in 

RSA starting from a security level of 112 bits. 
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