World Journal of Engineering Research and Technology (WJERT) has indexed with various reputed international bodies like : Google Scholar , Index Copernicus , Indian Science Publications , SOCOLAR, China , International Institute of Organized Research (I2OR) , Cosmos Impact Factor , Research Bible, Fuchu, Tokyo. JAPAN , Scientific Indexing Services (SIS) , Jour Informatics (Under Process) , UDLedge Science Citation Index , International Impact Factor Services , International Scientific Indexing, UAE , International Society for Research Activity (ISRA) Journal Impact Factor (JIF) , International Innovative Journal Impact Factor (IIJIF) , Science Library Index, Dubai, United Arab Emirates , Scientific Journal Impact Factor (SJIF) , Science Library Index, Dubai, United Arab Emirates , Eurasian Scientific Journal Index (ESJI) , Global Impact Factor (0.342) , IFSIJ Measure of Journal Quality , Web of Science Group (Under Process) , Directory of Research Journals Indexing , 

World Journal of Engineering
Research and Technology

An International Peer Reviewed Journal for Engineering Research and Technology

ISSN 2454-695X

Impact Factor : 5.924

ICV : 79.45

News & Updation

  • Article Invited for Publication

    Article are invited for publication in WJERT Coming Issue

  • ICV

    WJERT Rank with Index Copernicus Value 79.45 due to high reputation at International Level

  • New Issue Published

    Its Our pleasure to inform you that, WJERT 1 March 2020 Issue has been Published, Kindly check it on http://wjert.org/home/current_issues

  • WJERT New Impact Factor

    Its our Pleasure to Inform you that WJERT Impact Factor has been increased from  5.549 to 5.924 due to high quality Publication at International Level

  • WJERT MARCH ISSUE PUBLISHED

    MARCH 2020 Issue has been successfully launched on 1 March 2020.

Indexing

Abstract

INFLUENCE OF EIGENVECTOR ON SELECTED FACIAL BIOMETRIC IDENTIFICATION STRATEGIES

Olajide Blessing Olajide*, Jooda Janet Olubunmi, Adeosun Olajide Olusegun, Odeniyi Olufemi Ayodeji

ABSTRACT

Face identification strategies are becoming more popular among biometric-based strategies as it measures an individual?s natural data to authenticate and identify individuals by analyzing their physical characteristics. For face identification system to be efficient and robust to serve it purpose of security, there is need to use the best strategy out of the many strategies that have been proposed in literatures for face identification. Amidst the most popularly used face identification strategies, Principal Component Analysis PCA, Binary Principal Component Analysis BPCA, and Principal Component Analysis – Artificial Neural Network PCA-ANN were selected for performance evaluation. The research was experimented by varying the eigenvector of the training images for each strategy to compare the performance using Recognition Rate RR and Total Recognition Time TR as performance metrics. Results showed that PCA – ANN strategy gave the best recognition rate of 94% with a trade-off in recognition time. Also, the recognition rates of PCA and B-PCA increased with decreasing number of eigenvectors but PCA-ANN recognition rate was negligible. Hence PCA-ANN outperforms the other face identification strategies.

[Full Text Article]