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ABTRACT 

In the n(p)-type - crystalline alloy, with , basing on 

our two recent works
[1,2]

, for a given x, and with an increasing , the 

optical coefficients have been determined, as functions of the photon 

energy E, total impurity density N, the donor (acceptor) radius , 

concentration x, and temperature T. Those results have been affected 

by (i) the important new -law, developed in Equations (8a, 

8b), stating that, for a given x, due to the impurity-size effect,  

decreases ( ) with an increasing ( ) , and then by (ii) the 

generalized Mott critical d(a)-density defined in the metal-insulator 

transition (MIT), ), as observed in Equations (8c, 9a). 

Furthermore, we also showed that  is just the density of 

carriers localized in exponential band tails, with a precision of the order of, as that 

given in Table 4 of Ref.
[1]

, according to a definition of the effective density of electrons 

(holes) given in parabolic conduction (valence) bands by: 

), as defined in Eq. (9d). In summary, due to the new 

-law and to the effective density of electrons (holes) given in parabolic conduction 

(valence) bands  for a given x, and with an increasing , the numerical results 

of all the optical coefficients, obtained in appropriated physical conditions (E, N, T), and 
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calculated by using Equations (15, 16, 20, 21), are reported in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, 

and 5p in Appendix 1. 

 

KEYWORS: - crystalline alloy; impurity-size effect; Mott critical impurity density 

in the MIT, optical coefficients. 

 

INTRODUCTION 

Here, basing on our two recent works
[1, 2]

 and also other ones
[3-8]

, all the optical coefficients 

given in the n(p)-type - crystalline alloy, with , are investigated, as 

functions of the photon energy E, total impurity density N, the donor (acceptor) radius , 

concentration x, and temperature T. Then, for a given x, and with an increasing , the 

numerical results of all the optical coefficients, obtained in appropriated physical 

conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported in 

Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1. 

 

ENERGY BAND STUCTURE PARAMETERS 

First of all, in the - crystalline alloy at T=0 K, we denote the donor 

(acceptor) d(a)- radius by , and also the intrinsic one by: = =0.118 nm (0.126 

nm). 

 

A. Effect of x- concentration 

Here, the intrinsic energy-band-structure parameters
[1]

, are expressed as functions of x, are 

given in the following. 

(i)-The unperturbed relative effective electron (hole) mass in conduction (valence) bands are 

given by. 

                                                         (1) 

(ii)-The unperturbed relative static dielectric constant of the intrinsic of the single 

crystalline X- alloy is found to be defined by. 

.                                                                                                           (2) 

(iii)-Finally, the unperturbed band gap at 0 K is found to be given by: 

.                                                                                                        (3) 

 

Therefore, we can define the effective donor (acceptor)-ionization energy in absolute values 

as. 

,                                                                                                          (4) 
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and then, the isothermal bulk modulus, by: 

                                                                                                                            (5) 

 

B. Effect of Impurity -size, with a given x 

Here, the changes in all the energy-band-structure parameters, expressed in terms of the 

effective relative dielectric constant , developed as follows. 

At  , the needed boundary conditions are found to be, for the impurity-

atom volume V , , for the pressure p, , 

and for the deformation potential energy (or the strain energy) σ, . Further, the two 

important equations
[1,7]

, used to determine the σ-variation, ∆σ≡ σ− , are defined by: 

=−  and p=−  . giving:  Then, by an integration, one gets. 

        (6) 

 

Furthermore, we also shown that, as , the compression 

(dilatation) gives rise to the increase (the decrease) in the energy gap , and the 

effective donor (acceptor)-ionization energy  in absolute values, obtained in the 

effective Bohr model, which is represented respectively by: , 

, 

for , and for , 

 (7) 

 

Therefore, from Equations (6) and (7), one obtains the expressions for relative dielectric 

constant  and energy band gap , as. 

(i)-for , since =  ≤ , being a new -law, 

                    (8a) 

according to the increase in both  and , with increasing  and for a 

given x, and 

(ii)-for , since =  ≥ , with a condition, 

given by. 
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 (8b) 

corresponding to the decrease in both and , with decreasing and for a 

given x; therefore, the effective Bohr radius is defined by. 

 
. (8c) 

 

Furthermore, it is interesting to remark that the critical total donor (acceptor)-density in the 

metal-insulator transition (MIT) at T=0 K, , was given by the Mott’s 

criterium, with an empirical parameter, as. 

                      (9a) 

depending thus on our new -law. 

 

This excellent one can be explained from the definition of the reduced effective Wigner-

Seitz (WS) radius , characteristic of interactions, by. 

,                              (9b) 

being equal to, in particular, at N= : = 

2.4814, for any )-values. So, from Eq. (9b), one also has. 

.                            (9c) 

 

Thus, the above Equations (9a, 9b, 9c) confirm our new -law, given in Equations 

(8a, 8b). Furthermore, by using , according to the empirical Heisenberg 

parameter , as those given in Equations (8, 15) of the Ref.
[1]

, we have also 

showed that  is just the density of electrons (holes) localized in the exponential 

conduction (valence)-band tail  with a precision of the order of  . Therefore, the 

density of electrons (holes) given in parabolic conduction (valence) bands can be defined, 

as that given in compensated materials, by. 

).                                                                                 (9d) 

 

C. Effect of temperature T, with given x and  

Here, the intrinsic band gap at any T is given by. 



Cong et al.                                      World Journal of Engineering Research and Technology 

  

 

 

www.wjert.org                         ISO 9001: 2015 Certified Journal       

 

209 

,                       (10) 

suggesting that, for given x and  , decreases with an increasing T. 

Then, in the following, for the study of optical phenomena, one denote the conduction 

(valence)-band density of states by  as. 

              (11) 

where  is the reduced effective mass , defined by. 

. 

 

D. Heavy Doping Effect, with given T, x and  

Here, as given in our previous works
[1,2]

, the Fermi energy , and the band gap 

narrowing are reported in the following. 

First, the reduced Fermi energy  or the Fermi energy , obtained for any T and 

any effective d(a)-density, , defined in Eq. (9d), for a simplicity of 

presentation, being investigated in our previous paper
[8]

, with a precision of the order 

of  is found to be given by. 

             (12) 

 

. Therefore, from Eq.(12), the Fermi energies are expressed as functions 

of variables : .  

 

Here, one notes that: (i) as , according to the HD [d(a)- - alloy] ER-case, or to the 

degenerate case, Eq. (12) is reduced to the function F(u), and in particular at T=0 and as 

, according to the metal- insulator transition (MIT), one has: 

, and (ii) , to the LD [a(d)- 

- alloy] BR-case, or to the non-degenerate case, Eq. (12) is reduced to the function G(u), 

noting that the notations: HD(LD) and ER(BR) denote the heavily doped (lightly doped)-

cases and emitter (base)-regions, respectively. 

 

Now, in Eq. (9b), in which one replaces  by , the effective Wigner-Seitz radius 

becomes as. 
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,                                                  (13a) 

the correlation energy of an effective electron gas, , is given as. 

                         
(13b) 

 

Then, taking into account various spin-polarized chemical potential-energy contributions 

such as: exchange energy of an effective electron (hole) gas, majority-carrier correlation 

energy of an effective electron (hole) gas, minority hole (electron) correlation energy, 

majority electron (hole)-ionized d(a) interaction screened Coulomb potential energy, and 

finally minority hole (electron)-ionized d(a) interaction screened Coulomb potential energy, 

the band gap narrowings are given in the following. 

 

In the n-type HD - alloy, the BGN is found to be given by. 

 

 

OPTICAL BAND GAP 

Here, the optical band gap is found to be defined by. 

, (15) 

where , , and  are respectively determined in Equations [10, 

12, 14n(p)], respectively. So, as noted above, at the MIT, Eq. (15) thus becomes: 

 according to: ). 
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OPTICAL COEFFICIENTS 

The optical properties of any medium can be described by the complex refraction index  

and the complex dielectric function ,  and , where  and . 

Therefore, the real and imaginary parts of  denoted by  and  can thus be expressed in 

terms of the refraction index  and the extinction coefficient  as:  and . 

One notes that the optical absorption coefficient  is related to , n, , and the optical 

conductivity , by
[2]

 

 ,  and ,      (16) 

 

where, since  is the photon energy, the effective photon energy: 

 is thus defined as the reduced photon energy. 

 

Here, -q, , , , ,  and  respectively represent: the electron charge, 

Dirac’s constant, matrix elements of the velocity operator between valence (conduction)-and-

conduction (valence) bands in n(p)-type semiconductors, photon frequency, permittivity of 

free space, velocity of light, and joint density of states. It should be noted that, if the three 

functions such as: ,  and  are known, then the other optical dispersion 

functions as those given in Eq. (16) can thus be determined. Moreover, the normal- incidence 

reflectance, , can be expressed in terms of  and  as. 

.                                                   (17) 

 

From Equations (16, 17), if the two optical functions,  and , (or  and ), are both known, 

the other ones defined above can thus be determined, noting also that: 

 , for a presentation simplicity. 

 

Then, one has. 

-at low values of , 

, for a=1,    (18) 

and at large values of , 

, for a=5/2.      (19) 

 

Further, one notes that, as , Forouhi and Bloomer (FB) [4] claimed that  

a constant, while the  -expressions, proposed by Van Cong [2] quickly go to 0 as , 
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and consequently, their numerical results of the optical functions such as:  and , 

given in Eq. (16), both go to 0 as . 

 

Now, an improved Forouhi-Bloomer parameterization model (FB-PM), used to determine the 

expressions of the optical coefficients in the degenerate - crystalline alloy, 

is now proposed as follows. Then, if denoting the functions G(E) and F(E) and by:  

G(E)  and F(E) , we propose. 

, for , 

, for ,                                                                                 (20) 

being equal to 0 for  (or for  ), and also going to 0 as  as , and 

further, .                                      (21) 

going to a constant as , since  , 

[5] and . 

 

Here, the other parameters are determined by: , 

 , where, for i=(1, 2, 3, and 

4), ,  

and 13.232, and, and 44.119. 

 

Then, as noted above, if the two optical functions,  and , are both known, the other ones 

defined in Equations (16, 17) can also be determined. 

 

NUMERICAL RESULTS 

Now, some numerical results of those optical functions are investigated in the n(p)-type 

- crystalline alloy, as follows. 

 

A. Metal-insulator transition (MIT)-case 

As discussed above, the physical conditions used for the MIT are found to be given by: 

T=0K,  or , giving rise to: . 

 

Then, in this MIT-case, if , which can be defined as 

the critical photon energy: , one obtains:  from Eq. (20), 

and from Eq. (16):  ,  and  , and the 
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other functions such as :  from Eq. (21), and  and 

 decrease with increasing  and , as those investigated in 

Table 1 in Appendix 1. 

 

B. Optical coefficients, obtained as E  

In Eq. (21), at any T, the choice of the real refraction index: 

,  
[5]

 and 

 , was obtained from the Lyddane-Sachs-Teller relation
[5]

, from which 

T(L) represent the transverse (longitudinal) optical phonon modes. Then, from Equations (16, 

17, 20), from such the asymptotic behavior ( ), we obtain:  and 

, as , so that ,  ,  and  Z 

go to their appropriate limiting constants, as those investigated in Table 2 in Appendix 1. 

 

C. Variations of some optical coefficients, obtained in P(B)-X(x)-system, as functions of E 

In the P(B)-X(x)-system, at T=0K and  our numerical results of n, ,  

and  are obtained from Equations (21, 20, 16), respectively, and expressed as functions of 

 and for given x, as those reported in Tables 3n and 3p in Appendix 1. 

 

D. Variations of various optical coefficients, as functions of N 

In the X(x)-system, at E=3.2 eV and T=20 K, for given  and x, and from Equations (12, 

15, 21, 20, 16), respectively, we can determine the variations of , 

, n, ,  and , obtained as functions of N, being represented by the arrows:  and 

, as those tabulated in Tables 4n and 4p in Appendix 1. 

 

E. Variations of various optical coefficients as functions of T 

In the X(x)-system, at E=3.2 eV and , for given  and x, and from Equations 

(12, 15, 21, 20, 16), respectively, we can determine the variations of 

, , n, ,  and , obtained as functions of T, being 

represented by the arrows:  and  as those tabulated in Tables 5n and 5p in Appendix 1. 

 

CONCLUDING REMARKS 

In the n(p)-type - crystalline alloy, by basing on our two recent works
[1, 2]

, 

for a given x, and with an increasing , the optical coefficients have been determined, 

as functions of the photon energy E, total impurity density N, the donor (acceptor) radius 

, concentration x, and temperature T. Those results have been affected by (i) the 
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important new -law, developed in Equations (8a, 8b), stating that, for a given x, due 

to the impurity-size effect,  decreases ( ) with an increasing ( ) , and then by (ii) the 

generalized Mott critical d(a)-density defined in the metal-insulator transition (MIT), 

), as observed in Equations (8c, 9a). 

 

Further, we also showed that  is just the density of carriers localized in exponential 

band tails, with a precision of the order of , as that given in Table 4 of Ref.
[1]

, 

according to a definition of the effective density of electrons (holes) given in parabolic 

conduction (valence) bands by: ), as defined in Eq. 

(9d). 

 

In summary, due to the new -law and to the effective density of electrons (holes) 

given in parabolic conduction (valence) bands  , for a given x, and with an 

increasing , the numerical results of all the optical coefficients, obtained in appropriated 

physical conditions (E, N, T), and calculated by using Equations (15, 16, 20, 21), are reported 

in Tables 1, 2, 3n, 3p, 4n, 4p, 5n, and 5p in Appendix 1. 
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APPENDIX 1 

Table 1: In the MIT-case, T=0K, N=  ), and the critical photon energy 

, if , the numerical results of optical 

functions such as: , obtained from Eq. (21), and those of other ones: 

 and decrease ( ) with increasing ( )  and . 
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Table 2: Here, as , the numerical results of ,  , 

 and  go to their appropriate limiting constants.  
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Table 3n: In the P-X(x)-system, at T=0K and  according to the MIT, our 

numerical results of n, ,  and  are obtained from Equations (21, 20, 16), respectively, 

and expressed as functions  of and x, noting that (i) K=0 and  at, 

 and  and  as. 
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Table 3p. In the B-X(x)-system, and at T=0K and  according to the MIT, 

our numerical results of n, ,  and  are obtained from Equations (21, 20, 16), 

respectively, and expressed as functions of  and x, noting that (i) 
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Table 4n: In the X(x)-system, at E=3.2 eV and T=20 K, for given  and x, and from 

Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of 

obtained as functions of N, being represented 

by the arrows:  and , noting that both  and increase with increasing N. 
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Table 4p. In the X(x)-system, at E=3.2 eV and T=20 K, for given  and x, and from 

Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of 

, , n, ,  and , obtained as functions of N, being represented by 

the arrows:  and , noting that both  and  increase with increasing N. 
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Table 5n: In the X(x)-system, at E=3.2 eV and , for given  and x, and from 

Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of 

, , n, ,  and , obtained as functions of T, being represented by 

the arrows:  and , noting that both  and  decrease with increasing T. 
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Table 5p. In the X(x)-system, at E=3.2 eV and , for given  and x, and from 

Equations (12, 15, 21, 20, 16), respectively, we can determine the variations of 

, , n, ,  and , obtained as functions of T, being represented by 

the arrows:  and , noting that both  and  decrease with increasing T. 
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