VIER₁

Row *Engineering Research and Technology*

WJERT

www.wjert.org

SJIF Impact Factor: 7.029

NUMBER OF ZEROS OF A CLASS OF RANDOM ALGEBRAIC POLYNOMIAL

Sima Rout* and P. K. Mishra

Department of Mathematics Odisha University of Technology and Research,

Technocampusmahalaxmi Vihar, Nakagate, Khandagiri, Bhubaneswar, Odisha.

Article Received on 15/06/2024 Article Revised on 05/07/2024 Article Accepted on 25/07/2024

***Corresponding Author Sima Rout** Department of Mathematics Odisha University of Technology and Research, Technocampusmahalaxmi Vihar, Nakagate, Khandagiri, Bhubaneswar, Odisha.

ABSTRACT

The expected number of crossings of a Random algebraic polynomial f(n) $\rightarrow \infty$, crosses the line y= mx, when m is any real value and $(m^2/n) \rightarrow 0$ as n $\rightarrow \infty$ reduces to only one. We know the expected number of times that a polynomial of degree n with independent normally distributed random real coefficients asymptotically crosses the line y= m x, when m is any real value and $(m^2/n) \rightarrow 0$ as n $\rightarrow \infty$. Many authors Kac ^[4] Farahmad,^[3] Nayak.^[7] Rice^[9] have investigated the plane symmetric solutions of number of crossings of different polynomials and equations in general relativity. Here, we study the expected number of crossings of a Random algebraic polynomial f (n)

→∞, crosses the line y= mx, when m is any real value and $(m^2/n) \rightarrow 0$ as n→∞ reduces to only one. This theory agrees with the present observational facts pertaining to general relativity. The present paper shows that **t**he expected number of crossings of a Random algebraic polynomial for m >exp(f(n)), where f is any function of n such that f(n)→∞, this expected number of crossings reduces to onlyone.

KEYWORDS AND PHRASES: Independent identically distributed random variables, random algebraic polynomial, random algebraic equation, real roots.

1. INTRODUCTION

Consider the algebraic polynomial

$$
P(x) = a_0 x_0 + a_1 x_1 + \dots + a_n x_n \tag{1.1}
$$

where $a_0, a_1, a_2, \ldots, a_n$ is a sequence of independent, normally distributed random variables with mathematical exception μ and variance unity. The set of equations y=P(x) represents a family of curves in the xy-plane, Kac,^[3] and Cramer^[1] shows that for $\mu=0$ the number of times that this family crosses the line x-axis, on a average is $(2/\pi)$ log n. Mishra^[5] obtained the same average number of crossings when they considered the case of coefficients belongings to the domain of attraction of the normal law with mean μ =0. They also showed that when $\mu=0$ the number of crossings reduces by half. Mohanty^[7] and Ibragimov^[2] studied the number of times that this family of curves crosses the level K=0(\sqrt{n}) (crosses with line $y=K$) for $\mu=0$ and showed that these numbers decreases K increases. He also showed that even in this case for µthe number of crossings reduces by half. Denote by N_m (a,b)= N (a,b) the number of times that this family crosses the line $y=mx$ where m is any constant independent of x and let EN (a,b) be its expectation. For $m = 0(\sqrt{n})$ an asymptotic value for EN(- ∞ , ∞) was obtained by Mohanty,^[7] and Pratihari^[8] with which the reader will be assumed to be familiar. As noted in the latter there is a sizeable number of crossings even when the line tends to be perpendicular to the x axis, that is for m (=0 $(\sqrt{n}) \rightarrow \infty$ as n $\rightarrow \infty$. In this work we study the case when m is very large compared with n, and show that the number of crossings of this family of curves with such a line reduces to one. We prove.

Theorem- If the coefficients of $P(x)$ in (1.1) are independent normally distributed random variables with mean zero and variance unity, then for any constant m such that $|m| > \exp(f(n))$. where f is any function of n such that f(n) tends to infinity as n tends to infinity, the mathematical expectation of the number of real roots of the equation $y = P(x) = mx$ is asymptotic to one.

2. Proof of the theorem:-First we find a lower estimates for EN $(-\infty,\infty)$. Let m>exp (n,f) , then since for $|x| < 1$ the polynomial P(x) is convergent, with probability one, for $x=1/2$, say and n sufficiently large.

$$
P(x) = mx < P(1/2) - (1/2) \exp(n f) < 0
$$
\nand also for x = -1/2

\n
$$
P(x) = -mx > P(-1/2) + (1/2) \exp(n f) > 0
$$

Therefore, by the intermediate value theorem, there exists at least one real root for the function P(x)-mx in the interval $(-1/2, \frac{1}{2})$. Similarly, if m<-exp (nf) we can show that the function P(x)-mx takes on the opposite sign at $x=1/2$ and $x=-1/2$, therefore, there exists at least one real root. Hence EN $(-\infty, \infty) \ge 1$ and we only have to show that the upper limit

is one as well. We also note that both aj and $-aj$ ($i=0,1,2,...$ n-1) have standard normal distribution hence changing x to –x leaves the distribution of the coefficients invariant, thus EN (-∞,0)=EN (-∞,0). So we only have to consider the interval $(0, \infty)$. In by using the expected number of level crossings, the Kac-Rice formula^[4] for the equation P(x)- mx=0 is found.

$$
EN(a,b) = \int_{a}^{b} \left[\left(\Delta^{1/2} / \pi A \right) \exp \left\{ \left(-Am^{2} + 2m^{2}Cx - Bm^{2}x^{2} \right) / 2D \right\} + \left(\sqrt{2/n} \right) m(Dx - A) \left| A^{-a/2} \exp(m_{2}x^{2} / 2A) erf \right|
$$

$$
\left\{ m(Dx - A) \left(2A\Delta \right)^{-1/2} \right\} dx
$$

$$
= \int_{a}^{b} I_{1}(x) dx + \int_{a}^{b} I_{2}(x) dx
$$
 say (2.1)

Where

$$
A = \sum_{i=0}^{n-1} {n-1 \choose i} x^{2i} = (1 + x^2)^{n-1}
$$
\n
$$
\text{Since } \frac{d}{dt} (1 + t)^{n-1} = \frac{d}{dt} \sum_{i=0}^{n-1} {n-1 \choose i} t^i = \sum_{i=0}^{n-1} {n-1 \choose i} t^{i-1}
$$
\n
$$
\Rightarrow t(n-1)(1+t)^{n-2} = \sum_{i=0}^{n-1} i (n-1) {n-1 \choose i} t^i
$$
\n
$$
\text{Similarly } \frac{d^2}{dt^2} (1+t)^{n-1} = \sum_{i=0}^{n-1} i (i-1) {n-1 \choose i} t^{i-2}
$$
\n
$$
\Rightarrow t^2 (n-1)(n-2)(1+t)^{n-3} + t(n-1)(1+t)^{n-2} = \sum_{i=0}^{n-1} i^2 {n-1 \choose i} t^i
$$
\n
$$
\Rightarrow t^2 (n-1)(n-2)(1+t)^{n-3} + t(n-1)(1+t)^{n-2} = \sum_{i=0}^{n-1} i^2 {n-1 \choose i} t^i
$$
\n
$$
\text{Again } \frac{d^2}{dt^2} (1+t)^{n-1} = \sum_{i=0}^{n-1} i (i-1)(i-2) {n-1 \choose i} t^{i-3}
$$
\n
$$
\Rightarrow t^3 (n-1)(n-2)(n-3)(1+t)^{n-4} = \sum_{i=0}^{n-1} i^3 (i^3-3i^2+2i) {n-1 \choose i} t^i
$$
\n
$$
\Rightarrow t^3 (n-1)(n-2)(n-3)(1+t)^{n-4} + 3t^2 (n-1)(n-2)(1+t)^{n-3} + t(n-1)(1+t)^{n-2} = \sum_{i=0}^{n-1} i^3 {n-1 \choose i} t^i
$$
\n
$$
\text{Again } \frac{dt}{dt^4} (1+t)^{n-1} = \sum_{i=0}^{n-1} i (i-1)(i-2)(i-3) {n-1 \choose i} t^{i-4}
$$
\n
$$
\Rightarrow t^4 (n-1)(n-2)(n-3)(n-4)(1+t)^{n-5} = \sum_{i=0}^{n-1}
$$

$$
C=\sum_{i=0}^{n-1} i^2 (i-1)^2 {n-1 \choose i} x^{2i-4}
$$

\n
$$
=x^{-4} \sum_{i=0}^{n-1} (i^4 + i^2 - 2i^3) {n-1 \choose i} x^{2i}
$$

\n
$$
=x^{-4} (x^8 (n-1)(n-2)(n-3)(n-4)(1+x^2)^{n-5} + 4x^6 (n-1)(n-2)(n-3)(1+x^2)^{n-4} + 2x^4 (n-1)(n-2)(1+x^2)^{n-5})
$$

\n
$$
= (n-1)(n-2) (1+x^2)^{n-5} \{x^4 (n-3)(n-4) + 4x^2 (n-3)(1+x^2) + 2(1+x^2)^2\}
$$

\n
$$
= (n-1)(n-2) (1+x^2)^{n-5} \{n^2x^4 - 3nx^4 + 2x^4 + 4nx^2 - 8x^2 + 2\}
$$

\n
$$
= (n-1)(n-2) (1+x^2)^{n-5} \{n^2x^4 - 3nx^4 + 2x^4 + 4nx^2 - 8x^2 + 2\}
$$

\n
$$
= (n-1)(n-2) (1+x^2)^{n-5} \{n^2x^4 - 3nx^4 + 2x^4 + 4nx^2 - 8x^2 + 2\}
$$

\n
$$
= (n-1)(n-2) (1+x^2)^{n-2} = x^{n-1} \sum_{i=0}^{n-1} i {n-i \choose i} x^{2i}
$$

\n
$$
= x^{-1} \sum_{i=0}^{n-1} i {n-i \choose i} x^{2i-2}
$$

\n
$$
= x^{-1} (x^2 (n-1)(1+x^2)^{n-2}) = x (n-1)(1+x^2)^{n-2}
$$

\n
$$
= x^{-2} (\sum_{i=0}^{n-1} i^2 {n-i \choose i} x^{2i} - \sum_{i=0}^{n-1} i {n-i \choose i} x^{2i})
$$

\n
$$
= x^{-2} (x^4 (n-1)(n-2)(1+x^2)^{n-3})
$$

\n
$$
= x^{-
$$

and

$$
erf(x) = \int_{0}^{x} \exp(-y^2) dy
$$
 (2.8)

First we show $\int_{0}^{1} I_1(x) dx$ tends to zero as n→∞. Let a be constant independent of x in the interval (0,1). For $0 \le x \le 1 - n^{-\alpha}$ and sufficiently large n we have

$$
D = \{(n-1)x^{2n+1} - nx^{2n-1} + x\}(1 - x^2)^{-2}
$$

= $x(1 - x^{2n})(1 - x^2)^{-2} + 0\{n^{1+\alpha} \exp(-2n^{1-\alpha})\}$(2.9)

and

$$
erf = \int_{0}^{x} exp(-y^{2}) dy
$$

First we show that $\int_{0}^{\pi} \mathbf{I}_{1}(\infty) d x$ tends to zero as n→∞. Let a be a constant independent of x in the interval (0,1). For $0 \le x \le 1-n^{-a}$ and all sufficiently large nwe have

$$
D = \{(n-1)x^{2n+1} - nx^{2n-1} + x\}(1 - x^2)^{-2}
$$

= $x(1 - x^{2n})(1 - x^2)^{-2} + 0\{n^{1+\alpha} \exp(-2n^{1-\alpha})\}$(2.9)

and

$$
B = (1 + x2)(1 - x2n)(1 - x2)-3 + 0{n2+a \exp(-2n1-a)} \t(2.10)
$$

From (2.8) and (2.9) we can obtain

$$
\Delta = (1 - x^{2n})(1 - x^2)^{-4} + 0\{n^{2+2n}\exp(-2n^{1-a})\tag{2.11}
$$

Now we choose a=1-{log log (n)¹⁰} /log n. Then since, for all sufficiently large

n,
$$
n^{2+a} \exp(-2n^{1-a}) = n^{2+2n} \exp(-2\log(n)^{10}) = n^{-18+a} \to 0
$$

All the error terms that appear in the formulas (2.9) to (2.11) will tend to zero. Hence from (2.1), (2.9), (2.10), (2.11) and since for all x

$$
(1-x^2)^{2/2} - x^2(1-x^2) + x^2(1+x^2)/2 > 1/5
$$

we have

$$
I_1(x) = \int_0^{1-n^{-a}} (\Delta^{1/2} / wA) \exp[-m^2 \{(1-x^2)/(1-x^{2n})\}]
$$

\n
$$
x \left\{ (1-x^2)^2 / 2 - x2(1-x^2) \right\}
$$

\n
$$
+ x^2 (1+x^2)/2 \{(1+0 \{n^{2+n} \exp(-2n^{1-a})\} \} dx
$$

\n
$$
\le (1/\pi)^{-1-n^{-a}} \int_0^{1-n^{-a}} (1-x^2)^{-1} \exp(-m^2(1-x^2)/5) dx
$$

\n
$$
\le (a/2\pi) \exp \{\log \log n \exp(-m^2/2n) \log (n)^{10}\} \dots
$$
 (2.12)

Now we note that since m>exp (n/logn) the term m^2/n tends to infinity muchfaster than log log n as n→∞, hence from (2.12) we can obtain

$$
\int_{0}^{1-n^{-a}} I_1(x)dx \to 0 \text{ as } n \to \infty.
$$
\n
$$
\int_{0}^{1-n^{-a}} I_1(x)dx \to 0 \text{ as } n \to \infty.
$$
\n
$$
\text{To show that } \int_{0}^{1-n^{-a}} I_1(x)dx \to 0 \text{ as } n \to \infty.
$$
\n
$$
\text{We first prove that } (A - 2Dx + Bx^2)/\Delta \text{ is}
$$

positive for $1-n^{-a} \le x \le 1$. For all sufficiently large n from (2.2) we have

$$
A - 2Dx + Bx2 \ge Bx2 - 2Dx
$$

\n
$$
\ge \left\{ n2x2n (1 - x2)2 - 2nx2n+2 (1 - x2) \right\}
$$

\n
$$
+ x2 (1 + x2) (1 - x2n) (1 - x2) - 3 - n(n + 1)
$$

\n
$$
\ge n3 {log(n)10}-3 - 2n2 > n2
$$
 (2.14)

since $(1-x^2)^3$ < $(2n^{-a})^3$ and $2nx^{2n+2}$ $(1-x^2) \rightarrow$ as $n \rightarrow \infty$. Hence from (2.14) and since $\Delta \le n^4$ we have $(A - 2Dx + Bx^2)/\Delta > n^{-2}$ (2.15)

So from (2.15) and since from $(\Delta^2/a) < (2n-1)^{1/2}(1-x)^{-1/2}$,

have
$$
\int_{0}^{1-n^{-a}} I_1(x)dx < (2n-1)^{1/2} \exp(-m^2/n^2) \int_{0}^{1-n^{-a}} (1-x)^{-1/2} dx
$$

we

$$
\langle 3n^{(1-a)}/2 \exp(-m^2/n^2) \tag{2.16}
$$

Which tends to zero as $n \rightarrow ∞$

In order to find $\int_{0}^{1-n^{-\alpha}} I_1(x) dx$ we let $y = 1/x$, and divide the interval $0 \le y \le 1$ into three subintervals (0,b), (b,1-(1/nd)) and (1-(1/nd),1) where $d = \{(3/8) \log \log(n)^{1/3} \text{ and }$ $b=(m^{-2}n \text{ d} \log n)^{1/(4n-8)}$. We show that in these three subintervals

$$
\int_{0}^{1-n^{-a}} I_1(x)dx = \int_{0}^{1} y^{-2} I_1(1/y) dy = \log \{(1+b)/(1-b)\} \to 0 \text{ as } n \to \infty.
$$
 (2.17)
For $b \le y \le 1-1/nd$ from (2.2) we have

$$
\{(A-2D)/D\} + B/D^2 = 1 + \sum_{i=2}^{n} y^{-2i} + \sum_{i=2}^{n} y^{-2i} (i^2 - 2i) > n^3 / 4
$$
 (2.18)

and

$$
\Delta = \{1 - h^2(y)\} (1 - y^{2n}) 2 / y^{4n - 8} (1 - y^2) 4 \le n^2 / b^{4n - 8} (1 - y^2)^2
$$

<
$$
< 3n^4 d^2 / b^{4n - 8}
$$
 (2.19)

To prove that

$$
\int_{0}^{\infty} I_{1}(x)dx \to 0 \text{ as } n \to \infty, \text{ from (2.2) for } y = 1/x \text{ we have }.
$$

$$
(Dx - A)/A^{1/2}\Delta^{1/2} = D^{2n-1}(1 - y^{2})^{3/2}\{(n - 1 - ny - y^{2n-1})(1 - y^{2})^{2}\}\
$$

$$
-y^{2n-4}\{(1 - h^{2}(y)\}^{-1/2}(1 - y^{2n})^{-1/2})
$$
(2.20)

And to find
$$
\int_{a}^{b} I_{2}(x)dx
$$

Let $x^{2}/A = y^{2n-4}(1-y^{2})/(1-y^{2n})$ (2.21)

First we let

$$
0 \le y \le (mn^2)^{-1/(2n-1)}
$$
 then $y \to 0$ as $n \to \infty$, from (2.21)

we have
$$
(Dx - A)/A^{1/2}\Delta^{1/2} < 2ny^{2n-1}
$$
 (2.22)
\n
$$
\int_{0}^{1} y^{-2} \mathbf{I}_{2} (1/y) dy = \int_{m^{2}n^{2}}^{m} \int_{2n^{2}}^{\infty} \exp (-u^{2}/2) du
$$
\n
$$
\leq (m/\sqrt{n-m^{2}}/2n^{2}) \exp (-m^{2}/4n^{4}) \to 0 \text{ as } n \to \infty.
$$
 (2.23)

Hence from (2.22) and (2.23) we have

$$
\int I_2(x) dx \to 0 \text{ as } n \to \infty. \tag{2.24}
$$

Finally from (2.8), (2.13), (2.16), (2.18) and (2.24) we obtain $_{FN}(0,\infty) \leq 1/2$ and since $EN(-\infty, \infty) = 2EN(0, \infty)$ we have proof of the theorem.

RESULT

The asymptotic number of crossings of the polynomial $P(x)$ with line y=mx decreases as m=0(\sqrt{n}) increases. In this paper we proved that when $|m \geq \exp(n f)|$ the number of crossings reduces to one. The behaviour of the number of crossings between these two lines is not known. A subsequent studycould consider the case when (m^2/n) tends to any non zero constant as n tends to infinity and as a guessed target $EN(-\infty, \infty) \sim (1/\pi)_{\text{log}}$ n , which is half the number of crossings when $m=0$ seems reasonable. (Knowing a rough value for EN ($-\infty$, ∞) is useful in order to sufficient upper and lower bounds for $EN(\neg \infty, \infty)$ leading to an asymptotic formula). Indeed, the behaviour of $EN(\neg \infty, \infty)$ for other values of m is also interesting, but it will involve more analysis especially for the $\int_{-\infty}^{\infty} I_2(x) dx$ part of EN (- ∞ , ∞).
The result of the theorem shows that the expected number of crossings of a Random algebraic polynomial form $>$ exp (f(n)), where f is any function of n such that $f(n) \rightarrow \infty$, this expected number of crossings reduces to only one.

REFERENCES

- 1. H. Cramer and M.R. Lead better, *Stationary and Related StochasticProcess.* Wiley, New York, 2007.
- 2. I.A. Ibragimov and N.B. Maslova, Soviet Math Dokl, 2020; 12: 1004-1008.
- 3. K. Farhamand, Stochastic Anal. Appl, 2019; 6: 247-272.
- 4. M. Kac, *Bull Am. Math. Soc,* 2020; 46: 314-20.
- 5. Mishra, P.K. Journal of Statistics and Mathematical Engineering, 2022; 8: 1.
- 6. Mishra, P. K. & Dhal, D, *Theor. Prob. Appl,* 2021; 16: 228-48.
- 7. Mohanty, M.K. & Nayak, N. N, Ann. Prob, 2020; 14: 702-709.
- 8. Pratihary, D. & Muduli, J.C., Indian J. Pure Appl. Math, 2021; 20: 1-9.
- 9. S.O. Rice. *Bell System tech. J,* 2009; 25: 46-156.