World Journal of Engineering Research and Technology

WJERT

www.wjert.org

SJIF Impact Factor: 7.029

OPTICAL COEFFICIENTS IN THE N(P)-TYPE DEGENERATE GaAs(1-x) P(x)-CRYSTALLINE ALLOY, DUE TO THE NEW STATIC DIELECTRIC CONSTANT-LAW AND THE GENERALIZED MOTT CRITERIUM IN THE METAL-INSULATOR TRANSITION. (3)

Huynh Van Cong* and Michel Cayrol

Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France.

Article Received on 24/08/2024

Article Revised on 14/09/2024

Article Accepted on 04/10/2024

*Corresponding Author Huynh Van Cong Université de Perpignan Via Domitia, Laboratoire de Mathématiques et Physique (LAMPS), EA 4217, Département de Physique, 52, Avenue Paul Alduy, F-66 860 Perpignan, France. van-cong.huynh@univ-perp.fr

ABTRACT

In the n(p)-type $GaAs_{1-x}P_{x-}$ crystalline alloy, with $0 \le x \le 1$, basing on our two recent works^[1,2], for a given x, and with an increasing $^{r}d(a)$, the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $^{r}d(a)$, concentration x, and temperature T. Those results have been affected by (i) the important new $\epsilon(r_{d(a)}, x)$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect, ϵ decreases (\searrow) with an increasing (\nearrow) $^{r}d(a)$, and then by (ii) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), $^{N}CDn(NDp)(^{r}d(a), x)$, as observed in Equations (8c, 9a). Furthermore, we also showed that $^{N}CDn(NDp)$ is just the density of

carriers localized in exponential band tails, with a precision of the order of, 2.92×10^{-7} , as that given in Table 4 of Ref.^[1], according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by: $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$, as defined in Eq. (9d). In summary, due to the new $\varepsilon(r_{d(a)}, x)$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands $N^*(N, r_{d(a)}, x)$, for a given x, and with an increasing $r_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and

calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

KEYWORS: $GaAs_{1-x}P_{x}$ crystalline alloy; impurity-size effect; Mott critical impurity density in the MIT, optical coefficients.

INTRODUCTION

Here, basing on our two recent works^[1, 2] and also other ones^[3-8], all the optical coefficients given in the n(p)-type $\mathbf{X}(\mathbf{x}) \equiv \mathbf{GaAs_{1-x}P_{x^-}}$ crystalline alloy, with $\mathbf{0} \leq \mathbf{x} \leq \mathbf{1}$, are investigated, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $\mathbf{r}_{\mathbf{d}(\mathbf{a})}$, concentration x, and temperature T. Then, for a given x, and with an increasing $\mathbf{r}_{\mathbf{d}(\mathbf{a})}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

ENERGY BAND STUCTURE PARAMETERS

First of all, in the $n^+(p^+) - p(n) X(x)$ - crystalline alloy at T=0 K, we denote the donor (acceptor) d(a)- radius by $r_{d(a)}$, and also the intrinsic one by: $r_{do(ao)} = r_{As(Ga)} = 0.118$ nm (0.126 nm).

A. Effect of x- concentration

Here, the intrinsic energy-band-structure parameters^[1], are expressed as functions of x, are given in the following.

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are given by.

$$m_{c(v)}(x)/m_o = 0.13(0.5) \times x + 0.066 (0.291) \times (1 - x)$$
 (1)

(ii)-The unperturbed relative static dielectric constant of the intrinsic of the single crystalline X- alloy is found to be defined by.

$$\varepsilon_{o}(x) = 11.1 \times x + 13.13 \times (1 - x). \tag{2}$$

(iii)-Finally, the unperturbed band gap at 0 K is found to be given by:

$$E_{ao}(x) = 1.796 \times x + 1.52 \times (1 - x). \tag{3}$$

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values as.

$$E_{do(ao)}(x) = \frac{13600 \times [m_{c(v)}(x)/m_0]}{[\varepsilon_0(x)]^2} \text{ meV},$$
(4)

www.wjert.org

206

and then, the isothermal bulk modulus, by:

$$B_{do(ao)}(x) \equiv \frac{E_{do(ao)}(x)}{\left(\frac{4\pi}{s}\right) \times \left(r_{do(ao)}\right)^{s}}$$
(5)

B. Effect of Impurity $r_{d(a)}$ -size, with a given x

Here, the changes in all the energy-band-structure parameters, expressed in terms of the effective relative dielectric constant $\epsilon(r_{d(a)}, x)$, developed as follows.

At $\mathbf{r}_{d(a)} = \mathbf{r}_{do(ao)}$, the needed boundary conditions are found to be, for the impurityatom volume $V = (4\pi/3) \times (\mathbf{r}_{d(a)})^3$, $V_{do(ao)} = (4\pi/3) \times (\mathbf{r}_{do(ao)})^3$, for the pressure p, $\mathbf{p}_o = \mathbf{0}$, and for the deformation potential energy (or the strain energy) σ , $\sigma_o = \mathbf{0}$. Further, the two important equations^[1,7], used to determine the σ -variation, $\Delta \sigma \equiv \sigma - \sigma_o = \sigma$, are defined by: $\frac{d\mathbf{p}}{d\mathbf{v}} = \frac{\mathbf{B}}{\mathbf{v}}$ and $\mathbf{p} = -\frac{d\sigma}{d\mathbf{v}}$. giving: $\frac{d}{d\mathbf{v}} \frac{d\sigma}{d\mathbf{v}} = \frac{\mathbf{B}}{\mathbf{v}}$. Then, by an integration, one gets.

$$\left[\Delta\sigma(r_{d(a)},x)\right]_{n(p)} = \mathbb{B}_{do(ao)}(x) \times (V - V_{do(ao)}) \times \ln\left(\frac{v}{V_{do(ao)}}\right) = \mathbb{E}_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \ge 0.$$
(6)

Furthermore, we also shown that, as $r_{d(a)} > r_{do(ao)} (r_{d(a)} < r_{do(ao)})$, the compression (dilatation) gives rise to the increase (the decrease) in the energy gap $E_{gn(gp)}(r_{d(a)},x)$, and the effective donor (acceptor)-ionization energy $E_{d(a)}(r_{d(a)},x)$ in absolute values, obtained in the effective Bohr model, which is represented respectively by: $\pm [\Delta\sigma(r_{d(a)},x)]_{n(p)}$,

$$\begin{split} & E_{gno(gpo)}(\mathbf{r}_{d(a)}, \mathbf{x}) - E_{go}(\mathbf{x}) = E_{d(a)}(\mathbf{r}_{d(a)}, \mathbf{x}) - E_{do(ao)}(\mathbf{x}) = E_{do(ao)}(\mathbf{x}) \times \left[\left(\frac{\varepsilon_{o}(\mathbf{x})}{\varepsilon(\mathbf{r}_{d(a)})} \right)^{2} - 1 \right] = + \left[\Delta \sigma(\mathbf{r}_{d(a)}, \mathbf{x}) \right]_{n(p)}, \\ & \text{for } \mathbf{r}_{d(a)} \geq \mathbf{r}_{do(ao)}, \text{ and for } \mathbf{r}_{d(a)} \leq \mathbf{r}_{do(ao)}, \end{split}$$

$$E_{gno(gpo)}(r_{d(a)}, x) - E_{go}(x) = E_{d(a)}(r_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{\varepsilon_{o}(x)}{\varepsilon(r_{d(a)})} \right)^{2} - 1 \right] = - \left[\Delta \sigma(r_{d(a)}, x) \right]_{n(p)} (7)$$

Therefore, from Equations (6) and (7), one obtains the expressions for relative dielectric constant $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ and energy band gap $\mathbf{E}_{gn(gp)}(\mathbf{r}_{d(a)}, \mathbf{x})$, as.

(i)-for
$$r_{d(a)} \ge r_{do(ao)}$$
, since $\varepsilon(r_{d(a)}, x) = \sqrt{1 + \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^s - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^s} \le \varepsilon_0(x)$, being a **new** $\varepsilon(\mathbf{r}_{d(a)}, x)$ -law,
 $E_{gno(gpo)}(\mathbf{r}_{d(a)}, x) - E_{go}(x) = E_{d(a)}(\mathbf{r}_{d(a)}, x) - E_{do(ao)}(x) = E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^s - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^s \ge 0$, (8a)

according to the increase in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, with increasing $r_{d(a)}$ and for a given x, and

(ii)-for $r_{d(a)} \leq r_{do(ao)}$, since $\epsilon(r_{d(a)}, x) = \sqrt{1 - \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^s - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^s} \geq \epsilon_0(x)$, with a condition, given by.

$$\left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^{3}-1\right]\times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^{3}<1, \text{ being a new }\epsilon(r_{d(a)},x)\text{-law},$$

$$E_{gno(gpo)}(r_{d(a)'}x) - E_{go}(x) = E_{d(a)}(r_{d(a)'}x) - E_{do(ao)}(x) = -E_{do(ao)}(x) \times \left[\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 - 1\right] \times \ln\left(\frac{r_{d(a)}}{r_{do(ao)}}\right)^3 \le 0,$$
(8b)

corresponding to the decrease in both $E_{gn(gp)}(r_{d(a)},x)$ and $E_{d(a)}(r_{d(a)},x)$, with decreasing and for a given x; therefore, the effective Bohr radius $a_{Bn(Bp)}(r_{d(a)},x)$ is defined by.

$$a_{Bn(Bp)}(r_{d(a)},x) \equiv \frac{\epsilon(r_{d(a)},x) \times \hbar^2}{m_{c(v)}(x) \times q^2} = 0.53 \times 10^{-8} \text{ cm} \times \frac{\epsilon(r_{d(a)},x)}{m_{c(v)}(x)/m_0}.$$
 (8c)

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the metal-insulator transition (**MIT**) at T=0 K, $N_{CDn(NDp)}(r_{d(a)}, x)$, was given by the Mott's criterium, with an empirical parameter, as.

$$N_{CDn(CDp)}(r_{d(a)}, x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)}, x) = M_{n(p)}, M_{n(p)} = 0.25,$$
 (9a)

depending thus on our $new \epsilon(r_{d(a)}, x)$ -law.

This excellent one can be explained from the definition of the reduced effective Wigner-Seitz (WS) radius $r_{sn(sp)}$, characteristic of interactions, by.

$$r_{sn(sp)}(N, r_{d(a)'}x) \equiv \left(\frac{3}{4\pi N}\right)^{1/3} \times \frac{1}{a_{gn(Bp)}(r_{d(a)'}x)} = 1.1723 \times 10^{g} \times \left(\frac{1}{N}\right)^{1/3} \times \frac{m_{c(v)}(x)/m_{o}}{\epsilon(r_{d(a)'}x)},$$
(9b)

being equal to, in particular, at $N=N_{CDn(CDp)}(r_{d(a)},x)$: $r_{sn(sp)}(N_{CDn(CDp)}(r_{d(a)},x),r_{d(a)},x)=$ 2.4814, for any $(r_{d(a)},x)$ -values. So, from Eq. (9b), one also has.

$$N_{CDn(CDp)}(r_{d(a)},x)^{1/3} \times a_{Bn(Bp)}(r_{d(a)},x) = \left(\frac{3}{4\pi}\right)^{\frac{1}{3}} \times \frac{1}{24814} = 0.25 = (WS)_{n(p)} = M_{n(p)}.$$
 (9c)

Thus, the above Equations (9a, 9b, 9c) confirm our new $\epsilon(\mathbf{r}_{d(a)},\mathbf{x})$ -law, given in Equations (8a, 8b). Furthermore, by using $\mathbf{M}_{\mathbf{n}(\mathbf{p})} = \mathbf{0.25}$, according to the empirical Heisenberg parameter $\mathcal{H}_{\mathbf{n}(\mathbf{p})} = \mathbf{0.47137}$, as those given in Equations (8, 15) of the Ref.^[1], we have also showed that $\mathbf{N}_{\text{CDn}(\text{CDp})}$ is just the density of electrons (holes) localized in the exponential conduction (valence)-band tail, with a precision of the order of $\mathbf{2.92} \times \mathbf{10^{-7}}$. Therefore, the density of electrons (holes) given in parabolic conduction (valence) bands can be defined, as that given in compensated materials, by.

 $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x).$ (9d)

C. Effect of temperature T, with given x and $r_{d(2)}$

Here, the intrinsic band gap $E_{gni(gpi)}(r_{d(a)}, x, T)$ at any T is given by.

$$E_{gni(gpi)}(r_{d(a)}, x, T) \text{ in } eV = E_{gno(gpo)}(r_{d(a)}, x) - 10^{-4} \times T^{2} \times \left\{ \frac{7.205 \times x}{T+94 \text{ K}} + \frac{5.405 \times (1-x)}{T+204 \text{ K}} \right\},$$
(10)

suggesting that, for given x and $r_{d(a)}$, $E_{gni(gpi)}$ decreases with an increasing T.

Then, in the following, for the study of optical phenomena, one denote the conduction (valence)-band density of states by $N_{c(v)}(T,x)$ as.

$$N_{c(v)}(T,x) = 2 \times g_{c(v)}(x) \times \left(\frac{m_{r}(x) \times k_{B}T}{2\pi\hbar^{2}}\right)^{\frac{8}{2}} (cm^{-3})_{g_{v}}(x) \equiv 1 \times x + 1 \times (1-x) = 1,$$
(11)

where $m_r(x)/m_c$ is the reduced effective mass $m_r(x)/m_c$, defined by. $m_r(x) \equiv [m_c(x) \times m_v(x)]/[m_c(x) + m_v(x)].$

D. Heavy Doping Effect, with given T, x and $r_{d(a)}$

Here, as given in our previous works^[1,2], the Fermi energy $E_{Fn}(-E_{Fp})$, and the band gap narrowing are reported in the following.

First, the reduced Fermi energy $\eta_{n(p)}$ or the Fermi energy $E_{Fn}(-E_{Fp})$, obtained for any T and any effective d(a)-density, $N^*(N, r_{d(a)}, x) = N^*$, defined in Eq. (9d), for a simplicity of presentation, being investigated in our previous paper^[8], with a precision of the order of^{2.11 × 10⁻⁴}, is found to be given by.

$$\eta_{n(p)}(u) \equiv \frac{E_{Fn}(u)}{k_B T} \left(\frac{-E_{Fp}(u)}{k_B T}\right) = \frac{G(u) + A u^{B} F(u)}{1 + A u^{B}}, A = 0.0005372 \text{ and } B = 4.82842262,$$
(12)
where u is the reduced electron density $u(N, r_{VV}, v, T) = \frac{N^{*}}{N^{*}}, F(u) = a u_{s}^{2} \left(1 + b u_{s}^{-\frac{4}{3}} + c u_{s}^{-\frac{8}{3}}\right)^{-\frac{2}{3}}$

where u is the reduced electron density, $u(N, r_{d(a)}, x, T) \equiv \frac{\pi}{N_{c(V)}(T, x)}$, $F(u) = au\bar{s} \left(1 + bu\bar{s} + cu\bar{s}\right)^{-1}$, $a = \left[(3\sqrt{\pi}/4) \times u \right]^{2/3}$, $b = \frac{1}{8} \left(\frac{\pi}{a}\right)^2$, $c = \frac{62.3739855}{1920} \left(\frac{\pi}{a}\right)^4$, and $G(u) \simeq Ln(u) + 2^{-\frac{8}{2}} \times u \times e^{-du}$; $d = 2^{3/2} \left[\frac{1}{\sqrt{27}} - \frac{s}{16} \right] > 0$. Therefore, from Eq.(12), the Fermi energies are expressed as functions of variables : N, $r_{d(a)}$, x, and T.

Here, one notes that: (i) as $\mathbf{u} \gg \mathbf{1}$, according to the HD [d(a)-X(x)- alloy] ER-case, or to the degenerate case, Eq. (12) is reduced to the function F(u), and in particular at T=0 and as $N^* = \mathbf{0}$, according to the metal- insulator transition (**MIT**), one has: + $\mathbf{E}_{Fn}(-\mathbf{E}_{Fp}) = \frac{\hbar^2}{2 \times m_r(x)} \times (3\pi^2 N^*)^{2/3} = \mathbf{0}$, and (ii) $\frac{\mathbf{E}_{Fn}(\mathbf{u}\ll \mathbf{1})}{\mathbf{k}_B T} (\frac{-\mathbf{E}_{Fp}(\mathbf{u}\ll \mathbf{1})}{\mathbf{k}_B T}) \ll -\mathbf{1}$, to the LD [a(d)-X(x)- alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function G(u), noting that the notations: **HD**(**LD**) and **ER**(**BR**) denote the heavily doped (lightly doped)-cases and emitter (base)-regions, respectively.

Now, in Eq. (9b), in which one replaces $m_{c(v)}(x)$ by $m_r(x)$, the effective Wigner-Seitz radius becomes as.

$$r_{sn(sp)}(N, r_{d(a)}, x) = 1.1723 \times 10^8 \times \left(\frac{g_{c(v)}(x)}{N^*}\right)^{1/3} \times \frac{m_r(x)}{\varepsilon(r_{d(a)}, x)},$$
(13a)

the correlation energy of an effective electron gas, $E_{cn(cp)}(N, r_{d(a)}, x)$, is given as.

$$E_{cn(cp)}(N, r_{d(a)}, x) = \frac{-0.87553}{0.0908 + r_{sn(sp)}} + \frac{\frac{0.87553}{0.0908 + r_{sn(sp)}} + \left(\frac{2[1 - \ln(2)]}{\pi^2}\right) \times \ln(r_{sn(sp)}) - 0.093288}{1 + 0.03847728 \times r_{sn(sp)}^{1.67578876}}$$
(13b)

Then, taking into account various spin-polarized chemical potential-energy contributions such as: exchange energy of an effective electron (hole) gas, majority-carrier correlation energy of an effective electron (hole) gas, minority hole (electron) correlation energy, majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy, and finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, the band gap narrowings are given in the following.

In the n-type HD X(x)- alloy, the BGN is found to be given by.

$$\begin{split} &\Delta E_{gn}(N,r_{d},x) \simeq a_{1} \times \frac{\epsilon_{0}(x)}{\epsilon(r_{d},x)} \times N_{r}^{1/3} + a_{2} \times \frac{\epsilon_{0}(x)}{\epsilon(r_{d},x)} \times N_{r}^{\frac{1}{9}} \times (2.503 \times [-E_{cn}(r_{sn}) \times r_{sn}]) + a_{3} \times \left[\frac{\epsilon_{0}(x)}{\epsilon(r_{d},x)}\right]^{5/4} \times \\ &\sqrt{\frac{m_{v}}{m_{r}}} \times N_{r}^{1/4} + a_{4} \times \sqrt{\frac{\epsilon_{0}(x)}{\epsilon(r_{d},x)}} \times N_{r}^{1/2} \times 2 + a_{5} \times \left[\frac{\epsilon_{0}(x)}{\epsilon(r_{d},x)}\right]^{\frac{5}{9}} \times N_{r}^{\frac{1}{9}} \\ &, N_{r} \equiv \left(\frac{N^{*}}{N_{CDn}(r_{d},x)}\right), \qquad (14n) \\ &\text{where} \quad a_{1} = 3.8 \times 10^{-3} (\text{eV}), \ a_{2} = 6.5 \times 10^{-4} (\text{eV}), \ a_{3} = 2.8 \times 10^{-3} (\text{eV}), \ a_{4} = 5.597 \times 10^{-3} (\text{eV}) \text{ and} \\ &a_{5} = 8.1 \times 10^{-4} (\text{eV}), \text{ and in the p-type HD X(x)- alloy, as:} \\ &\Delta E_{gp}(N,r_{a},x) \simeq a_{1} \times \frac{\epsilon_{0}(x)}{\epsilon(r_{a},x)} \times N_{r}^{1/3} + a_{2} \times \frac{\epsilon_{0}(x)}{\epsilon(r_{a},x)} \times N_{r}^{\frac{1}{9}} \times (2.503 \times [-E_{cp}(r_{sp}) \times r_{sp}]) + a_{3} \times \left[\frac{\epsilon_{0}(x)}{\epsilon(r_{a},x)}\right]^{5/4} \times \\ &\sqrt{\frac{m_{c}}{m_{r}}} \times N_{r}^{1/4} + 2a_{4} \times \sqrt{\frac{\epsilon_{0}(x)}{\epsilon(r_{a},x)}} \times N_{r}^{1/2} + a_{5} \times \left[\frac{\epsilon_{0}(x)}{\epsilon(r_{a},x)}\right]^{\frac{1}{9}} \times N_{r}^{\frac{1}{9}} \\ &, N_{r} \equiv \left(\frac{N^{*}}{N_{CDp}(r_{sp},x)}\right), \qquad (14p) \\ &\text{where} \quad a_{1} = 3.15 \times 10^{-3} (\text{eV}), \ a_{2} = 5.41 \times 10^{-4} (\text{eV}), \ a_{3} = 2.32 \times 10^{-3} (\text{eV}), \ a_{4} = 4.12 \times 10^{-3} (\text{eV}) \text{ and} \\ &a_{5} = 9.8 \times 10^{-5} (\text{eV}). \end{split}$$

One also remarks that, as $N^* = 0$, according to the MIT, $\Delta E_{gn(gp)}(N, r_{d(a)}, x) = 0$.

OPTICAL BAND GAP

Here, the optical band gap is found to be defined by.

 $E_{gn1(gp1)}(N, r_{d(a)}, x, T) \equiv E_{gni(gpi)}(r_{d(a)}, x, T) - \Delta E_{gn(gp)}(N, r_{d(a)}, x) + (-)E_{Fn(Fp)}(N, r_{d(a)}, x, T),$ (15) where $E_{gin(gip)}$, $[+E_{Fn}, -E_{Fp}] \ge 0$, and $\Delta E_{gn(gp)}$ are respectively determined in Equations [10, 12, 14n(p)], respectively. So, as noted above, at the MIT, Eq. (15) thus becomes: $E_{gn1(gp1)}(r_{d(a)}, x) = E_{gn0(gp0)}(r_{d(a)}, x)$, according to: $N = N_{CDn(NDp)}(r_{d(a)}, x)$.

OPTICAL COEFFICIENTS

The optical properties of any medium can be described by the complex refraction index \mathbb{N} and the complex dielectric function ε , $\mathbb{N} \equiv n - i\kappa$ and $\varepsilon \equiv \varepsilon_1 - i\varepsilon_2$, where $i^2 = -1$ and $\varepsilon \equiv \mathbb{N}^2$. Therefore, the real and imaginary parts of ε denoted by ε_1 and ε_2 can thus be expressed in terms of the refraction index **n** and the extinction coefficient κ as: $\varepsilon_1 \equiv n^2 - \kappa^2$ and $\varepsilon_2 \equiv 2n\kappa$. One notes that the optical absorption coefficient α is related to ε_2 , n, κ , and the optical conductivity σ_0 , by^[2]

$$\alpha(E, N, r_{d(a)}, x, T) \equiv \frac{\hbar q^2 \times |v(E)|^2}{n(E) \times \epsilon_{\text{freespace}} \times c_E} \times J(E^*) = \frac{\epsilon_{N \epsilon_2(E)}}{\hbar c_n(E)} \equiv \frac{\epsilon_{N \epsilon_2(E)}}{\epsilon_n(E) \times \epsilon_{\text{freespace}}} = \frac{\epsilon_{N \epsilon_2(E)}}{\epsilon_n(E) \times \epsilon_{\text{freespace}}} , \ \epsilon_1 \equiv n^2 - \kappa^2 \text{ and } \epsilon_2 \equiv 2n\kappa,$$
(16)

where, since $E \equiv \hbar \omega$ is the photon energy, the effective photon energy: $E^* = E - E_{gn1(gp1)}(N, r_{d(a)}, x, T)$ is thus defined as the reduced photon energy.

Here, -q, \hbar , $|\mathbf{v}(\mathbf{E})|$, ω , $\varepsilon_{\text{free space}}$, **c** and $\mathbf{J}(\mathbf{E}^*)$ respectively represent: the electron charge, Dirac's constant, matrix elements of the velocity operator between valence (conduction)-andconduction (valence) bands in n(p)-type semiconductors, photon frequency, permittivity of free space, velocity of light, and joint density of states. It should be noted that, if the three functions such as: $|\mathbf{v}(\mathbf{E})|^2$, $\mathbf{J}(\mathbf{E}^*)$ and $\mathbf{n}(\mathbf{E})$ are known, then the other optical dispersion functions as those given in Eq. (16) can thus be determined. Moreover, the normal- incidence reflectance, $\mathbf{R}(\mathbf{E})$, can be expressed in terms of $\mathbf{\kappa}(\mathbf{E})$ and $\mathbf{n}(\mathbf{E})$ as.

$$R(E, N, r_{d(a)}, x, T) = \frac{[n(E)-1]^2 + \kappa(E)^2}{[n(E)+1]^2 + \kappa(E)^2}.$$
(17)

From Equations (16, 17), if the two optical functions, ε_1 and ε_2 , (or **n** and κ), are both known, the other ones defined above can thus be determined, noting also that: $E_{gn1(gp1)}(N, r_{d(a)}, x, T) = E_{gn1(gp1)}$, for a presentation simplicity.

Then, one has.

-at low values of
$$E \gtrsim E_{gn1(gp1)}$$
,
 $J_{n(p)}(E, N, r_{d(a)}, x, T) = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E - E_{gn1(gp1)})^{a - (1/2)}}{E_{gn1(gp1)}^{a - (1/2)}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times (E - E_{gn1(gp1)})^{1/2}$, for a=1, (18)
and at large values of $E > E_{gn1(gp1)}$,

$$J_{n(p)}(E,N,r_{d(a)},x,T) = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E-E_{gn1(gp1)})^{a-(1/2)}}{E_{gn1(gp1)}^{a-1}} = \frac{1}{2\pi^2} \times \left(\frac{2m_r}{\hbar^2}\right)^{3/2} \times \frac{(E-E_{gn1(gp1)})^2}{E_{gn1(gp1)}^{3/2}}, \text{ for } a=5/2.$$
(19)

Further, one notes that, as $E \to \infty$, Forouhi and Bloomer (FB) [4] claimed that $\kappa(E \to \infty) \to$ a constant, while the $\kappa(E)$ -expressions, proposed by Van Cong [2] quickly go to 0 as E^{-3} , and consequently, their numerical results of the optical functions such as: $\sigma_0(E)$ and $\alpha(E)$, given in Eq. (16), both go to 0 as E^{-2} .

Now, an improved Forouhi-Bloomer parameterization model (FB-PM), used to determine the expressions of the optical coefficients in the degenerate $n^+(p^+) - p(n) X(x)$ - crystalline alloy, is now proposed as follows. Then, if denoting the functions G(E) and F(E) and by: $G(E) \equiv \sum_{i=1}^{4} \frac{A_i}{E^2 - B_i E + C_i}$ and $F(E) \equiv \sum_{i=1}^{4} \frac{A_i}{E^2 \times (1 + 10^{-4} \times \frac{E}{6}) - B_i E + C_i}$, we propose. $\kappa(E, N, r_{d(a)}, x, T) = G(E) \times E_{gni(gpi)}^{3/2} \times (E^* \equiv E - E_{gn1(gp1)})^{1/2}$, for $E_{gni(gpi)} \leq E \leq 2.3 \text{ eV}$, $= F(E) \times (E^* \equiv E - E_{gn1(gp1)})^2$, for $E \geq 2.3 \text{ eV}$, (20) being equal to 0 for $E^* = 0$ (or for $E = E_{gn1(gp1)}$), and also going to 0 as E^{-1} as $E \to \infty$, and further, $n(E, N, r_{d(a)}, x, T) = n_{\infty}(r_{d(a)}, x) + \sum_{i=1}^{4} \frac{X_i(E_{gn1(gp1)}) \times E + Y_i(E_{gn1(gp1)})}{E^2 - B_i E + C_i}$. (21) going to a constant as $E \to \infty$, since $n(E \to \infty, r_{d(a)}, x) \to n_{\infty}(r_{d(a)}, x) = \sqrt{\epsilon(r_{d(a)}, x)} \times \frac{\omega_T}{\omega_L}$, $\omega_T = 5.1 \times 10^{13} \text{ s}^{-1}[5]$ and $\omega_L = 8.9755 \times 10^{13} \text{ s}^{-1}$.

Here, the other parameters are determined by: $X_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[-\frac{B_i^2}{2} + E_{gn1(gp1)}B_i - E_{gn1(gp1)}^2 + C_i\right]$, $Y_i(E_{gn1(gp1)}) = \frac{A_i}{Q_i} \times \left[\frac{B_i \times (E_{gn1(gp1)}^2 + C_i)}{2} - 2E_{gn1(gp1)}C_i\right]Q_i = \frac{\sqrt{4C_i - B_i^2}}{2}$, where, for i=(1, 2, 3, and 4), $A_i = 1.154 \times A_{i(FB)} = 4.7314 \times 10^{-4}$, 0.2314, 0.1118 and 0.0116, $B_i \equiv B_{i(FB)} = 5.871$, 6.154, 9.679 and 13.232, and, $C_i \equiv C_{i(FB)} = 8.619$, 9.784, 23.803_{and} 44.119.

Then, as noted above, if the two optical functions, **n** and κ , are both known, the other ones defined in Equations (16, 17) can also be determined.

NUMERICAL RESULTS

Now, some numerical results of those optical functions are investigated in the n(p)-type $X(x) \equiv GaAs_{1-x}P_{x}$ - crystalline alloy, as follows.

A. Metal-insulator transition (MIT)-case

As discussed above, the physical conditions used for the MIT are found to be given by: T=0K, $N^* = 0$ or $N = N_{CDn(CDp)}$, giving rise to: $E_{gn1(gp1)}(N^* = 0, r_{d(a)}, x, T = 0) = E_{gn1(gp1)}(r_{d(a)}, x) = E_{gn0(gp0)}(r_{d(a)}, x)$.

Then, in this MIT-case, if $E = E_{gn1(gp1)}(r_{d(a)},x) = E_{gn0(gp0)}(r_{d(a)},x)$, which can be defined as the critical photon energy: $E \equiv E_{CPE}(r_{d(a)},x)$, one obtains: $\kappa_{MIT}(r_{d(a)},x) = 0$ from Eq. (20), and from Eq. (16): $\epsilon_{2(MIT)}(r_{d(a)},x) = 0$, $\sigma_{O(MIT)}(r_{d(a)},x) = 0$ and $\alpha_{MIT}(r_{d(a)},x) = 0$, and the

other functions such as : $n_{MIT}(r_{d(a)},x)$ from Eq. (21), and $\epsilon_{1(MIT)}(r_{d(a)},x)$ and $R_{MIT}(r_{d(a)},x)$ from Eq.(16) decrease with increasing $r_{d(a)}$ and E_{CPE} , as those investigated in Table 1 in Appendix 1.

B. Optical coefficients, obtained as $E \rightarrow \infty$

T, In Eq. (21), at any the choice of the real refraction index: $n(E \to \infty, \mathbf{r}_{\mathbf{d}(\mathbf{a})}, x, T) = n_{\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x) = \sqrt{\varepsilon(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, x)} \times \frac{\omega_T}{\omega_L}, \omega_T = 5.1 \times 10^{13} \, \text{s}^{-1} \, ^{[5]}$ and $\omega_L = 8.9755 \times 10^{13} \, s^{-1}$, was obtained from the Lyddane-Sachs-Teller relation^[5], from which T(L) represent the transverse (longitudinal) optical phonon modes. Then, from Equations (16, 17, 20), from such the asymptotic behavior $(E \to \infty)$, we obtain: $\kappa_{\infty}(\mathbf{r}_{d(a)}, x) \to 0$ and $\varepsilon_{2,\infty}(\mathbf{r}_{d(\mathbf{a})}, x) \to 0$, as E^{-1} , so that $\varepsilon_{1,\infty}(\mathbf{r}_{d(\mathbf{a})}, x)$, $\sigma_{0,\infty}(\mathbf{r}_{d(\mathbf{a})}, x)$, $\alpha_{\infty}(\mathbf{r}_{d(\mathbf{a})}, x)$ and $R_{\infty}(\mathbf{r}_{d(\mathbf{a})}, x) \ge 0$ go to their appropriate limiting constants, as those investigated in Table 2 in Appendix 1.

C. Variations of some optical coefficients, obtained in P(B)-X(x)-system, as functions of E

In the P(B)-X(x)-system, at T=0K and N = N_{CDn(CDp})($r_{P(B)}$, x), our numerical results of n, κ , ε_1 and ε_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of $E [\geq E_{CPE}(r_{d(a)}, x)]$ and for given x, as those reported in Tables 3n and 3p in Appendix 1.

D. Variations of various optical coefficients, as functions of N

In the X(x)-system, at E=3.2 eV and T=20 K, for given $\mathbf{r}_{d(a)}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_{n(p)}$ (>> 1, degenerate case), $\mathbf{E}_{gn1(gp1)}$, n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , as those tabulated in Tables 4n and 4p in Appendix 1.

E. Variations of various optical coefficients as functions of T

In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given $r_{d(a)}$ and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_{n(p)}$ ($\gg 1$, degenerate case), $E_{gn1(gp1)}$, n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: \nearrow and \searrow , as those tabulated in Tables 5n and 5p in Appendix 1.

CONCLUDING REMARKS

In the n(p)-type $X(x) \equiv GaAs_{1-x}P_{x}$ - crystalline alloy, by basing on our two recent works^[1, 2], for a given x, and with an increasing $r_{d(a)}$, the optical coefficients have been determined, as functions of the photon energy E, total impurity density N, the donor (acceptor) radius $r_{d(a)}$, concentration x, and temperature T. Those results have been affected by (i) the

important new $\varepsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law, developed in Equations (8a, 8b), stating that, for a given x, due to the impurity-size effect, ε decreases (**\s**) with an increasing (**\sigma**) $\mathbf{r}_{d(a)}$, and then by (**ii**) the generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), $N_{CDn(NDp)}(\mathbf{r}_{d(a)}, \mathbf{x})$, as observed in Equations (8c, 9a).

Further, we also showed that $N_{CDn(NDp)}$ is just the density of carriers localized in exponential band tails, with a precision of the order of 2.92 × 10⁻⁷, as that given in Table 4 of Ref.^[1], according to a definition of the effective density of electrons (holes) given in parabolic conduction (valence) bands by: $N^*(N, r_{d(a)}, x) \equiv N - N_{CDn(NDp)}(r_{d(a)}, x)$, as defined in Eq. (9d).

In summary, due to the new $\epsilon(\mathbf{r}_{d(a)}, \mathbf{x})$ -law and to the effective density of electrons (holes) given in parabolic conduction (valence) bands $N^*(N, \mathbf{r}_{d(a)}, \mathbf{x})$, for a given x, and with an increasing $\mathbf{r}_{d(a)}$, the numerical results of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1.

REFERENCES

- Van Cong, H. New critical impurity density in MIT, obtained in various n(p)-type degenerateInP_{1-x}As_x(Sb_x), GaAs_{1-x}Te_x(Sb_x, P_x), CdS_{1-x}Te_x(Se_x) - crystalline alloys, being just that of carriers localized in exponentiail band tails. WJERT, 2024; 10(4): 05-23.
- Van Cong, H. Optical coefficients in the n(p)-type degenerate GaAs_{1-x}Te_x- crystalline alloy, due to the new static dielectric constant-law and the generalized Mott criterium in the metal-insulator transition. (1). To be published in WJERT, 2024; 10(10): XX-XX.
- 3. Van Cong, H. Effects of donor size and heavy doping on optical, electrical and thermoelectric properties of various degenerate donor-silicon systems at low temperatures. *American Journal of Modern Physics*, 2018; 7: 136-165.
- Forouhi A. R. & Bloomer I. Optical properties of crystalline semiconductors and dielectrics. *Phys. Rev*, 1988; 38: 1865-1874.
- 5. Aspnes, D.E. & Studna, A. A. Dielectric functions and optical parameters of Si, Se, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, *Phys. Rev. B.*, 1983; 27: 985-1009.
- 6. Van Cong, H. et al. Optical bandgap in various impurity-Si systems from the metalinsulator transition study. *Physica B.*, 2014; 436: 130-139.
- 7. Van Cong, H. et al. Size effect on different impurity levels in semiconductors. Solid State

Communications, 1984; 49: 697-699.

8. Van Cong, H. & Debiais, G. A simple accurate expression of the reduced Fermi energy for any reduced carrier density. *J. Appl. Phys*, 1993; 73: 1545-1546.

APPENDIX 1

Table 1: In the MIT-case, T=0K, N=N_{CDn(p)}($r_{d(a)}$, x), and the critical photon energy $E_{CPE} = E = E_{gno(gpo)}(r_{d(a)}$, x), if $E = E_{gn1(gp1)}(r_{d(a)}$, x) = $E_{CPE}(r_{d(a)}$, x), the numerical results of optical functions such as: $n_{MIT}(r_{d(a)}$, x), obtained from Eq. (21), and those of other ones: $\epsilon_{1(MIT)}(r_{d(a)}$, x) and $R_{MIT}(r_{d(a)}$, x), from Eq. (16), decrease (\searrow) with increasing (\nearrow) $r_{d(a)}$ and E_{CPE} .

Donor		Р	As	Те	Sb	Sn
r _d (nm) [4]	7	0.110	0.118	0.132	0.136	0.140
At x=0 ,						
E _{CPE} in meV	~	1519.8	1520	1520.7	1521.2	1521.8
n _{MIT}	2	3.437	3.416	3.352	3.313	3.268
ε _{1(MIT)}	\mathbf{Y}	11.81	11.67	11.23	10.98	10.68
R _{MIT}	2	0.302	0.299	0.292	0.288	0.282
At x=0.5 ,						
E _{CPE} in meV	~	1657.6	1658	1659	1660	1662
n _{MIT}	2	3.269	3.249	3.187	3.149	3.106
E _{1(MIT)}	2	10.69	10.55	10.16	9.92	9.65
R _{MIT}	2	0.282	0.280	0.273	0.268	0.263
At x=1 ,						
E _{CPE} in meV	7	1795.4	1796	1798	1799	1801
n _{MIT}	2	3.098	3.078	3.018	2.982	2.940
ε _{1(MIT)}	2	9.598	9.476	9.110	8.893	8.646
R _{MIT}	2	0.262	0.260	0.252	0.248	0.242
Acceptor		в	Ga	Mg	In	Cd
r _a (nm)	7	0.088	0.126	0.140	0.144	0.148
At x=0 ,						
E _{CPE} in meV	7	1503.7	1520	1523	1524	1527
n _{MIT}	2	4.173	3.416	3.358	3.323	3.281
$\varepsilon_{1(MIT)}$	2	17.41	11.67	11.276	11.04	10.77
R _{MIT}	2	0.376	0.299	0.293	0.289	0.284
At x=0.5 ,						
E _{CPE} in m	eV 🥕	1632	1658	1662	1665	1669
n _{MIT}	\mathbf{Y}	3.982	3.249	3.192	3.157	3.117
$\varepsilon_{1(MIT)}$	2	15.86	10.55	10.19	9.97	9.71
R _{MIT}	2	0.358	0.280	0.273	0.269	0.264
At x=1 ,						
E _{CPE} in meV	7	1757	1796	1802	1807	1812
n _{MIT}	\mathbf{Y}	3.789	3.078	3.022	2.988	2.948
E _{1(MIT)}	\mathbf{r}	14.36	9.47	9.13	8.93	8.69
		0.220	0.0.00			0.040

Table	2:	Here,	as	$E \to \infty$,	the	numerical	results	of	$n_{\infty}(\mathbf{r}_{d(a)}, x)$, $\varepsilon_{1,\infty}(\mathbf{r}_{\mathbf{d}(\mathbf{a})}, \mathbf{x})$,	$\sigma_{0,\infty}(\mathbf{r}_{d(\mathbf{a})},x)$,
$\alpha_{\infty}(r_{d(a)})$,x) a	nd R _∞ (r _{d(a)}	,x) go t	o the	ir appropri	ate limiti	ing	constants	5.		

Donor	Р	As	s Te	S	b	Sn
At x=0 ,						
n	2.08	2.0589	1.9950	1.9566	1.9124	
ε _{1,α} ν	4.327	4.2392	3.9800	3.8284	3.6571	
$\sigma_{0,\infty}$ in $\frac{10^2}{0,000}$	9.4915	9.3951	9.1033	8.9282	8.7263	
$n_{m} = in (10^{\circ} \times cm^{-1}) 2.160$	2.160	2.160	2.160	2.160		
<i>R</i> ∞	0.123	0.120	0.110	0.105	0.098	
At x=0.5 ,	<u> </u>					
n _{oo} , >	1.998	1.978	1.916	1.879	1.837	
ε _{1,02}	3.992	3.911	3.672	3.532	3.374	
$\sigma_{0,\infty}$ in $\frac{10^{5}}{\Omega \times cm}$	9.117	9.025	8.744	8.576	8.382	
oc _∞ in (10°×cm ⁻¹) 2.160	2.160	2.160	2.160	2.160		
R _∞ >	0.111	0.108	0.099	0.093	0.087	
At x=1 ,						
n _{oo} , >	1.912	1.893	1.834	1.799	1.758	
ε _{1,00}	3.658	3.584	3.365	3.236	3.092	
$\sigma_{0,\infty}$ in $\frac{10^{5}}{\Omega \times cm}$	8.727	8.638	8.370	8.209	8.023	
α_{∞} in (10° × cm ⁻¹) 2.160	2.160	2.160	2.160	2.160		
R	0.098	0.095	0.087	0.081	0.075	
Acceptor	В	Ga	Mg	In	Cđ	
At x=0 ,						
n_{∞} >	2.806	2.059	2.002	1.968	1.928	
ε _{1,02} ν	7.872	4.239	4.010	3.874	3.719	
$\sigma_{0,\infty}$ in $\frac{10^{5}}{\Omega \times cm}$	12.80	9.395	9.138	8.981	8.799	
α_{∞} in $(10^9 \times cm^{-1})$	2.160	2.160	2.160	2.160	2.160	
R _{oo} >	0.225	0.120	0.111	0.106	0.100	
At x=0.5 ,						
n_{∞} >	2.695	1.978	1.923	1.891	1.852	
ε _{1.00} ν	7.263	3.911	3.700	3.575	3.431	
$\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times cm}$ >	12.30	9.025	8.777	8.627	8.452	
α_{∞} in (10 ⁹ × cm ⁻¹)	2.160	2.160	2.160	2.160	2.160	
R _∞ >	0.210	0.108	0.100	0.095	0.089	
At x=1 ,						
n _{oo} , y	2.580	1.893	1.841	1.810	1.773	
$\varepsilon_{1,\infty}$	6.655	3.584	3.390	3.275	3.144	
$\sigma_{0,\infty}$ in $\frac{10^5}{\Omega \times cm}$ >	11.77	8.64	8.402	8.258	8.090	
\propto_{∞} in $(10^9 \times cm^{-1})$	2.160	2.160	2.160	2.160	2.160	
R _{oo} >	0.19	5 0.09	5 0.08	88 0	.083	0.078

Table 3n: In the P-X(x)-system, at T=0K and N = N_{CDn}(r_p, x), according to the MIT, our numerical results of $n_{,\kappa,\epsilon_1}$ and ϵ_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions $E [\geq E_{CPE}(r_p, x)]$ of and x, noting that (i) K=0 and $\epsilon_2 = 0$ at, $E = E_{CPE}(r_p, x)$ and $\kappa \to 0$ and $E \to \infty$ as.

E in eV	n.	κ	ε	ε2	
At x=0,					
$E_{CPE} = 1.5198$	3.437	0	11.816	0	
1.6	3.489	0.055	12.172	0.384	
2	3.823	0.222	14.570	1.698	
2.5	4.498	0.364	20.097	3.272	
3	4.521	1.800	17.197	16.272	
3.5	3.676	2.042	9.347	15.013	
4	3.822	1.862	11.140	14.232	
4.5	4.183	2.890	9.143	24.178	
5	2.422	4.049	-10.524	19.614	
5.5	1.203	2.865	-6.762	6.896	
6	1.331	2.140	-2.807	5.696	
1022	2.080	0	4.3266	0	
At x=0.5,					
E _{CPE} =1.6576	3.269	0	10.689	0	
2	3.527	0.214	12.394	1.507	
2.5	4.126	0.269	16.955	2.217	
3	4.238	1.480	15.772	12.547	
3.5	3.556	1.767	9.524	12.571	
4	3.694	1.661	10.885	12.268	
4.5	4.029	2.629	9.326	21.187	
5	2.416	3.734	-8.109	18.042	
5.5	1.270	2.670	-5.516	6.785	
6	1.374	2.010	-2.152	5.524	
1022	1 0090	0	3 0022	0	
10	1.9980	0	5.9922	0	
At x=1,					
E _{CPE} =1.7954	3.098	0	9.598	0	
2	3.241	0.186	10.472	1.207	
2.5	3.769	0.188	14.173	1.417	
3	3.955	1.192	14.224	9.428	
3.5	3.423	1.153	9.428	10.358	
4	3.555	1.471	10.471	10.458	
4.5	3.868	2.380	9.295	18.414	
5	2.396	3.433	-6.045	16.447	
5.5	1.323	2.482	-4.412	6.566	
6	1.404	1.884	-1.580	5.292	
10 ²²	1.9125	0	3.6577	0	
				~	
E in eV	n.	κ	ε	ε2	

Table 3p. In the B-X(x)-system, and at T=0K and N = N_{CDp}(r_B, x), according to the MIT, our numerical results of n, κ , ε_1 and ε_2 are obtained from Equations (21, 20, 16), respectively, and expressed as functions of $E [\geq E_{CPE}(r_B, x)]$ and x, noting that (i) $\kappa = 0$ and $\varepsilon_2 = 0$ at $E = E_{CPE}(r_B, x)$, and $\kappa \to 0$ and $\varepsilon_2 \to 0$ as $E \to \infty$.

E in eV	n.	κ	ε_1	ε2	
At x=0,					
E _{CPE} =1.5037	4.173	0	17.414	0	
1.6	4.236	0.059	17.939	0.502	
2	4.575	0.222	20.883	2.033	
2.5	5.258	0.376	27.509	3.952	
3	5.270	1.839	24.390	19.384	
3.5	4.406	2.075	15.110	18.286	
4	4.552	1.886	17.168	17.174	
4.5	4.916	2.921	15.638	28.727	
5	3.138	4.086	-6.847	25.649	
5.5	1.911	2.888	-4.692	11.040	
6	2.041	2.155	-0.477	8.799	
10 ²²	2.8057	0	7.8719	0	
At x=0.5,					
E _{CPE} =1.6320	3.9825	0	15.860	0	
2	4.263	0.216	18.125	1.845	
2.5	4.876	0.285	23.693	2.782	
3	4.972	1.537	22.362	15.288	
3.5	4.261	1.817	14.856	15.485	
4	4.400	1.697	16.477	14.936	
4.5	4.740	2.677	15.305	25.376	
5	3.099	3.792	-4.771	23.505	
5.5	1.941	2.706	-3.557	10.503	
6	2.048	2.034	0.059	8.333	
10 ²²	2.6951	0	7.2634	0	
At x=1,	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
E _{CPE} =1.7568	3.7893	0	14.3590	0	
2	3.936	0.196	15.668	1.557	
2.5	4.511	0.209	20.304	1.886	
3	4.677	1.269	20.268	11.876	
3.5	4.105	1.582	14.344	12.989	
4	4.237	1.523	15.636	12.908	
4.5	4.557	2.449	14.769	22.317	
5	3.045	3.516	-3.087	21.416	
5.5	1.952	2.534	-2.610	9.896	
6	2.040	1.919	0.477	7.830	
10 ²²	2.5797	0	6.6548	0	
E in eV	n	κ	ε1	ε2.	

Table 4n: In the X(x)-system, at E=3.2 eV and T=20 K, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_n (\gg 1, \text{degenerate case}), E_{gn1}, n, \kappa, \varepsilon_1 \text{ and } \varepsilon_2$, obtained as functions of N, being represented

by the arrows: \nearrow and \searrow , noting that both η_n and E_{gn1} increase with increasing N.

N (10 ¹⁸ cm ⁻	3) /	15	26	60	100	
			x=0			
For $\mathbf{r}_{\mathbf{i}} = \mathbf{r}_{\mathbf{i}}$						
n_≫1	, ,	238	345	602	847	
F in eV	2	1 475	1 525	1.686	1.870	
Lgn1 mev		1.475	1.525	1.000	1.070	
n	7	4.247	4.201	4.046	3.865	
κ	7	2.206	2.080	1.698	1.311	
ε1	~	13.175	13.319	13.489	13.221	
ε2	7	18.736	17.473	13.744	10.137	
For $\mathbf{r}_{d} = \mathbf{r}_{Te}$,					
$\eta_n \gg 1$	7	239	345	602	847	
E _{gn1} in eV	7	1.497	1.554	1.731	1.928	
n		1 1 63	4 100	3 0 3 0	3 7/3	
ц 	2	2 1 40	4.109	3.939	1 200	
r.	7	2.149	2.008	12.057	1.200	
ε1		12.708	12.853	12.957	12.571	
ε ₂	7	17.892	16.500	12.602	8.983	
For $\mathbf{r}_{d} = \mathbf{r}_{Sn}$,					
$\eta_n \gg 1$	7	239	345	602	847	
Egn1 in eV	7	1.525	1.591	1.786	1.999	
n	1	4.054	3.992	3.802	3.587	
×		2.080	1 920	1 481	1.068	
E .	2	12.109	12.249	12.260	11.727	
-1 F-		16 864	15 327	11 261	7 664	
-2	-	10.001				
			x=0.5			
For $\mathbf{r}_{d} = \mathbf{r}_{As}$,						
1			100	320	463	
In ~~ 1	~	130	100	529	405	
E_{gn1} in eV	7	130 1.649	1.682	1.784	1.896	
E _{gn1} in eV	77	130 1.649 4.001	1.682 3.969	1.784 3.870	1.896 3.758	
E_{gn1} in eV	ストン	130 1.649 4.001 1.783	1.682 3.969 1.707	1.784 3.870 1.487	1.896 3.758 1.261	
$E_{gn1} in eV$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	130 1.649 4.001 1.783 12.831	1.682 3.969 1.707 12.839	1.784 3.870 1.487 12.766	1.896 3.758 1.261 12.534	
$E_{gn1} in eV$ $E_{gn1} in eV$ $E_{gn1} in eV$	~ ~ ~ ~ ~	130 1.649 4.001 1.783 12.831 14.272	1.682 3.969 1.707 12.839 13.555	1.784 3.870 1.487 12.766 11.507	1.896 3.758 1.261 12.534 9.480	
$E_{gn1} in eV$	~ ~ ~ ~	130 1.649 4.001 1.783 12.831 14.272	1.682 3.969 1.707 7 12.839 13.555	1.784 3.870 1.487 12.766 11.507	1.896 3.758 1.261 12.534 9.480	
$For r_{d} = r_{Te},$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	130 1.649 4.001 1.783 12.831 14.272 130	1.682 3.969 1.707 ≥ 12.839 13.555 188	1.784 3.870 1.487 12.766 11.507 329	1.896 3.758 1.261 12.534 9.480 	
For $\mathbf{r}_{d} = \mathbf{r}_{Te}$, $\eta_{n} \gg 1$ ξ_{2} For $\mathbf{r}_{d} = \mathbf{r}_{Te}$, $\eta_{n} \gg 1$ ξ_{gn1} in eV	N N N N N N N N N N N N N N N N N N N	130 1.649 4.001 1.783 12.831 14.272 130 1.660	1.682 3.969 1.707 ▶ 12.839 13.555 188 1.697	1.784 3.870 1.487 12.766 11.507 329 1.806	1.896 3.758 1.261 12.534 9.480 463 1.924	
$E_{gn1} \text{ in } eV$ $E_{gn1} \text{ in } eV$ E_{1} E_{2} For $\mathbf{r}_{d} = \mathbf{r}_{Te}$, $\eta_{n} \gg 1$ $E_{gn1} \text{ in } eV$ n		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668	
$E_{gn1} in eV$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674	3.29 1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206	
$E_{gn1} in eV$ $E_{gn1} in eV$ $E_{gn1} in eV$ $For r_d = r_{Te},$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 2.355	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997	
$For \mathbf{r}_{d} = \mathbf{r}_{Te},$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846	
For $\mathbf{r_d} = \mathbf{r_{Te}}$, For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ E_{gn1} in eV $\mathbf{r_d} = \mathbf{r_{Te}}$, $\mathbf{r_{d}} = r$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846	
For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ ξ_1 ξ_2 For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ ξ_{2n1} in eV $\eta_n \approx 1$ For $\mathbf{r_d} = \mathbf{r_{Sn}}$, $\eta_n \gg 1$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805 130	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034	3.29 1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903 329	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846 463	
For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ ξ_1 ξ_2 For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ ξ_{gn1} in eV $\eta_n \gg 1$ ξ_2 For $\mathbf{r_d} = \mathbf{r_{Sn}}$, $\eta_n \gg 1$ ξ_{gn1} in eV		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805 130 1.675	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034 188 1.716	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903 329 1.834	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846 463 1.961	
$For \mathbf{r_d} = \mathbf{r_{Te}},$ $For \mathbf{r_d} = \mathbf{r_{Te}},$ $for \mathbf{r_d} = \mathbf{r_{Te}},$ $for \mathbf{r_d} = \mathbf{r_{Te}},$ $for \mathbf{r_d} = \mathbf{r_{Sn}},$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805 130 1.675 3.835	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034 188 1.716 3.795	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903 329 1.834 3.679	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846 463 1.961 3.551	
For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ ξ_1 ξ_2 For $\mathbf{r_d} = \mathbf{r_{Te}}$, $\eta_n \gg 1$ ξ_{gn1} in eV $\eta_n \gg 1$ ξ_2 For $\mathbf{r_d} = \mathbf{r_{Sn}}$, $\eta_n \gg 1$ ξ_{gn1} in eV $\eta_n \gg 1$ ξ_{gn1} in eV $\eta_n \gg 1$ ξ_{gn1} in eV $\eta_n \gg 1$ ξ_{gn1} in eV $\eta_n \gg 1$		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805 130 1.675 3.835 1.724	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034 188 1.716 3.795 1.632	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903 329 1.834 3.679 1.382	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846 463 1.961 3.551 1.138	
For $\mathbf{r}_{d} = \mathbf{r}_{Te}$, $\eta_{n} \gg 1$ ε_{1} ε_{2} For $\mathbf{r}_{d} = \mathbf{r}_{Te}$, $\eta_{n} \gg 1$ ε_{gn1} in eV $\eta_{n} \approx 1$ ε_{gn1} in eV $\eta_{n} \gg 1$ ε_{2} For $\mathbf{r}_{d} = \mathbf{r}_{Sn}$, $\eta_{n} \gg 1$ ε_{gn1} in eV $\eta_{n} \gg 1$ ε_{gn1} in eV $\eta_{n} \gg 1$ ε_{gn1} in eV		130 1.649 4.001 1.783 12.831 14.272 130 1.660 3.929 1.757 12.349 13.805 130 1.675 3.835 1.724 11.739	1.682 3.969 1.707 12.839 13.555 188 1.697 3.893 1.674 12.355 13.034 188 1.716 3.795 1.632 11.742	1.784 3.870 1.487 12.766 11.507 329 1.806 3.786 1.440 12.262 10.903 329 1.834 3.679 1.382 11.623	1.896 3.758 1.261 12.534 9.480 463 1.924 3.668 1.206 11.997 8.846 463 1.961 3.551 1.138 11.317	

x=1

www.wjert.org

For $\mathbf{r}_{d} = \mathbf{r}_{As}$,									
$\eta_n \gg 1$	7	93	135	236	331					
Egn1 in eV	7	1.815	1.847	1.938	2.034					
n	7	3.754	3.722	3.630	3.532					
κ	7	1.422	1.356	1.180	1.008					
ε1	7	12.073	12.015	11.788	11.462					
ε2	7	10.679	10.098	8.568	7.120					
For $\mathbf{r}_{*} = \mathbf{r}_{*}$.										
$\eta_n \gg 1$	7	93	134.5	236	331					
Egn1 in eV	7	1.822	1.857	1.952	2.051					
n	7	3.688	3.654	3.557	3.455					
κ	7	1.406	1.337	1.154	0.978					
ε1	\mathbf{Y}	11.623	11.562	11.324	10.984					
ε2	7	10.375	9.772	8.212	6.757					
For $\mathbf{r}_{d} = \mathbf{r}_{Sn}$, ,									
$\eta_n \gg 1$	7	93	134.3	235	331					
Egn1 in eV	7	1.832	1.869	1.970	2.074					
n	7	3.602	3.565	3.463	3.356					
κ	7	1.386	1.312	1.122	0.940					
ε1	2	11.054	10.989	10.738	10.381					
ε2	7	9.988	9.361	7.770	6.311					
N (10 ¹⁹ cm ⁻	³) 7	15	26	60	100					

Table 4p. In the X(x)-system, at E=3.2 eV and T=20 K, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_p(\gg 1, \text{degenerate case})$, E_{gp1} , n, κ , ε_1 and ε_2 , obtained as functions of N, being represented by the arrows: \nearrow and \searrow , noting that both η_p and E_{gp1} increase with increasing N.

N (10 ¹⁹ cm ⁻	³) ≯	15	26	60	100	
			x=0		· · · · · · · · · · · · · · · · · · ·	
For $\mathbf{r}_{a} = \mathbf{r}_{Ga}$,					
$\eta_p \gg 1$	7	227	335	595	840	
Egp1 in eV	7	1.869	2.043	2.466	2.869	
n	7	3.866	3.690	3.234	2.772	
κ	\mathbf{Y}	1.313	0.992	0.399	0.081	
ε1	\mathbf{Y}	13.223	12.623	10.303	7.676	
ε ₂	7	10.156	7.320	2.581	0.450	
For $\mathbf{r}_{a} = \mathbf{r}_{ln}$,					
$\eta_p \gg 1$	7	223	332	592	838	
Egp1 in eV	7	1.869	2.045	2.472	2.876	
n	7	3.775	3.596	3.138	2.672	
κ	2	1.312	0.988	0.393	0.077	
ε	\mathbf{Y}	12.529	11.953	9.692	7.135	
ε ₂	\mathbf{Y}	9.909	7.106	2.468	0.415	

For $\mathbf{r}_{a} = \mathbf{r}_{Cd}$,						
$\eta_p \gg 1$	>	221	330	592	837	
Egp1 in eV	1	1.869	2.046	2.474	2.880	
n	2	3.735	3.555	3.095	2.628	
κ	7	1.313	0.987	0.391	0.076	
ε1	7	12.230	11.664	9.430	6.904	
E2	7	9.808	7.016	2.420	0.400	
9 93			x=0.5		<u> </u>	
For $\mathbf{r}_{a} = \mathbf{r}_{Ga}$,						
$\eta_p \gg 1$	~	108	171	316	452	
Egp1 in eV	7	1.820	1.919	2.155	2.377	
n	5	3.834	3.734	3.491	3.252	
κ	2	1.411	1.215	0.809	0.502	
ε1	2	12.706	12.467	11.529	10.323	
ε2	7	10.818	9.077	5.651	3.266	
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{ln}}$,						
$\eta_p \gg 1$	>	101	165	312	448	
Egp1 in eV	7	1.817	1.919	2.158	2.3827	
n	2	3.750	3.648	3.401	3.160	
κ	5	1.418	1.216	0.805	0.496	
ε	7	12.052	11.825	10.916	9.737	
E 2	2	10.635	8.875	5.476	3.137	
For P - P						
$r_{12} - r_{cd}$, $r_{1} \gg 1$	7	97	161	309	446	
'lp ~ ⊥ E in eV	2	1.814	1 0 1 9	2 1 50	2 3 8 4	
Lgp1 mev	-	1.014	1.916	2.139	2.384	
п	7	3./14	3.610	3.301	3.119	
κ	>	1.423	1.218	0.80	0.494	
ε1	2	12.989	11.550) 10.65	9.485	
ε2	3	11.769	8.796	5 5.40	3 3.082	
			x=1			
For $\mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}}$						
η _p ≫1	-	▶ 47	99	210	310	
Egp1 in eV	,	1.864	1.947	2.12	7 2.291	
n	1	3.706	3.622	2. 3.43	6 3.261	
κ	2	1.324	1.164	0.85	4 0.612	
ε	2	11.980	11.762	2 11.07	5 10.257	
ε2	1	9.810	8.432	5.86	6 3.993	
For $\mathbf{r} = \mathbf{r}$						
$\eta_n \gg 1$,	28	87	202	303	
E _{gn} in eV		1.844	1.938	2.12	2.293	
n n		3 642	3 54	335	4 3 176	
κ	>	1.363	1.180	0.85	6 0.610	
ε	1	11.406	11.189	0.51	5 9.712	
ε2	1	9.925	8.369	5.74	1 3.876	
Eor						
$\mathbf{r}_{\mathbf{n}} = \mathbf{r}_{\mathbf{c}}$	d '	Z 13	80	197	300	
E _{ma} in eV		1.827	1.933	2.12	24 2.293	
n		3 622	3 516	5 3 3 1	9 3 1 3 0	
κ		1.397	1.191	0.85	8 0.610	
ε	1	11.168	10.946	5 10.27	9.480	
ε2	1	10.119	8.373	5.69	3.830	
N (10 ¹⁸ m	-3,	2 15	26	60	100	
IT (ITO CHI)	/ 15	20		100	

Table 5n: In the X(x)-system, at E=3.2 eV and N = 10^{20} cm⁻³, for given r_d and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of η_n (>> 1, degenerate case), E_{gn1} , n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: r and γ , noting that both η_n and E_{gn1} decrease with increasing T.

T in K	7	20	50	100	300	
			x=0			
For $\mathbf{r}_{\mathbf{d}} = \mathbf{r}_{\mathbf{As}}$,						
$\eta_n \gg 1$	2	847	339	169	56	
Egn1 in eV	2	1.870	1.866	1.853	1.774	
n	7	3.865	3.870		3.882	3.961
κ	7	1.311	1.320	1.345	1.507	
ε.	7	13.221	13.232	13.263	13.415	
ε2	7	10.132	10.215	10.441	11.940	
For $\mathbf{r}_{\mathbf{i}} = \mathbf{r}_{\mathbf{r}_{\mathbf{i}}}$						
$\eta_n \gg 1$	2	847	339	169	56	
E _{gn1} in eV	2	1.928	1.923	1.911	1.832	
n	7	3.743	3 747	3,760	3 8 3 9	
×	2	1 200	1 208	1 232	1 388	
к Е.	7	12.571	12.584	12.621	12.816	
51 E-	7	8.983	9.055	9.264	10.656	
2		0.705	7.000	201	10.050	
For $\mathbf{r}_{\mathbf{i}} = \mathbf{r}_{\mathbf{r}_{\mathbf{i}}}$						
$\eta_n \gg 1$	2	847	339	169	56	
Egn1 in eV	2	1.999	1.995	1.983	1.904	
n	7	3.587	3.592	3.604	3.685	
κ	7	1.068	1.076	1.098	1.246	
ε1	7	11.727	11.742	11.785	12.026	
ε2	7	7.664	7.729	7.919	9.181	
			x=0.5			
For $\mathbf{r}_{d} = \mathbf{r}_{As}$,						
$\eta_n \gg 1$	2	463	185	93	31	
Egn1 in eV	7	1.896	1.888	1.870	1.766	
n	7	3.758	3.765	3.784	3.887	
κ	7	1.261	1.275	1.311	1.524	
ε1	7	12.534	12.553	12.600	12.788	
ε2:	7	9.480	9.603	9.926	11.849	
For $\mathbf{r}_{d} = \mathbf{r}_{Te}$,						
$\eta_n \gg 1$	7	463	185	93	31	
Egn1 in eV	7	1.924	1.917	1.899	1.795	
n	7	3.668	3.675	3.694	3.797	
κ	7	1.206	1.219	1.255	1.463	
ε1	7	11.997	12.018	12.068	12.279	
ε2	/	8.846	8.963	9.273	11.113	

-						
For $\mathbf{r}_{d} = \mathbf{r}_{c_{m}}$,					
η _n ≫1	7	463	185	92.6	31.8	
Egn1 in eV	7	1.961	1.953	1.935	1.831	
n	7	3.551	3.559	3.578	3.682	
κ	7	1.138	1.152	1.186	1.389	
ε1	7	11.317	11.339	11.393	11.629	
ε2	7	8.087	8.198	8.489	10.228	
			x=1			
For $\mathbf{r}_{d} = \mathbf{r}_{\Delta s}$,					
η _n ≫1	2	331.6	133.6	66	22	
Egn1 in eV	2	2.034	2.024	1.999	1.871	
n	7	3.532	3.543	3.568	3.698	_
κ	7	1.008	1.025	1.069	1.309	
ε1	1	11.462	11.500	11.590	11.964	
ε2	7	7.120	7.264	7.627	9.685	
-						
For $\mathbf{r}_{d} = \mathbf{r}_{Te}$,					
$\eta_n \gg 1$	7	331.5	132.6	66	22	
E _{gn1} in eV	7	2.051	2.041	2.017	1.888	
n	7	3.455	3.466	3.491	3.622	
κ	7	0.978	0.995	1.038	1.275	
ε ₁	7	10.984	11.022	11.113	11.493	
ε2	7	6.757	6.896	7.246	9.236	
For $\mathbf{r}_{d} = \mathbf{r}_{c_{m}}$,					
η _n ≫1	7	331.4	132.5	66	22	
Egn1 in eV	2	2.074	2.064	2.039	1.911	
n	7	3.356	3.367	3.392	3.523	
κ	7	0.940	0.957	0.999	1.232	

Table 5p. In the X(x)-system, at E=3.2 eV and $N = 10^{20} \text{ cm}^{-2}$, for given r_a and x, and from Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of $\eta_p (\gg 1, \text{degenerate case})$, E_{gp1} , n, κ , ε_1 and ε_2 , obtained as functions of T, being represented by the arrows: r and r, noting that both η_p and E_{gp1} decrease with increasing T.

T in K	7	20	50	100	300		
			x=0				
For $\mathbf{r_a} = \mathbf{r_{Ga}}$,						
$\eta_p \gg 1$	\mathbf{Y}	840	336	168	56		
Egp1 in eV	\mathbf{Y}	2.869	2.865	2.852	2.773		
n	7	2.772	2.777		2.792	2.885	
κ	7	0.081	0.083	0.090	0.135		
ε	7	7.676	7.704	7.785	8.303		
ε2	7	0.450	0.463	0.501	0.779		
For $\mathbf{r}_{a} = \mathbf{r}_{ln}$,	,						
$\eta_p \gg 1$	\mathbf{Y}	838	335	168	56		
Egp1 in eV	2	2.876	2.872	2.860	2.780		
n	7	2.672	2.677		2.692	2.785	
κ	7	0.077	0.080	0.086	0.130		
ε	7	7.135	7.162	7.241	7.741		
ε2	7	0.415	0.427	0.462	0.726		
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{Cd}}$,						
$\eta_p \gg 1$	2	837	335	167	56		
E _{gp1} in eV	2	2.880	2.875	2.863	2.784		
n	7	2.628	2.634		2.648	2.742	
κ	7	0.076	0.078	0.084	0.128		
ε	7	6.904	6.931	7.008	7.500		
ε2	7	0.400	0.412	0.446	0.704		
			x=0.5				
For $\mathbf{r}_{a} = \mathbf{r}_{Ga}$,						
$\eta_p \gg 1$	7	452	181	90	30		
Egp1 in eV	7	2.377	2.370	2.351	2.247		
n	7	3.252	3.260	3.280	3.392		
κ	7	0.502	0.511	0.534	0.673		
ε1	7	10.323	10.365	10.474	11.056		
ε2		3.266	3.331	3.504	4.563		
For $\mathbf{r}_{\mathbf{a}} = \mathbf{r}_{\mathbf{ln}}$,							
$\eta_p \gg 1$	\mathbf{Y}	448	179	89.7	29.9		
Egp1 in eV	7	2.382	2.374	2.356	2.252		
n	7	3.160	3.167	3.188	3.300		
κ	7	0.496	0.505	0.528	0.666		
ε1	7	9.737	9.778	9.884	10.448		
ε2	7	3.137	3.200	3.367	4.395		
For $\mathbf{r}_a = \mathbf{r}_{Cd}$,						

$\eta_p \gg 1$	\mathbf{Y}	446	178	89.3	29.7	
Egp1 in eV	2	2.384	2.376	2.358	2.254	
n	7	3.119	3.127	3.147	3.260	
κ	7	0.494	0.503	0.526	0.663	
ε1	7	9.485	9.526	9.630	10.186	
ε2	7	3.082	3.145	3.310	4.324	
			x=1			
For $\mathbf{r_2} = \mathbf{r_{G2}}$,					
$\eta_p \gg 1$	\mathbf{Y}	310	124	62	20.6	
Egp1 in eV	2	2.291	2.281	2.256	2.128	
n	7	3.261	3.271	3.298	3.434	
κ	7	0.612	0.626	0.660	0.852	
ε	7	10.257	10.311	10.442	11.070	
ε2	7	3.993	4.095	4.353	5.851	
For $\mathbf{r}_{1} = \mathbf{r}_{1}$,						
η _p ≫1	\mathbf{Y}	303	121	61	20.2	
Egp1 in eV	7	2.293	2.283	2.258	2.129	
n	7	3.176	3.186	3.213	3.349	
κ	7	0.610	0.624	0.658	0.849	
ε1	7	9.712	9.764	9.891	10.497	
ε2	7	3.876	3.976	4.228	5.690	
For $\mathbf{r}_{\mathbf{r}} = \mathbf{r}_{\mathbf{r}\mathbf{d}}$,						
η _p ≫1	2	300	120	60	20	
Egp1 in eV	7	2.292	2.283	2.258	2.130	
n	7	3.139	3.150	3.176	3.313	
κ	7	0.610	0.624	0.658	0.849	
ε1	7	9.480	9.531	9.656	10.253	
ε2	7	3.830	3.928	4.178	5.626	
T in K	7	20	50	100	300	