World Journal of Engineering Research and Technology (WJERT) has indexed with various reputed international bodies like : Google Scholar , Index Copernicus , Indian Science Publications , SOCOLAR, China , International Institute of Organized Research (I2OR) , Cosmos Impact Factor , Research Bible, Fuchu, Tokyo. JAPAN , Scientific Indexing Services (SIS) , Jour Informatics (Under Process) , UDLedge Science Citation Index , International Impact Factor Services , International Scientific Indexing, UAE , International Society for Research Activity (ISRA) Journal Impact Factor (JIF) , International Innovative Journal Impact Factor (IIJIF) , Science Library Index, Dubai, United Arab Emirates , Scientific Journal Impact Factor (SJIF) , Science Library Index, Dubai, United Arab Emirates , Eurasian Scientific Journal Index (ESJI) , Global Impact Factor (0.342) , IFSIJ Measure of Journal Quality , 

World Journal of Engineering
Research and Technology

An International Peer Reviewed Journal for Engineering Research and Technology

ISSN 2454-695X

Impact Factor : 5.218

ICV : 79.45

News & Updation

  • Article Invited for Publication

    Article are invited for publication in WJERT Coming Issue

  • WJERT New Impact Factor

    Its our Pleasure to Inform you that WJERT Impact Factor has been increased from 4.236 to 5.218 due to high quality Publication at International Level

  • ICV

    WJERT Rank with Index Copernicus Value 79.45 due to high reputation at International Level

  • WJERT SEPTEMBER ISSUE PUBLISHED

    SEPTEMBER 2018 Issue has been successfully launched on 1 September 2018

  • New Issue Published

    Its Our pleasure to inform you that, WJERT 1 September 2018 Issue has been Published, Kindly check it on http://wjert.org/home/current_issues

Indexing

Abstract

QUERY CATEGORIZATION WEB SEARCH RESULTS INTO MEANINGFUL AND STABLE CATEGORIES USING FAST-FEATURE TECHNIQUES

Pravendra Singh Chauhan*

ABSTRACT

When search results against digital libraries and web resources have limited metadata, augmenting them with meaningful and stable category information can enable better overviews and support user exploration. This paper proposes six “fast-feature” techniques that use only features available in the search result list, such as title, snippet, and URL, to categorize results into meaningful categories. They use credible knowledge resources, including a US government organizational hierarchy, a thematic hierarchy from the Open Directory Project (ODP) web directory and personal browse histories, to add valuable metadata to search results. In three tests the percent of results categorized for five representative queries was high enough to suggest practical benefits: general web search (76-90%), government web search (39-100%), and the Bureau of Labor Statistics website (48-94%). An additional test submitted 250 TREC queries to a search engine and successfully categorized 66% of the top 100 using the ODP and 61% of the top 350. Fast-feature techniques have been implemented in a prototype search engine. We propose research directions to improve categorization rates and make suggestions about how web site designers could re-organize their sites to support fast categorization of search results. Categories and Subject Descriptors H.3.3 [Information Storage and Retrieval]: Information Search and Retrieval; H.3.7 [Information Storage and Retrieval]: Digital Libraries General Terms Measurement, Design, Experimentation, Human Factors.

[Full Text Article]